

HPC User Environment 2

Jason Li

HPC User Services

LSU HPC / LONI

sys-help@loni.org

Louisiana State University
Baton Rouge
Feb 1, 2023

HPC User Environment 1

- 1. Intro to HPC
- 2. Getting started
- 3. Into the cluster
- 4. Software environment (modules)

- 1. Basic concepts
- 2. How jobs are handled
- 3. Submitting a job
- 4. Manage my job

- 1. Basic concepts
- 2. How jobs are handled
- 3. Submitting a job
- 4. Manage my job

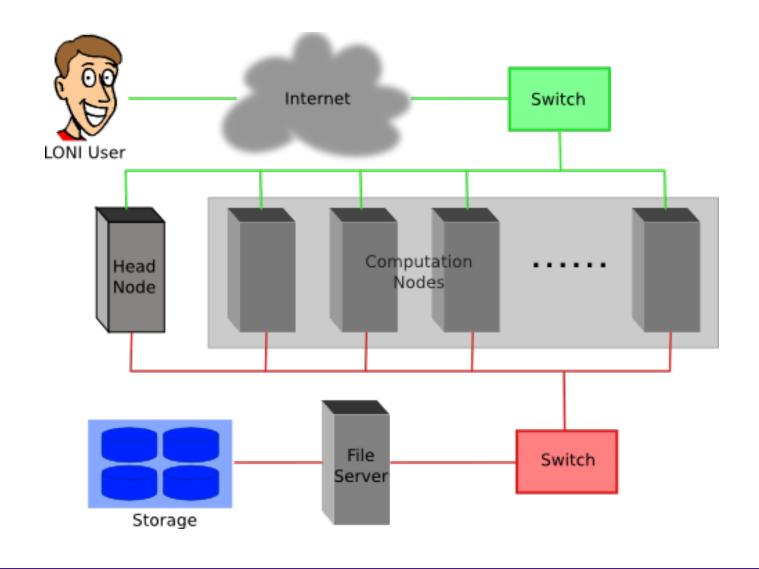
- 1. Basic concepts
- 2. How jobs are handled
 - 1) Job schedulers
 - 2) Job queues
 - 3) Choose your queue
- 3. Submitting a job
 - 1) Interactive job
 - 2) Batch job
 - 3) Cheat sheets
- 4. Manage jobs
 - 1) Useful commands
 - 2) Monitoring job health

- 1. Basic concepts
- 2. How jobs are handled
 - 1) Job schedulers
 - 2) Job queues
 - 3) Choose your queue
- 3. Submitting a job
 - 1) Interactive job
 - 2) Batch job
 - 3) Cheat sheets
- 4. Manage jobs
 - 1) Useful commands
 - 2) Monitoring job health

1) Previously on HPC User Environment 1...

Two things needed to run jobs on our clusters:

1) Account

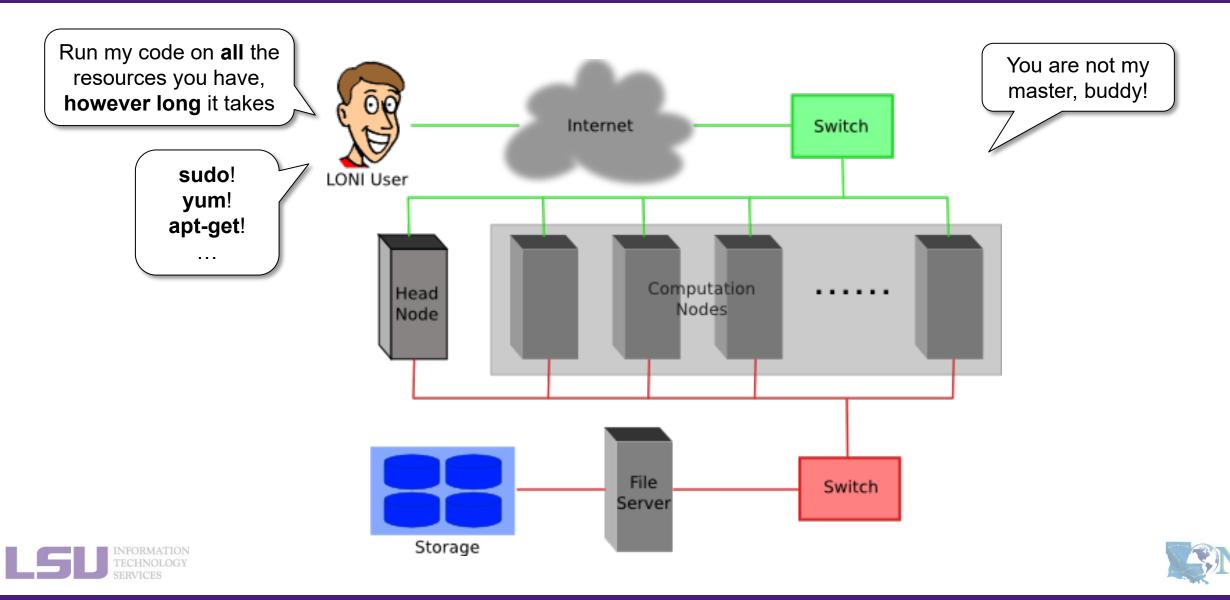

2) Allocation

1) Previously on HPC User Environment 1....

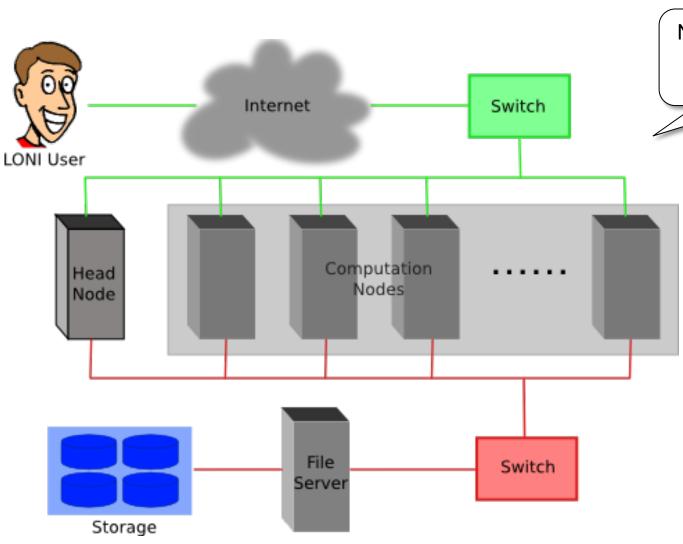
1) Previously on HPC User Environment 1....

Run my code on **all** the resources you have, **however long** it takes

sudo! yum! apt-get!


Yes, my master!

1) Previously on HPC User Environment 1...



1) Previously on HPC User Environment 1...

I will ask nicely. Please grant me the use of **24 cores** for **10 hours** to run my code.

Now we are talking. Let me schedule it for you.

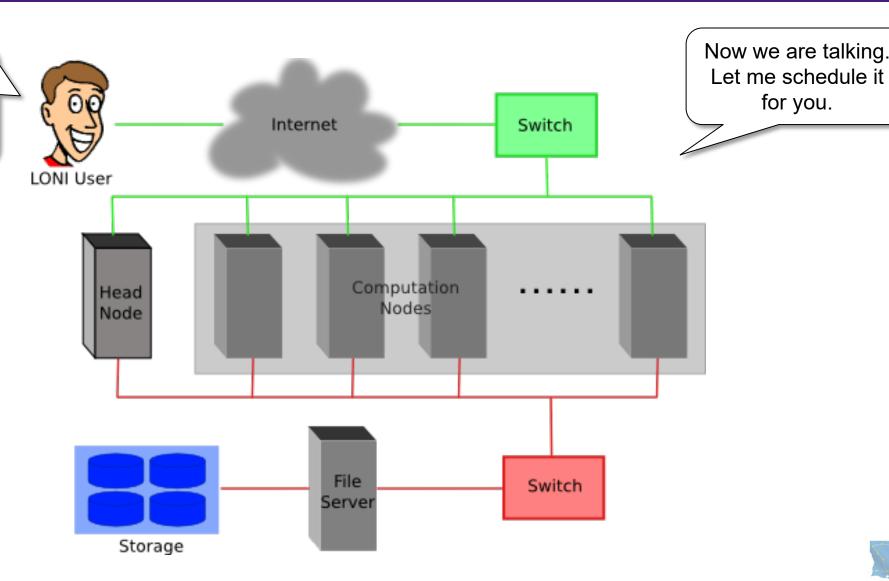
2) What is a "job"?

Job

- A user's request to use a number of nodes/cores for a certain amount of time on a cluster.
- Calculation MUST be done via jobs (NO heavy calculation on head nodes!!)
- SUs deducted from allocations based on actual usage of each job.
 - Example:
 - My allocation: 50,000 SU
 - Running a job: 24 core * 10 hours = 240 SU
 - Balance: 49,760 SU

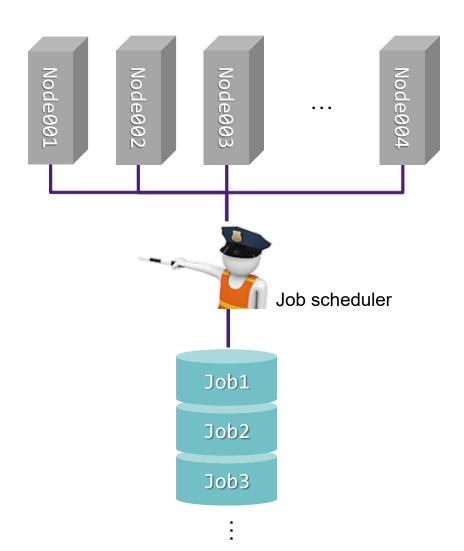
- 1. Basic concepts
- 2. How jobs are handled
 - 1) Job schedulers
 - 2) Job queues
 - 3) Choose your queue
- 3. Submitting a job
 - 1) Interactive job
 - 2) Batch job
 - 3) Cheat sheets
- 4. Manage jobs
 - 1) Useful commands
 - 2) Monitoring job health

- 1. Basic concepts
- 2. How jobs are handled
 - 1) Job schedulers
 - 2) Job queues
 - 3) Choose your queue
- 3. Submitting a job
 - 1) Interactive job
 - 2) Batch job
 - 3) Cheat sheets
- 4. Manage jobs
 - 1) Useful commands
 - 2) Monitoring job health

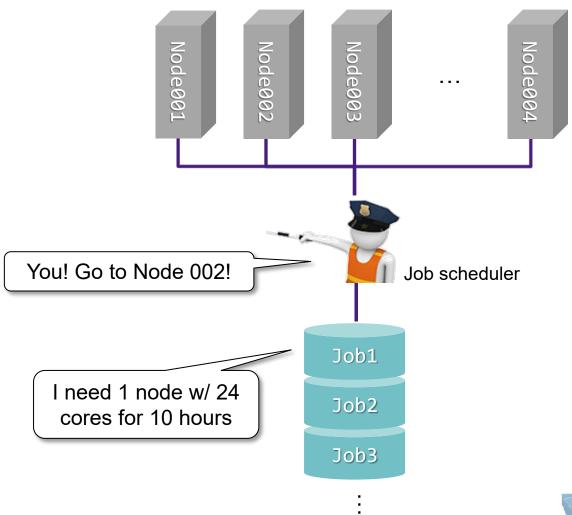


for you.

I will ask nicely. Please grant me the use of 24 cores for 10 hours to run my code.

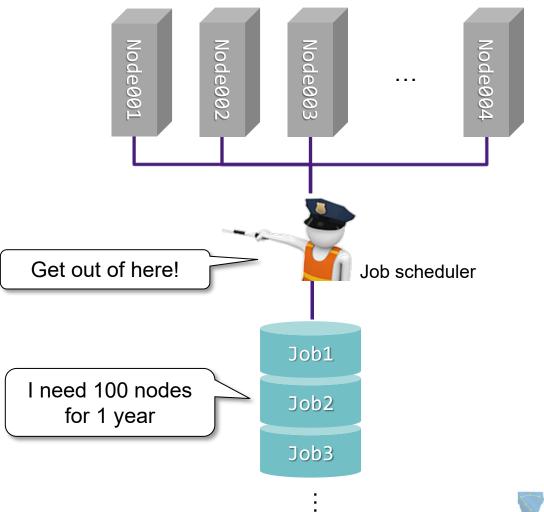


Job scheduler



Job scheduler

a) Decides which job runs when and where



Job scheduler

a) Decides which job runs when and where

b) Enforces job policies

Job scheduler

Job scheduler's responsibilities	
 Decides which job runs when and where Enforces job policies 	

Job scheduler

Job scheduler's responsibilities	Your responsibilities
 Decides which job runs when and where Enforces job policies 	 Decide a job's size and duration Understand the job queuing system and policies Submit/monitor/cancel jobs Diagnose job health

Job scheduler

i) PBS

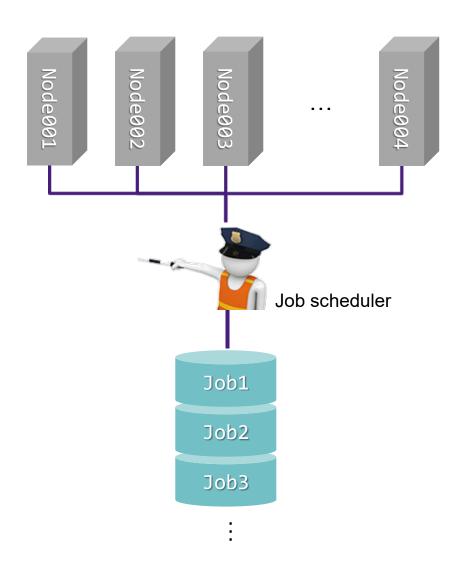
Job scheduler

i) PBS

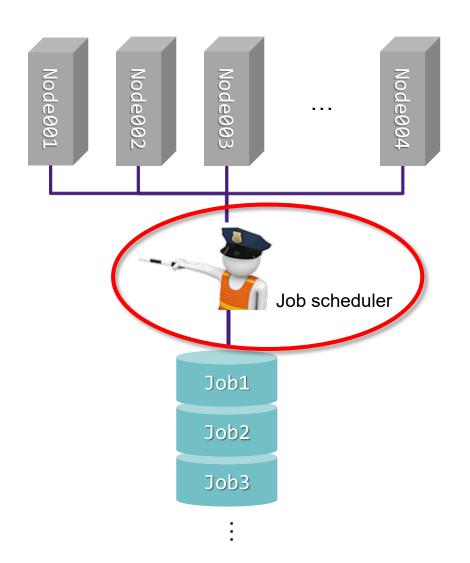
ii) Slurm

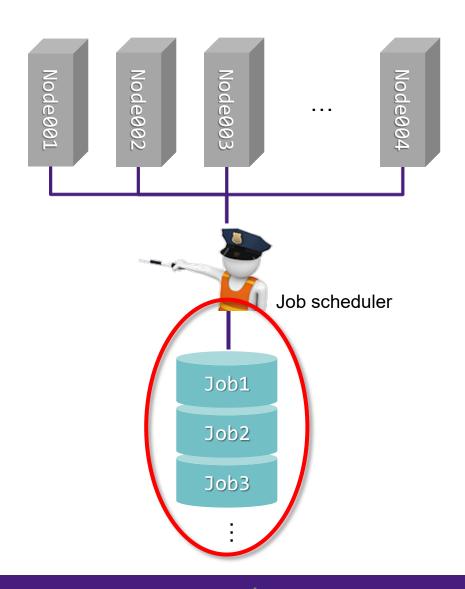
Job scheduler

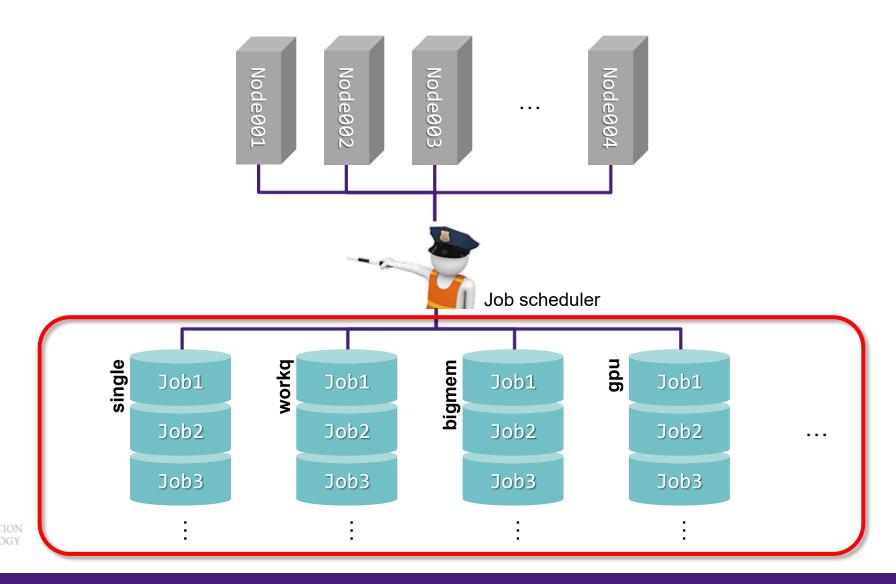
	LSU HPC	LONI
i) PBS	SMIC	QB2
ii) Slurm	Deep Bayou SuperMike III	QB3

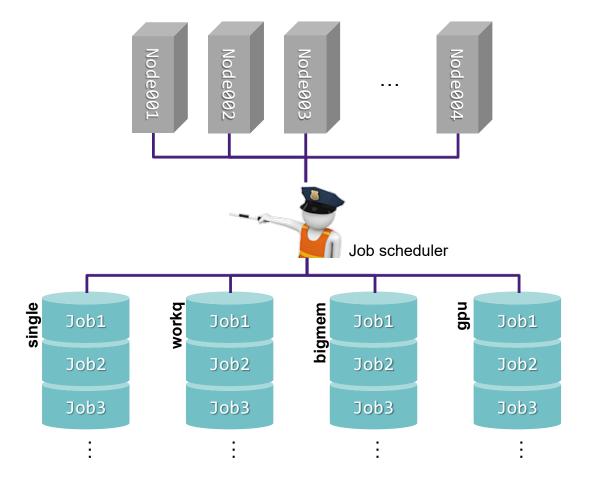


- 1. Basic concepts
- 2. How jobs are handled
 - 1) Job schedulers
 - 2) Job queues
 - 3) Choose your queue
- 3. Submitting a job
 - 1) Interactive job
 - 2) Batch job
 - 3) Cheat sheets
- 4. Manage jobs
 - 1) Useful commands
 - 2) Monitoring job health









a) Definition

- Different queues / lines where jobs are being organized into
- Must pick one queue to submit job

Queue	Feature	Allowed number of cores (ppn)	Available RAM	Max duration

Queue	Feature	Allowed number of cores (ppn)	Available RAM	Max duration
workq checkpt	-	N	All	3 days

Queue	Feature	Allowed number of cores (ppn)	Available RAM	Max duration
workq checkpt	-	N	All	3 days
single	-	[PBS] 1/2/4/6/8 [Slurm] N-1	(RAM/core) * ppn	7 days
		 [SuperMike 3] Each node: 256 GB RAM, 64 cores → 4 GB RAM / core Request ppn=10 → 40 GB RAM 		

Queue	Feature	Allowed number of cores (ppn)	Available RAM	Max duration
workq checkpt	-	N	All	3 days
single	-	[PBS] 1/2/4/6/8 [Slurm] N-1	(RAM/core) * ppn	7 days
gpu v100 nvlink	GPU	N	All	3 days

Queue	Feature	Allowed number of cores (ppn)	Available RAM	Max duration
workq checkpt	-	N	All	3 days
single	-	[PBS] 1/2/4/6/8 [Slurm] N-1	(RAM/core) * ppn	7 days
gpu v100 nvlink	GPU	N	All	3 days
bigmem	Large RAM	N	All	3 days

c) Queues by clusters (LSU HPC)

c) Queues by clusters (LSU HPC)

Cluster	Queue	ppn	Max running jobs	Max nodes per job

c) Queues by clusters (LSU HPC)

Cluster	Queue	ppn	Max running jobs	Max nodes per job	
	workq	20		128	
	checkpt	20		200	
SuperMIC	single	1,2,4,6,8	34	1	
	v100	36		2	
	bigmem	28		3	

c) Queues by clusters (LSU HPC)

Cluster	Queue	ppn	Max running jobs	Max nodes per job	
	workq	20		128	
	checkpt	20		200	
SuperMIC	single	1,2,4,6,8	34	1	
	v100	36		2	
	bigmem	28		3	
	checkpt	48		4	
DeepBayou	single	1 to 47	4	1	
	nvlink	48		1	

c) Queues by clusters (LSU HPC)

Cluster	Queue	ppn	Max running jobs	Max nodes per job
	workq	20		128
	checkpt	20		200
SuperMIC	single	1,2,4,6,8	34	1
	v100	36		2
	bigmem	28		3
DeepBayou	checkpt	48		4
	single	1 to 47	4	1
	nvlink	48		1
	workq	64		84
SuperMike3	checkpt	04		04
	single	1 to 63 32		1
	gpu	64		4
	bigmem	64		4

c) Queues by clusters (LONI)

Cluster	Queue	ppn	Max running jobs	Max nodes per job

c) Queues by clusters (LONI)

Cluster	Queue	ppn	Max running jobs	Max nodes per job
	workq	20		128
QB-2	checkpt	20	64	120
QD-2	single	1,2,4,6,8	04	1
	bigmem	48		1

c) Queues by clusters (LONI)

Cluster	Queue	ppn	Max running jobs	Max nodes per job	
	workq	20		128	
QB-2	checkpt	20	64		
QD-Z	single	1,2,4,6,8		1	
	bigmem	48		1	
QB-3	workq	48		96	
	checkpt	40		00	
	single	1-47	32	1	
	gpu	48		4	
	bigmem	48		1	

- d) Useful commands to check queues
 - i. qstat -q: All queue information

(base) [Queue	jasonli3(-q Walltime	Node	Run	Que Lm	State
admin		 			0	0	E R
single			168:00:00) 1	0	0	E R
checkpt			72:00:00		3	0	E R
workq			72:00:00		12	0	E R
bigmem			72:00:00		0	0	E R
gpu			72:00:00		0	0	E R
					15	0	

d) Useful commands to check queues

ii. showq: All active, eligible, blocked, and/or recently completed jobs

(base) [jasonli3@s	smic4 ~]\$ sh	owq			
active jobs					
JOBID			PROCS	REMAINING	STARTTIME
911313	you3	Running	1	00:59:54	Tue Jan 31 00:24:12
911071	lsuriver			3:36:05	Mon Jan 30 18:00:23
911289	peidong			3:59:53	
911053	lsuriver			4:16:06	
911296	ray				
911297	ray	Running	400	11:25:23	Mon Jan 30 21:49:41
46 active jobs				in use by l ve (19.	ocal jobs (19.40%) 84%)
eligible jobs					
	USERNAME		PROCS	WCLIMIT	QUEUETIME
	332,411	37.112	11000	WCZINI.	4020211112
0 eligible jobs					
blocked jobs					
	USERNAME		PROCS	WCLIMIT	QUEUETIME
					,
0 blocked jobs					
Total jobs: 46					

d) Useful commands to check queues

iii. qfree: Free nodes in each queue

```
(base) [jasonli3@mike2 ~]$ qfree

PBS total nodes: 183, free: 120, busy: 58, down: 2, use: 31%

PBS workq nodes: 171, free: 108, busy: 54, queued: 0

PBS single nodes: 171, free: 108, busy: 0, queued: 0

PBS checkpt nodes: 171, free: 108, busy: 4, queued: 0

PBS bigmem nodes: 4, free: 4, busy: 0, queued: 0

PBS gpu nodes: 8, free: 8, busy: 0, queued: 0
```

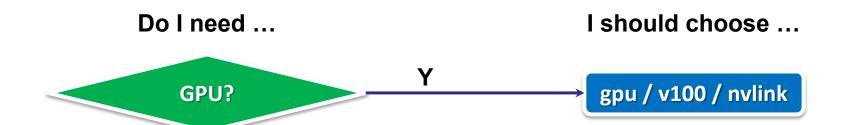

d) Useful commands to check queues

iv. sinfo (Slurm only): Detailed node health information of all queues

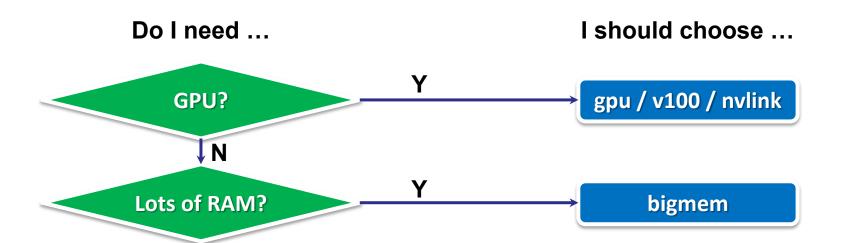
```
(base) [jasonli3@mike2 ~]$ sinfo
PARTITION AVAIL TIMELIMIT NODES
                                   STATE NODELIST
single*
             up 7-00:00:00
                                    inval mike[035,138]
                                    comp mike144
single*
             up 7-00:00:00
                                   alloc mike[008-026,031-034,036-044,046-050,141-143,148-162,167-169]
single*
             up 7-00:00:00
                               58
single*
             up 7-00:00:00
                              108
                                    idle mike[001-007,027-030,045,051-137,139,145-146,163-166,170-171]
                                    down mike[140,147]
single*
             up 7-00:00:00
                                    inval mike[035,138]
checkpt
             up 3-00:00:00
checkpt
             up 3-00:00:00
                                    comp mike144
checkpt
                               58
                                   alloc mike[008-026,031-034,036-044,046-050,141-143,148-162,167-169]
             up 3-00:00:00
checkpt
             up 3-00:00:00
                              108
                                    idle mike[001-007,027-030,045,051-137,139,145-146,163-166,170-171]
checkpt
                                    down mike[140,147]
             up 3-00:00:00
                                    inval mike[035,138]
workq
             up 3-00:00:00
             up 3-00:00:00
                                    comp mike144
workq
                                   alloc mike[008-026,031-034,036-044,046-050,141-143,148-162,167-169]
             up 3-00:00:00
workq
                                    idle mike[001-007,027-030,045,051-137,139,145-146,163-166,170-171]
workg
             up 3-00:00:00
                              108
                                    down mike[140,147]
workg
             up 3-00:00:00
                                    idle mike[172-175]
bigmem
             up 3-00:00:00
                                4
                                    idle mike[176-183]
             up 3-00:00:00
gpu
```

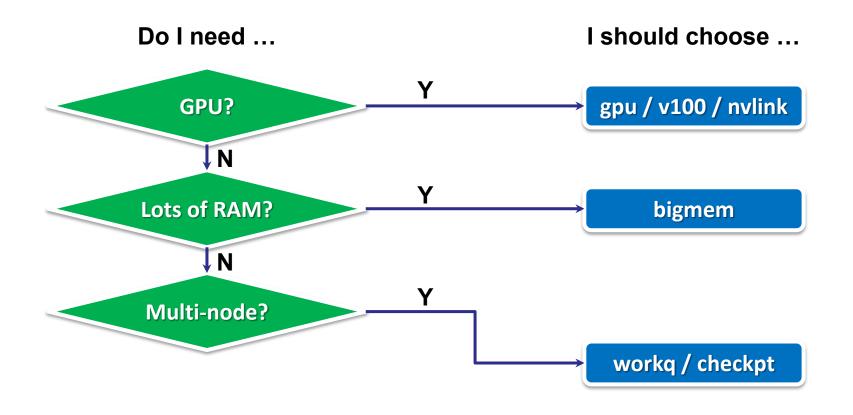

HPC User Environment 2

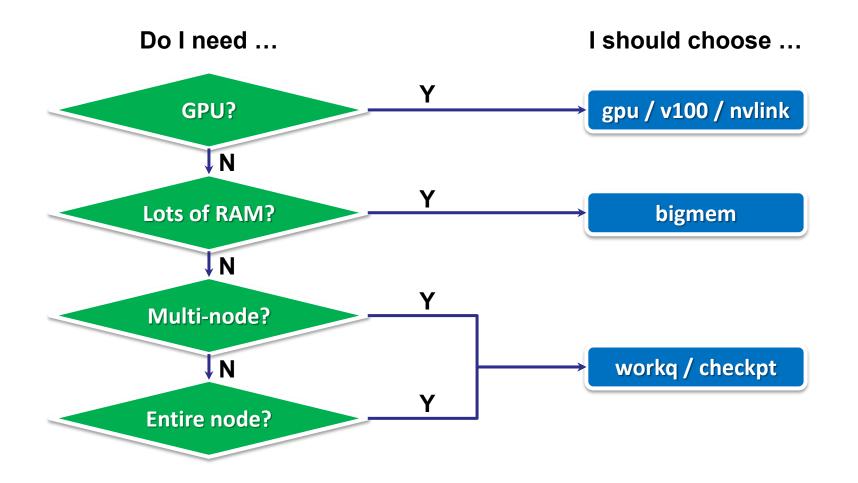
- 1. Basic concepts
- 2. How jobs are handled
 - 1) Job schedulers
 - 2) Job queues
 - 3) Choose your queue
- 3. Submitting a job
 - 1) Interactive job
 - 2) Batch job
 - 3) Cheat sheets
- 4. Manage jobs
 - 1) Useful commands
 - 2) Monitoring job health

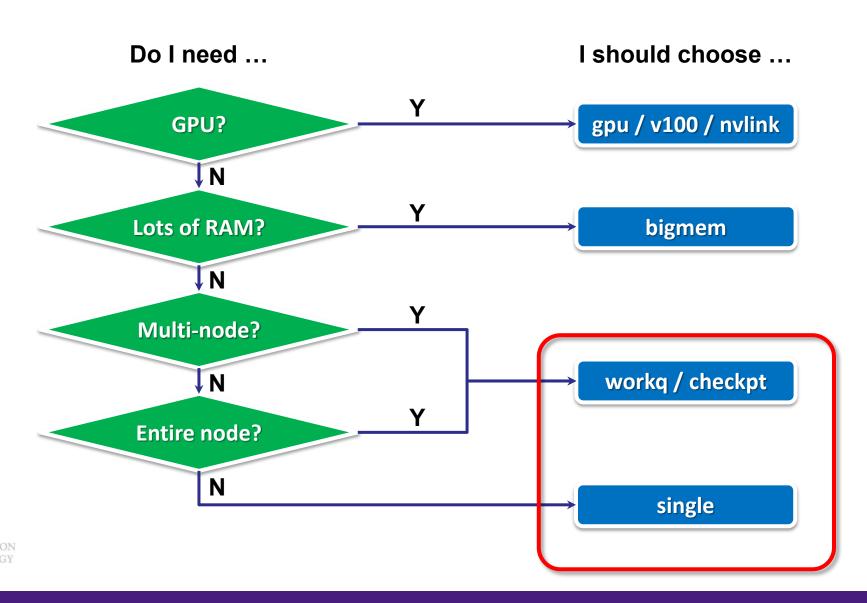

Do I need ...

I should choose ...









- Two basic principles of requesting resources
 - Number of nodes / cores, RAM size, job duration, ...

Large enough	Small enough

- Two basic principles of requesting resources
 - Number of nodes / cores, RAM size, job duration, ...

Large enough	Small enough
To successfully complete your job	

- Two basic principles of requesting resources
 - Number of nodes / cores, RAM size, job duration, ...

Large enough	Small enough
To successfully complete your job	 To ensure quick turnaround Not to waste resources for other users

My job	Queue choice? (include <i>ppn</i> if choose single)

My job	Queue choice? (include <i>ppn</i> if choose single)
 Runs on SMIC MPI code, needs 100 CPU cores, not memory heavy Hint: SMIC has 20 cores per node 	

My job	Queue choice? (include <i>ppn</i> if choose single)
 Runs on SMIC MPI code, needs 100 CPU cores, not memory heavy Hint: SMIC has 20 cores per node 	workq / checkpt

My job	Queue choice? (include <i>ppn</i> if choose single)
 Runs on SMIC MPI code, needs 100 CPU cores, not memory heavy Hint: SMIC has 20 cores per node 	workq / checkpt
 Runs on QB-3 Trains neural network with GPU CPU portion of the code needs one core 	

My job	Queue choice? (include <i>ppn</i> if choose single)
 Runs on SMIC MPI code, needs 100 CPU cores, not memory heavy Hint: SMIC has 20 cores per node 	workq / checkpt
 Runs on QB-3 Trains neural network with GPU CPU portion of the code needs one core 	gpu

My job	Queue choice? (include <i>ppn</i> if choose single)
 Runs on SMIC MPI code, needs 100 CPU cores, not memory heavy Hint: SMIC has 20 cores per node 	workq / checkpt
 Runs on QB-3 Trains neural network with GPU CPU portion of the code needs one core 	gpu
 Runs on SuperMike 3 Single-core serial code Needs to store and process 30 GB data in RAM Hint: SuperMike 3 has 256 GB RAM per node, 4 GB RAM per core 	

My job	Queue choice? (include <i>ppn</i> if choose single)
 Runs on SMIC MPI code, needs 100 CPU cores, not memory heavy Hint: SMIC has 20 cores per node 	workq / checkpt
 Runs on QB-3 Trains neural network with GPU CPU portion of the code needs one core 	gpu
 Runs on SuperMike 3 Single-core serial code Needs to store and process 30 GB data in RAM Hint: SuperMike 3 has 256 GB RAM per node, 4 GB RAM per core 	single (ppn = 8)

Summary

- 1) Job scheduler and how it works
- 2) Job queues
 - a) What is job queue
 - b) Job queues on our cluster
 - c) Useful commands to check job queues
- 3) How to choose job queue
 - a) Flowchart
 - b) 2 basic principles "large enough" and "small enough"

Break

- 1) Have your terminal open and ready to connect to HPC
- 2) Download our testing code (π calculation) to your /home directory
 - http://www.hpc.lsu.edu/training/weekly-materials/Downloads/pi_Jason.tar.gz
 - Hint: use wget command

Outlines

HPC User Environment 2

- 1. Basic concepts
- 2. How jobs are handled
 - 1) Job schedulers
 - 2) Job queues
 - 3) Choose your queue
- 3. Submitting a job
 - 1) Interactive job
 - 2) Batch job
 - 3) Cheat sheets
- 4. Manage jobs
 - 1) Useful commands
 - 2) Monitoring job health

Two types of jobs:

1) Interactive job

- Runs in terminal (just like using a local machine)
- Can interact with the job while running

Two types of jobs:

1) Interactive job

- Runs in terminal (just like using a local machine)
- Can interact with the job while running

2) Batch job

- Submit to server and runs by itself, until finished or error
- Cannot interact with the job while running

	1) Interactive job	2) Batch job
Pros		
Cons		
Ideal for		

	1) Interactive job	2) Batch job
Pros	Can interact and monitor with job in real time	
Cons		
Ideal for		

	1) Interactive job	2) Batch job
Pros	Can interact and monitor with job in real time	
Cons	 Waiting for human intervention is the opposite of "high performance" 	
Ideal for		

	1) Interactive job	2) Batch job
Pros	Can interact and monitor with job in real time	
Cons	 Waiting for human intervention is the opposite of "high performance" 	
Ideal for	Debugging and testingLarge compilation	

3. Submitting a job

Two types of jobs:

	1) Interactive job	2) Batch job
Pros	Can interact and monitor with job in real time	Submit and leave it
Cons	Waiting for human intervention is the opposite of "high performance"	
Ideal for	Debugging and testingLarge compilation	

3. Submitting a job

Two types of jobs:

	1) Interactive job	2) Batch job
Pros	Can interact and monitor with job in real time	Submit and leave it
Cons	 Waiting for human intervention is the opposite of "high performance" 	 Cannot edit or interact with job while running
Ideal for	Debugging and testingLarge compilation	

3. Submitting a job

Two types of jobs:

	1) Interactive job	2) Batch job
Pros	Can interact and monitor with job in real time	Submit and leave it
Cons	Waiting for human intervention is the opposite of "high performance"	Cannot edit or interact with job while running
Ideal for	Debugging and testingLarge compilation	• Production

HPC User Environment 2

- 1. Basic concepts
- 2. How jobs are handled
 - 1) Job schedulers
 - 2) Job queues
 - 3) Choose your queue
- 3. Submitting a job
 - 1) Interactive job
 - 2) Batch job
 - 3) Cheat sheets
- 4. Manage jobs
 - 1) Useful commands
 - 2) Monitoring job health

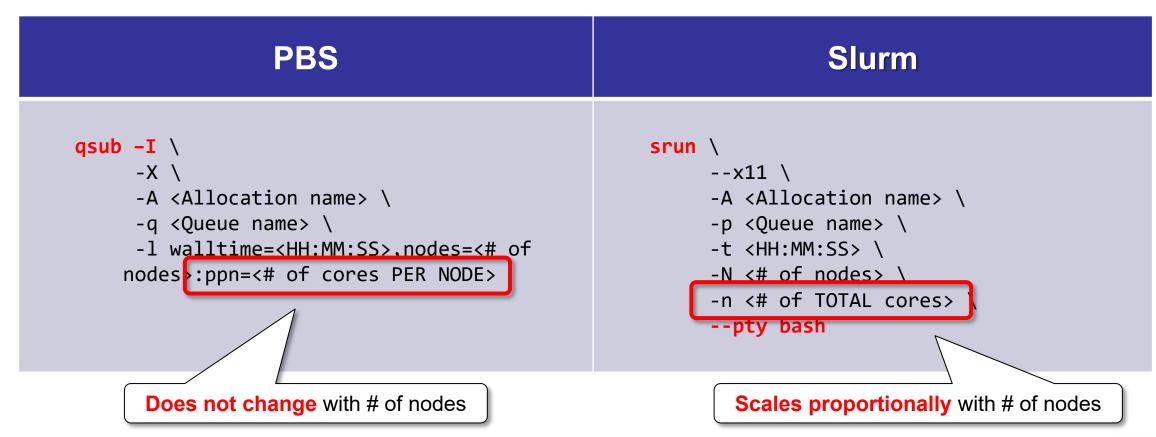
PBS	Slurm
<pre>qsub -I [options]</pre>	srun [options]pty bash (Or any other shell of your preference)


```
Slurm
                 PBS
qsub -I \
                                                   srun \
     -X \
                                                        --x11 \
     -A <Allocation name> \
                                                        -A <Allocation name> \
     -q <Queue name> \
                                                        -p <Queue name> \
     -1 walltime=<HH:MM:SS>,nodes=<# of</pre>
                                                        -t <HH:MM:SS> \
    nodes>:ppn=<# of cores PER NODE>
                                                        -N <# of nodes> \
                                                        -n <# of TOTAL cores> \
                                                        --pty bash
```

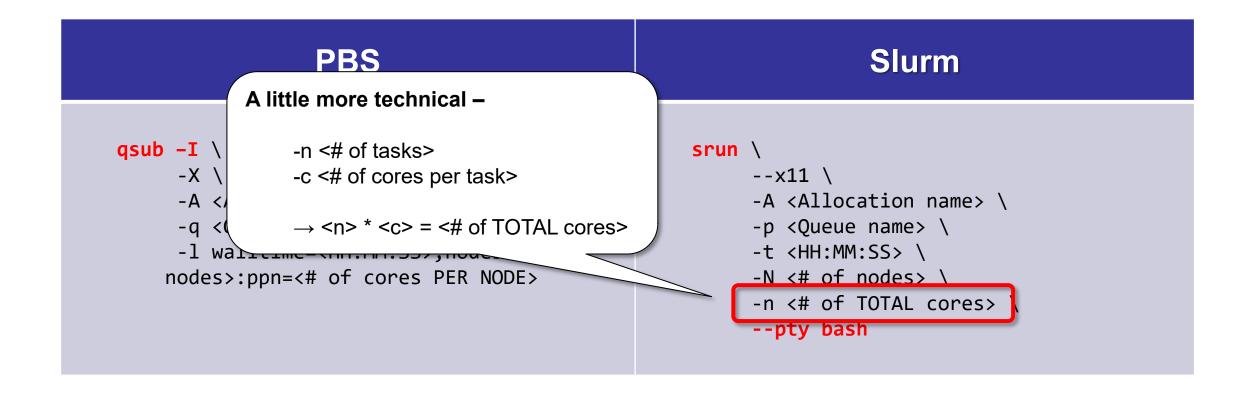

PBS	Slurm
<pre>qsub -I \ -X \ -A <allocation name=""> \ -q <queue name=""> \ -1 walltime=<hh:mm:ss>,nodes=<# of nodes>:ppn=<# of cores PER NODE></hh:mm:ss></queue></allocation></pre>	= -x11 \ -A <allocation name=""> \ -p <queue name=""> \ -t <hh:mm:ss> \ -N <# of nodes> \ -n <# of TOTAL cores> \pty bash</hh:mm:ss></queue></allocation>

PBS	Slurm
<pre>qsub -I \ -X \ -A <allocation name=""> \ -q <queue name=""> \ -1 walltime=<hh:mm:ss>,nodes=<# of nodes>:ppn=<# of cores PER NODE></hh:mm:ss></queue></allocation></pre>	<pre>srun \ x11 \ -A <allocation name=""> \ -p <queue name=""> \ -t <hh:mm:ss> \ -N <# of nodes> \ -n <# of TOTAL cores> \ pty bash</hh:mm:ss></queue></allocation></pre> Allocation name x11 \ -A <allocation bash<="" name="" pty="" th=""></allocation>

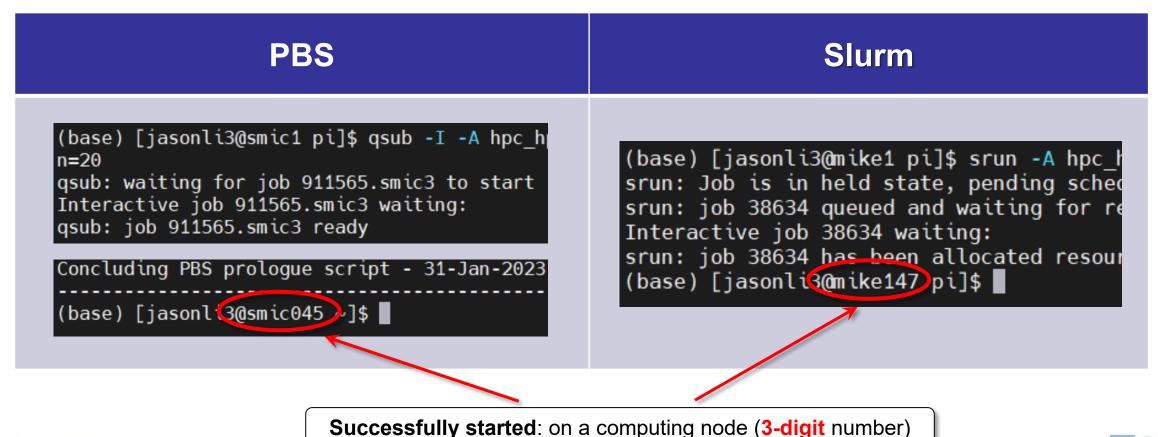
PBS	Slurm
<pre>qsub -I \ -X \ -A <allocation name=""> \ -q <queue name=""> \ -1 walltime=<hh:mm:ss>,nodes=<# of nodes>:ppn=<# of cores PER NODE></hh:mm:ss></queue></allocation></pre>	<pre>srun \ x11 \</pre>



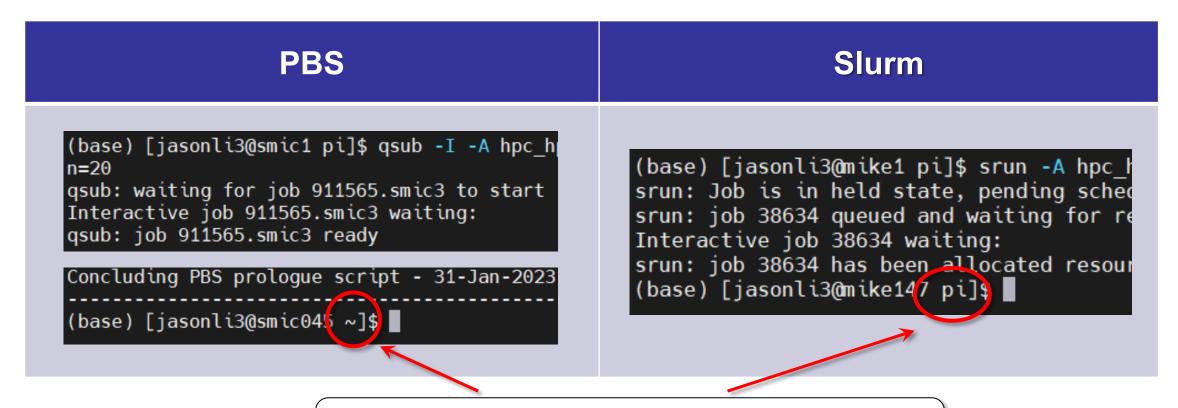
PBS	Slurm
<pre>qsub -I \ -X \ -A <allocation name=""> \ -q <queue name=""> \ -1 walltime=<hh:mm:ss>,nodes=<# of nodes>:ppn=<# of cores PER NODE></hh:mm:ss></queue></allocation></pre>	<pre>srun \ x11 \ -A <allocation -p="" <queue="" cores="" name="" nodes,="" number="" of=""> \ -t <hh:mm:ss> \ -N <# of nodes> \ -n <# of TOTAL cores> \ pty bash</hh:mm:ss></allocation></pre>



b) Starting an interactive job

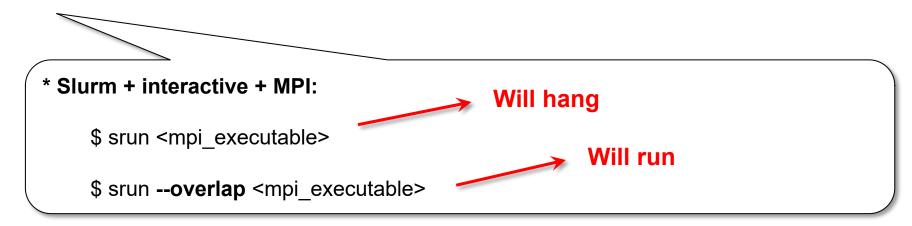

PBS	Slurm
<pre>(base) [jasonl(3@smic1 p)]\$ qsub -I -A hpc_h n=20 qsub: waiting for job 911565.smic3 to start Interactive job 911565.smic3 waiting: qsub: job 911565.smic3 ready Concluding PBS prologue script - 31-Jan-2023 (base) [jasonli3@smic045 ~]\$ ■</pre>	(base) [jasonl(3@mike1 pi]\$ srun -A hpc_h srun: Job is in held state, pending sched srun: job 38634 queued and waiting for re Interactive job 38634 waiting: srun: job 38634 has been allocated resour (base) [jasonli3@mike147 pi]\$ ■

b) Starting an interactive job



b) Starting an interactive job

PBS: Job starts in /home directory


Slurm: Job starts in where the job was submitted

c) Running an interactive job

- i. Serial (single-thread)
- ii. Parallel (MPI)

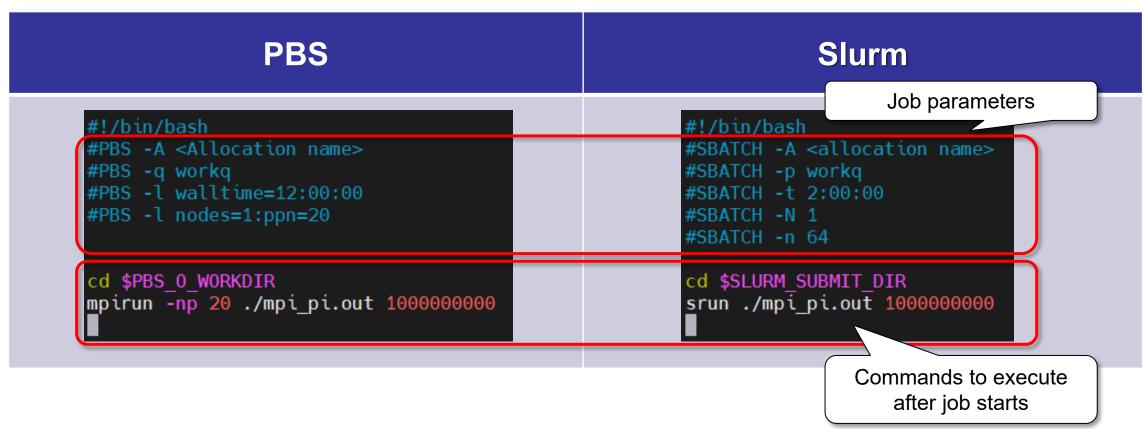
HPC User Environment 2

- 1. Basic concepts
- 2. How jobs are handled
 - 1) Job schedulers
 - 2) Job queues
 - 3) Choose your queue
- 3. Submitting a job
 - 1) Interactive job
 - 2) Batch job
 - 3) Cheat sheets
- 4. Manage jobs
 - 1) Useful commands
 - 2) Monitoring job health

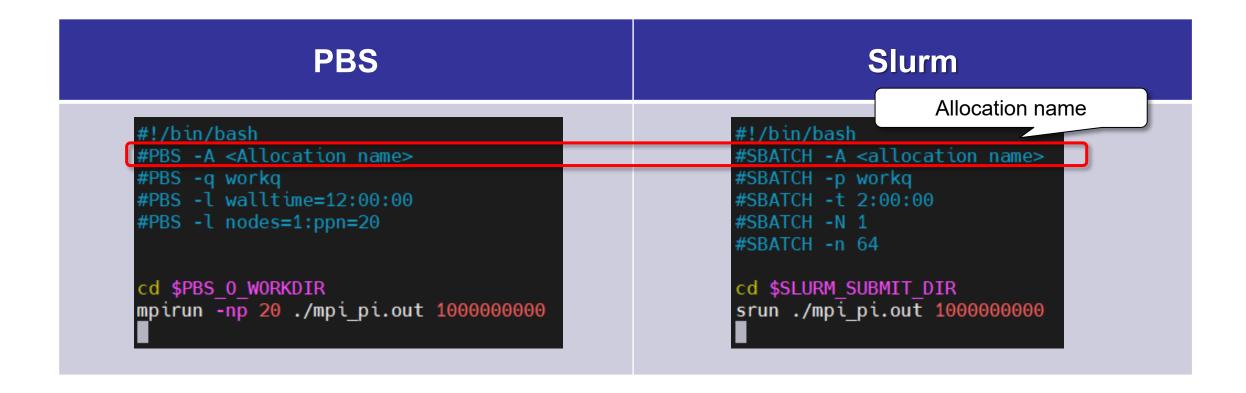
What do you need?

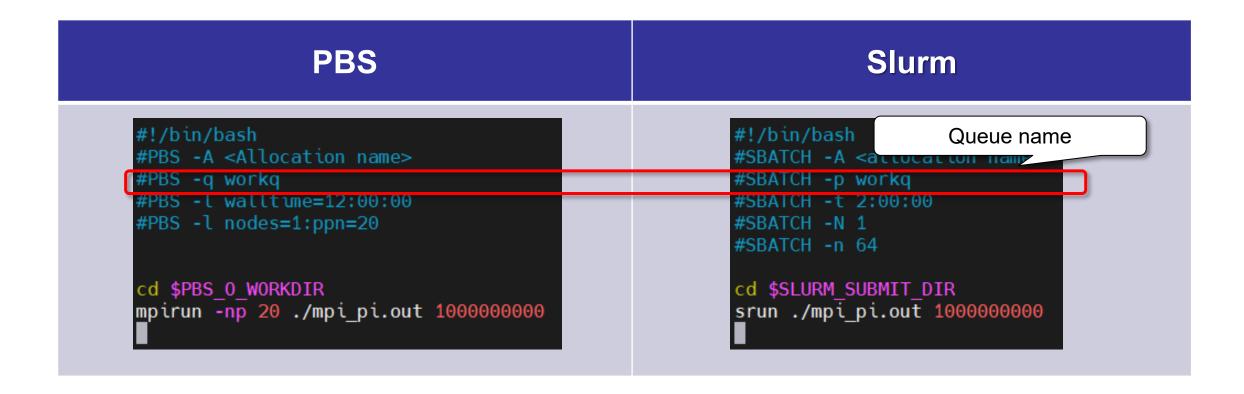
- i. A batch file (containing job parameters and bash scripts)
- ii. Run a **submission command** to submit this batch file

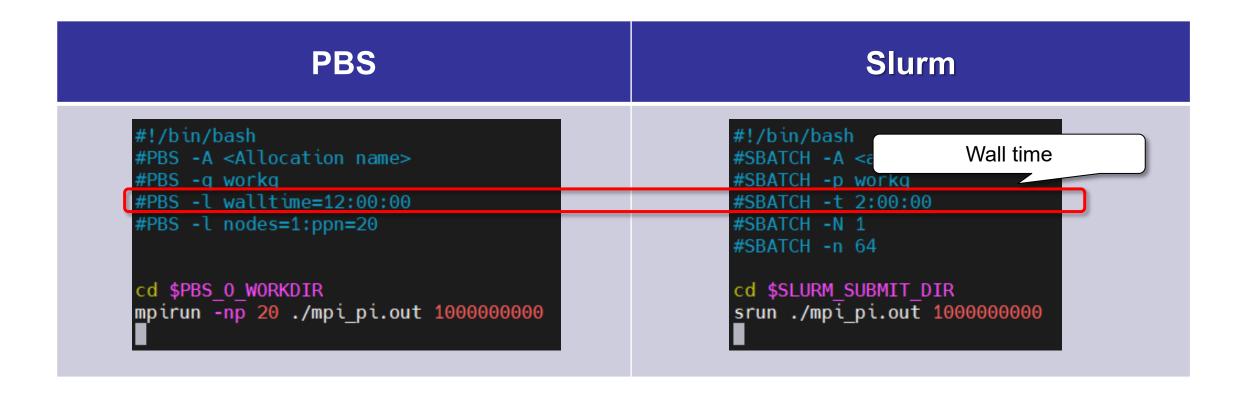
PBS	Slurm




```
Slurm
               PBS
#!/bin/bash
                                                      #!/bin/bash
#PBS -A <Allocation name>
                                                      #SBATCH -A <allocation name>
#PBS -q workq
                                                     #SBATCH -p workq
#PBS -l walltime=12:00:00
                                                      #SBATCH -t 2:00:00
#PBS -l nodes=1:ppn=20
                                                      #SBATCH -N 1
                                                     #SBATCH -n 64
cd $PBS 0 WORKDIR
                                                      cd $SLURM SUBMIT DIR
mpirun -np 20 ./mpi_pi.out 1000000000
                                                     srun ./mpi_pi.out 1000000000
```





PBS	Slurm
<pre>#!/bin/bash #PBS -A <allocation name=""> #PBS -q workq #PBS -l walltime=12:00:00 #PBS -l nodes=1:ppn=20</allocation></pre>	#!/bin/bash #SBATCH -A < Number of nodes & cores #SBATCH -t 2:00:00 #SBATCH -N 1 #SBATCH -n 64
cd \$PBS_0_WORKDIR mpirun -np 20 ./mpi_pi.out 1000000000	cd \$SLURM_SUBMIT_DIR srun ./mpi_pi.out 1000000000

PBS	Slurm
<pre>#!/bin/bash #PBS -A <allocation name=""> #PBS -q workq #PBS -l walltime=12:00:00 #PBS -l nodes=1:ppn=20</allocation></pre>	<pre>#!/bin/bash #SBATCH -A <allocation name=""> #SBATCH -p workq #SBATCH -t 2:00:00 #SBATCH - #SBATCH - Commands to run after job starts</allocation></pre>
cd \$PBS_0_WORKDIR mpirun -np 20 ./mpi pi.out 1000000000	cd \$SLURM_SUBMIT_DIR srun ./mpi pi.out 1000000000

PBS	Slurm
<pre>#!/bin/bash #PBS -A <allocation name=""> #PBS -q workq #PBS -l walltime=12:00:00 #PBS -l nodes=1:ppn=20</allocation></pre>	<pre>#!/bin/bash #SBATCH -A <allocation name=""> #SBATCH -p workq #SBATCH -t 2:00:00 #SBATCH -N 1 #SBATCH -n 64</allocation></pre>
cd \$PBS_0_WORKDIR mpirun -np 20 ./mpi pi.out 1000000000	cd \$SLURI An empty line (avoid error) srun ./mpi pi.out 1000000

a) Batch file

PBS ^[1]	Slurm ^[2]	Description	
#PBS -A	#SBATCH -A	Allocation name	
#PBS -q	#SBATCH -p	Queue name	
#PBS -1	#SBATCH -t	Resource request	Wall time
	#SBATCH -N		Number of nodes
	#SBATCH -n		Number of tasks
	#SBATCH -c		Number of cores per task

[2] http://www.hpc.lsu.edu/docs/slurm.php

a) Batch file

PBS [[]	1]	Slurm ^[2]		Description	
#PBS -A		#SBATCH -A		Allocation name	
#PBS -q		#SBATCH -p		Queue name	
		#SBATCH -t			Wall time
#DDC 1	#PBS -1	#SBATCH -N		Resource request	Number of nodes
#PD3 -1		#SBATCH -n	Resource re		Number of tasks
		#SBATCH -c			Number of cores per task
#PBS -o		#SBATCH -o		Standard output file	
#PBS -e		#SBATCH -e		Standard error file	
	a		FAIL		Job aborts / fails
#PBS -m b e	#SBATCHmail-type	BEGIN	Send email when	Job begins	
	e		END		Job ends
#PBS -M		#SBATCHmail-user		Email address	
#PBS -N		#SBATCH -J		Job name	

[2] http://www.hpc.lsu.edu/docs/slurm.php

b) Command

PBS	Slurm		
<pre>qsub <batch file="" name=""></batch></pre>	<pre>sbatch <batch file="" name=""></batch></pre>		

3) Cheat sheets

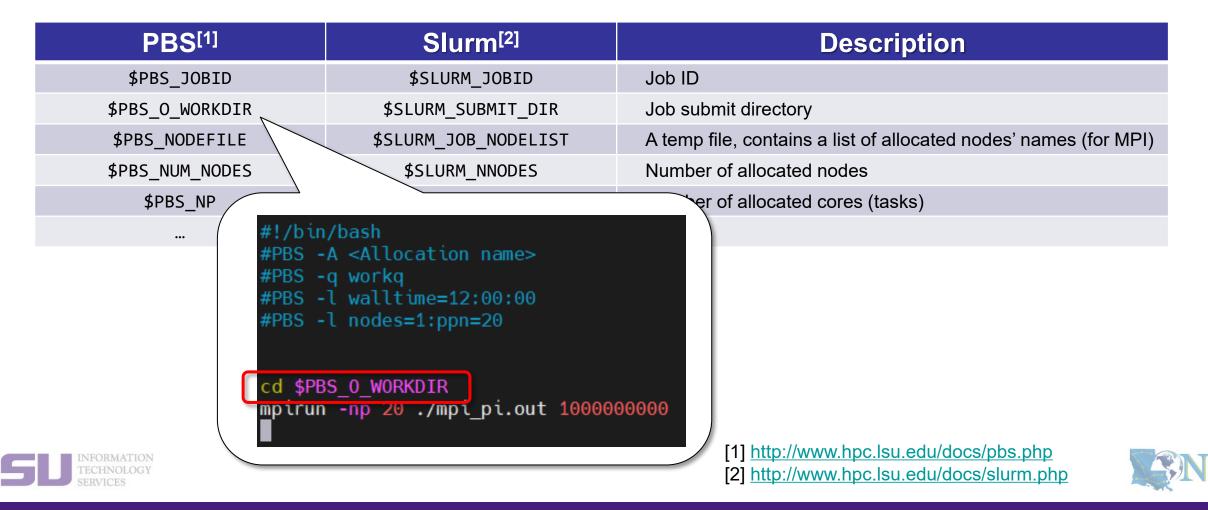
HPC User Environment 2

- 1. Basic concepts
- 2. How jobs are handled
 - 1) Job schedulers
 - 2) Job queues
 - 3) Choose your queue
- 3. Submitting a job
 - 1) Interactive job
 - 2) Batch job
 - 3) Cheat sheets
- 4. Manage jobs
 - 1) Useful commands
 - 2) Monitoring job health

3) Cheat sheets

a) Useful PBS / Slurm options

PBS [[]	1]	Slurm ^[2]		Description	
#PBS -A		#SBATCH -A		Allocation name	
#PBS -q		#SBATCH -p		Queue name	
		#SBATCH -t			Wall time
#DDC 1	#PBS -1	#SBATCH -N		Resource request	Number of nodes
#PD3 -1		#SBATCH -n	Resource re		Number of tasks
		#SBATCH -c			Number of cores per task
#PBS -o		#SBATCH -o		Standard output file	
#PBS -e		#SBATCH -e		Standard error file	
	a		FAIL		Job aborts / fails
#PBS -m b e	#SBATCHmail-type	BEGIN	Send email when	Job begins	
	e		END		Job ends
#PBS -M		#SBATCHmail-user		Email address	
#PBS -N		#SBATCH -J		Job name	


^[1] http://www.hpc.lsu.edu/docs/pbs.php

^[2] http://www.hpc.lsu.edu/docs/slurm.php

3) Cheat sheets

b) Useful environmental variables

1. Basic concepts

Outlines

HPC User Environment 2

- 1. Basic concepts
- 2. How jobs are handled
 - 1) Job schedulers
 - 2) Job queues
 - 3) Choose your queue
- 3. Submitting a job
 - 1) Interactive job
 - 2) Batch job
 - 3) Cheat sheets

4. Manage jobs

- 1) Useful commands
- 2) Monitoring job health

4. Manage jobs

- Running jobs on HPC ≠ "Submit and done"
 - Monitoring and managing jobs are part of the work

1) Useful commands

HPC User Environment 2

- 1. Basic concepts
- 2. How jobs are handled
 - 1) Job schedulers
 - 2) Job queues
 - 3) Choose your queue
- 3. Submitting a job
 - 1) Interactive job
 - 2) Batch job
 - 3) Cheat sheets
- 4. Manage jobs
 - 1) Useful commands
 - 2) Monitoring job health

1) Useful commands

PBS ^[1]		SI	urm ^[2]	Description
				List all jobs
qstat	-n	squeue		List job details
	-u <username></username>		-u <username></username>	List all jobs belong to <username></username>
qdel <job id=""></job>		scance	el <job id=""></job>	Cancel <job id=""></job>
<pre>checkjob <job id=""></job></pre>		scontrol sh	now job <job id=""></job>	Show job details (running or recently finished)

[1] http://www.hpc.lsu.edu/docs/pbs.php

[2] http://www.hpc.lsu.edu/docs/slurm.php

1) Useful commands

PBS ^[1]		SI	urm ^[2]	Description
				List all jobs
qstat	-n	squeue		List job details
	-u <username></username>		-u <username></username>	List all jobs belong to <username></username>
qdel <job id=""></job>		scance	el <job id=""></job>	Cancel <job id=""></job>
check	job <job id=""></job>	scontrol sh	ow job <job id=""></job>	Show job details (running or recently finished)

Alter jobs after submission? → NOT allowed!

[1] http://www.hpc.lsu.edu/docs/pbs.php

[2] http://www.hpc.lsu.edu/docs/slurm.php

HPC User Environment 2

- 1. Basic concepts
- 2. How jobs are handled
 - 1) Job schedulers
 - 2) Job queues
 - 3) Choose your queue
- 3. Submitting a job
 - 1) Interactive job
 - 2) Batch job
 - 3) Cheat sheets
- 4. Manage jobs
 - 1) Useful commands
 - 2) Monitoring job health

A job requesting n cores ≠ A job utilizing n cores

Goal

- Use the allocated resources (CPU cores, RAM, time, ...) as fully and efficiently as possible
- No serious underutilizing
- No serious overutilizing

Things to check

- Number of processes on each node
- CPU load
- RAM usage

- a) Method 1: qshow <Job ID>
 - Displays diagnostic information of a running job
 - Can be run on head node

3. Submit a job

a) Method 1: qshow <Job ID>

```
(base) [jasonli3@mike4 ~]$ qshow 38581
PBS job: 38581, nodes: 1
Hostname Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours)
           278 64.12 6033 68 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:533M:107M:13.5 yxan:lmp mik+:748M:128M:13.5
yxan:lmp mik+:738M:124M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:587M:109M:13.5 yxan:lmp mik+:743M:128M:13.5 yxan:lmp mik+:696M:118M:13.5
yxan:lmp mik+:528M:101M:13.5 yxan:lmp mik+:578M:108M:13.5 yxan:lmp mik+:528M:105M:13.5 yxan:lmp mik+:528M:106M:13.5 yxan:lmp mik+:520M:105M:13.5
yxan:lmp mik+:561M:106M:13.5 yxan:lmp mik+:583M:109M:13.5 yxan:lmp mik+:520M:103M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:738M:125M:13.5
yxan:lmp mik+:709M:119M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:574M:107M:13.5 yxan:lmp mik+:697M:121M:13.5 yxan:lmp mik+:658M:115M:13.5
yxan:lmp mik+:528M:102M:13.5 yxan:lmp mik+:557M:108M:13.5 yxan:lmp mik+:524M:105M:13.5 yxan:lmp mik+:524M:105M:13.5 yxan:lmp mik+:515M:102M:13.5
yxan:lmp_mik+:520M:104M:13.5 yxan:lmp_mik+:567M:108M:13.5 yxan:lmp_mik+:566M:108M:13.5 yxan:lmp_mik+:519M:103M:13.5 yxan:lmp_mik+:536M:105M:13.5
yxan:lmp mik+:519M:104M:13.5 yxan:lmp mik+:528M:103M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5
yxan:lmp mik+:528M:104M:13.5 yxan:lmp mik+:516M:101M:13.5 yxan:lmp mik+:515M:101M:13.5 yxan:lmp mik+:515M:104M:13.5 yxan:lmp mik+:520M:101M:13.5
yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:520M:101M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:516M:102M:13.5 yxan:lmp mik+:587M:110M:13.5
yxan:lmp mik+:558M:108M:13.5 yxan:lmp mik+:524M:102M:13.5 yxan:lmp mik+:537M:103M:13.5 yxan:lmp mik+:572M:109M:13.5 yxan:lmp mik+:549M:104M:13.5
yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:528M:104M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:515M:03M:13.5
yxan:lmp_mik+:520M:105M:13.5 yxan:lmp_mik+:528M:105M:13.5 yxan:lmp_mik+:515M:103M:13.5 yxan:lmp_mik+:515M:104M:13.5 yxan:lmp_mik+:515M:04M:13.5
yxan:slurm s+:12M:3M yxan:srun:324M:8M yxan:srun:53M:1M
PBS job=38581 user=yxan allocation=hpc lipidhpre queue=checkpt total load=64.12 cpu hours=866.08 wall hours=13.21 unused nodes=0 total nodes=1 pp
n=64 avg load=64.12 avg cpu=6033% avg mem=6852mb avg vmem=36176mb top proc=yxan:lmp mik+:mike145:524M:104M:13.5hr:100% toppm=yxan:lmp mikeCpu:mik
e145:730M:125M node processes=68
```

What to look at ... Normal behavior ... You should be concerned if ...

a) Method 1: qshow <Job ID>

```
(base) [jasonli3@mike4 ~]$ qshow 38581
PBS job: 38581, nodes: 1
Hostname Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours)
           278 64.12 6033 68 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:533M:107M:<u>13.5 yxan:lmp mik+:748M:128M:13.5</u>
yxan:lmp mik+:738M:124M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:587M:109M:13.5 yxan:lmp mik+:743M:128M:13.5 yxan:lmp mik+:696M:118M:13.5
yxan:lmp mik+:528M:101M:13.5 yxan:lmp mik+:578M:108M:13.5 yxan:lmp mik+:528M:105M:13.5 yxan:lmp mik+:528M:106M:13.5 yxan:lmp mik+:520M:105M:13.5
yxan:lmp mik+:561M:106M:13.5 yxan:lmp mik+:583M:109M:13.5 yxan:lmp mik+:520M:103M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:738M:125M:13.5
yxan:lmp mik+:709M:119M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:574M:107M:13.5 yxan:lmp mik+:697M:121M:13.5 yxan:lmp mik+:658M:115M:13.5
yxan:lmp mik+:528M:102M:13.5 yxan:lmp mik+:557M:108M:13.5 yxan:lmp mik+:524M:105M:13.5 yxan:lmp mik+:524M:105M:13.5 yxan:lmp mik+:515M:102M:13.5
yxan:lmp_mik+:520M:104M:13.5 yxan:lmp_mik+:567M:108M:13.5 yxan:lmp_mik+:566M:108M:13.5 yxan:lmp_mik+:519M:103M:13.5 yxan:lmp_mik+:536M:105M:13.5
yxan:lmp mik+:519M:104M:13.5 yxan:lmp mik+:528M:103M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5
yxan:lmp mik+:528M:104M:13.5 yxan:lmp mik+:516M:101M:13.5 yxan:lmp mik+:515M:101M:13.5 yxan:lmp mik+:515M:104M:13.5 yxan:lmp mik+:520M:101M:13.5
yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:520M:101M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:516M:102M:13.5 yxan:lmp mik+:587M:110M:13.5
yxan:lmp mik+:558M:108M:13.5 yxan:lmp mik+:524M:102M:13.5 yxan:lmp mik+:537M:103M:13.5 yxan:lmp mik+:572M:109M:13.5 yxan:lmp mik+:549M:104M:13.5
yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:528M:104M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:515M:03M:13.5
yxan:lmp_mik+:520M:105M:13.5 yxan:lmp_mik+:528M:105M:13.5 yxan:lmp_mik+:515M:103M:13.5 yxan:lmp_mik+:515M:104M:13.5 yxan:lmp_mik+:515M:04M:13.5
yxan:slurm s+:12M:3M yxan:srun:324M:8M yxan:srun:53M:1M
PBS job-20501 user-yxan allocation=hpc lipidhpre queue=checkpt total load=64.12 cpu hours=866.08 wall hours=13.21 unused nodes=0 total nodes=1 pp
n=64 avg load=64.12 avg cpu=6033% avg mem=6852mb avg vmem=36176mb top proc=yxan:lmp mik+:mike145:524M:104M:13.5hr:100% toppm=yxan:lmp mikeCpu:mik
e145:730M:125M node processes=68
```

What to look at	Normal behavior	You should be concerned if
avg_load	Close to requested ppn	Consistently too low or too high

a) Method 1: qshow <Job ID>

```
(base) [jasonli3@mike4 ~]$ qshow 38581
PBS job: 38581, nodes: 1
Hostname Days Load CPU U# (User:Process:Virtualmemory:Memory:Hours)
           278 64.1z 603 68 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:533M:107M:13.5 yxan:lmp mik+:748M:128M:13.5
yxan:lmp mik+:738M:124M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:587M:109M:13.5 yxan:lmp mik+:743M:128M:13.5 yxan:lmp mik+:696M:118M:13.5
yxan:lmp mik+:528M:101M:13.5 yxan:lmp mik+:578M:108M:13.5 yxan:lmp mik+:528M:105M:13.5 yxan:lmp mik+:528M:106M:13.5 yxan:lmp mik+:520M:105M:13.5
yxan:lmp mik+:561M:106M:13.5 yxan:lmp mik+:583M:109M:13.5 yxan:lmp mik+:520M:103M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:738M:125M:13.5
yxan:lmp_mik+:709M:119M:13.5_yxan:lmp_mik+:524M:103M:13.5_yxan:lmp_mik+:574M:107M:13.5_yxan:lmp_mik+:697M:121M:13.5_yxan:lmp_mik+:658M:115M:13.5
yxan:lmp mik+:528M:102M:13.5 yxan:lmp mik+:557M:108M:13.5 yxan:lmp mik+:524M:105M:13.5 yxan:lmp mik+:524M:105M:13.5 yxan:lmp mik+:515M:102M:13.5
yxan:lmp_mik+:520M:104M:13.5 yxan:lmp_mik+:567M:108M:13.5 yxan:lmp_mik+:566M:108M:13.5 yxan:lmp_mik+:519M:103M:13.5 yxan:lmp_mik+:536M:105M:13.5
yxan:lmp mik+:519M:104M:13.5 yxan:lmp mik+:528M:103M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5
yxan:lmp_mik+:528M:104M:13.5 yxan:lmp_mik+:516M:101M:13.5 yxan:lmp_mik+:515M:101M:13.5 yxan:lmp_mik+:515M:104M:13.5 yxan:lmp_mik+:520M:101M:13.5
yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:520M:101M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:516M:102M:13.5 yxan:lmp mik+:587M:110M:13.5
yxan:lmp mik+:558M:108M:13.5 yxan:lmp mik+:524M:102M:13.5 yxan:lmp mik+:537M:103M:13.5 yxan:lmp mik+:572M:109M:13.5 yxan:lmp mik+:549M:104M:13.5
yxan:lmp_mik+:519M:103M:13.5 yxan:lmp_mik+:528M:104M:13.5 yxan:lmp_mik+:520M:104M:13.5 yxan:lmp_mik+:515M:103M:13.5 yxan:lmp_mik+:515M:103M:13.5
yxan:lmp_mik+:520M:105M:13.5 yxan:lmp_mik+:528M:105M:13.5 yxan:lmp_mik+:515M:103M:13.5 yxan:lmp_mik+:515M:104M:13.5 yxan:lmp_mik+:515M:104M:13.5
yxan:slurm s+:12M:3m yxan:srun:324M:8M yxan:srun.53m.1M
PBS job=38581 user=yxan allocation=hpc lipidhpre queue=checkpt total load=64.12 cpu hours=866.08 wall hours=13.21 unused nodes=0 total nodes=1 pp
n=64 avg load=64.12 avg cpu=6033% avg mem=6852mb avg vmem=36176mb top proc=yxan:lmp mik+:mike145:524M:104M:13.5hr:100% toppm=yxan:lmp mikeCpu:mik
e145:730M:125M node processes=68
```

What to look at	Normal behavior	You should be concerned if
avg_load	Close to requested ppn	Consistently too low or too high
Memory usage (not virtual memory)	Do not exceed the per core value	Exceeds the per core value

- b) Method 2: top
 - Displays dynamic real-time view of a computing node
 - Must run on computing nodes!

* ssh to computing nodes while job running (cannot ssh if you do not have jobs on it)

b) Method 2: top

top - 02:23:58 up 278 days, 19:17, 2 users, load average: 63.63, 39.81, 17.49
Tasks: 981 total, 65 running, 916 sleeping, 0 stopped, 0 zombie
%Cpu(s): 90.2 us, 9.2 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.5 hi, 0.0 si, 0.0 st
MiB Mem : 257004.8 total, 211261.0 free, 41926.9 used, 3816.9 buff/cache
MiB Swap: 16641.0 total, 16580.7 free, 60.2 used. 212737.8 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

PID	USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+ COMMAND
2701318	jasonli3	20	0	595668	582356	2568 R	100.0	0.2	4:08.94 TDSE_np3_e0
2701342	jasonli3	20	0	595668	581944	2616 R	100.0	0.2	4:08.90 TDSE_np3_e0
2701249	jasonli3	20	0	595668	581792	2464 R	99.7	0.2	4:08.97 TDSE_np3_e0
2701252	jasonli3	20	0	595668	514684	2520 R	99.7	0.2	4:09.00 TDSE_np3_e0
2701261	jasonli3	20	0	595668	393828	2616 R	99.7	0.1	4:08.97 TDSE_np3_e0
2701264	jasonli3	20	0	595668	581856	2532 R	99.7	0.2	4:08.92 TDSE_np3_e0
2701270	jasonli3	20	0	595668	582480	2432 R	99.7	0.2	4:08.95 TDSE_np3_e0
2701273	jasonli3	20	0	595668	581776	2448 R	99.7	0.2	4:08.81 TDSE_np3_e0
2701276	jasonli3	20	0	595668	582160	2568 R	99.7	0.2	4:08.98 TDSE_np3_e0
2701270	iccoplia	20	0	ENEGGO	222064	2644 D	00.7	0 1	4.00 00 TDCE pp2 00

What to look at ... Normal behavior ... You should be concerned if ...

b) Method 2: top

```
top - 02:23:58 up 278 days, 19:17, 2 use 5, load average: 63.63, 39.81, 17.49
Tasks: 981 total, 65 running, 916 sleeping, 0 stopped, 0 zombie
%Cpu(s): 90.2 us, 9.2 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.5 hi, 0.0 si, 0.0 st
MiB Mem : 257004.8 total, 211261.0 free, 41926.9 used,
                                                        3816.9 buff/cache
MiB Swap: 16641.0 total, 16580.7 free,
                                           60.2 used. 212737.8 avail Mem
                                                               TIME+ COMMAND
    PID USER
                           VIRT
                                   RES
                                          SHR S %CPU
                                                      %MEM
                     NI
2701318 jasonli3
                         595668 582356
                                         2568 R 100.0
                                                             4:08.94 TDSE np3 e0
2701342 jasonli3
                         595668 581944
                                         2616 R 100.0
                                                             4:08.90 TDSE np3 e0
2701249 jasonli3
                                                             4:08.97 TDSE np3 e0
                      0 595668 581792
                                         2464 R 99.7
                                                             4:09.00 TDSE np3 e0
2701252 jasonli3
                      0 595668 514684
                                         2520 R
                                                99.7
2701261 jasonli3
                      0 595668 393828
                                         2616 R
                                                             4:08.97 TDSE np3 e0
2701264 jasonli3
                      0 595668 581856
                                         2532 R
                                                             4:08.92 TDSE np3 e0
2701270 jasonli3
                      0 595668 582480
                                         2432 R 99.7
                                                             4:08.95 TDSE np3 e0
2701273 jasonli3 20
                        595668 581776
                                         2448 R 99.7
                                                             4:08.81 TDSE np3 e0
2701276 jasonli3 20
                         595668 582160
                                         2568 R 99.7
                                                       0.2
                                                             4:08.98 TDSE np3 e0
```

What to look at	Normal behavior	You should be concerned if
Load average	Close to number of cores or ppn	Consistently too low or too high

b) Method 2: top

```
top - 02:23:58 up 278 days, 19:17, 2 users,
                                             load average: 63.63, 39.81, 17.49
Tasks: 981 total, 65 running, 916 sleeping,
                                             0 stopped,
                                                          0 zombie
%Cpu(s): 90.2 us, 9.2 sy. 0.0 ni, 0.0 id, 0.0 wa, 0.5 hi, 0.0 si, 0.0 st
MiB Mem : 257004.8 total, 211261.0 free, 41926.9 used,
                                                         3816.9 buff/cache
MiB Swap: 16641.0 total, 16500.7 free,
                                            60.2 used. 212737.8 avail Mem
    PID USER
                           VIRT
                                          SHR S %CPU
                                                      %MEM
                                                                TIME+ COMMAND
                     NI
                                   RES
2701318 jasonli3
                         595668 582356
                                         2568 R 100.0
                                                             4:08.94 TDSE np3 e0
2701342 jasonli3
                         595668 581944
                                         2616 R 100.0
                                                             4:08.90 TDSE np3 e0
2701249 jasonli3
                                                             4:08.97 TDSE np3 e0
                      0 595668 581792
                                         2464 R 99.7
2701252 jasonli3
                      0 595668 514684
                                         2520 R
                                                99.7
                                                             4:09.00 TDSE np3 e0
2701261 jasonli3
                                         2616 R
                      0 595668 393828
                                                             4:08.97 TDSE np3 e0
2701264 jasonli3
                      0 595668 581856
                                         2532 R
                                                             4:08.92 TDSE np3 e0
2701270 jasonli3
                      0 595668 582480
                                         2432 R 99.7
                                                             4:08.95 TDSE np3 e0
2701273 jasonli3 20
                        595668 581776
                                         2448 R 99.7
                                                             4:08.81 TDSE np3 e0
2701276 jasonli3 20
                         595668 582160
                                         2568 R 99.7
                                                        0.2
                                                             4:08.98 TDSE np3 e0
```

What to look at	Normal behavior	You should be concerned if
Load average	Close to number of cores or ppn	Consistently too low or too high
Memory usage (not virtual memory)	Not used up	Used up

- Method 3: free C)
 - Displays free and used **physical and swap memory** in the system
 - Must run on computing nodes!
 - * ssh to computing nodes while job running (cannot ssh if you do not have jobs on it)

c) Method 3: free

```
(base) [jasonli3@mike166 ~]$ free
              total
                            used
                                         free
                                                   shared
                                                           buff/cache
                                                                         available
Mem:
          263172900
                        43248372
                                    216007308
                                                   406352
                                                               3917220
                                                                         217528356
           17040380
                           61696
                                    16978684
Swap:
```

What to look at ... Normal behavior ... You should be concerned if ...

c) Method 3: free

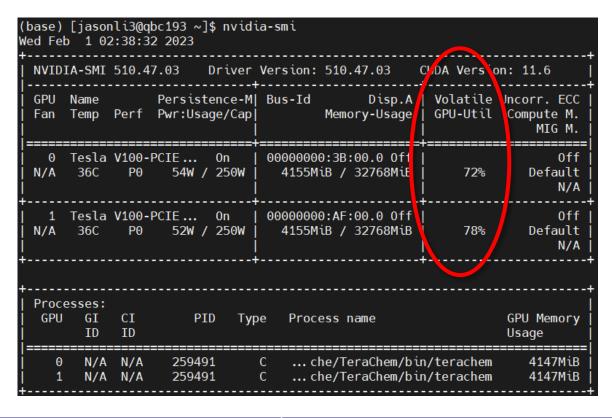
```
(base) [jasonli3@mike166 ~]$ free
                                         free
                                                           buff/cache
                                                                         available
              total
                                                   shared
                            used
          263172900
                        43248372
                                   216007308
                                                   406352
                                                               3917220
                                                                         217528356
Mem:
           17040380
                           61696
                                    16978684
Swap:
```

What to look at	Normal behavior	You should be concerned if
Memory usage (not virtual memory)	Not used up	Used up

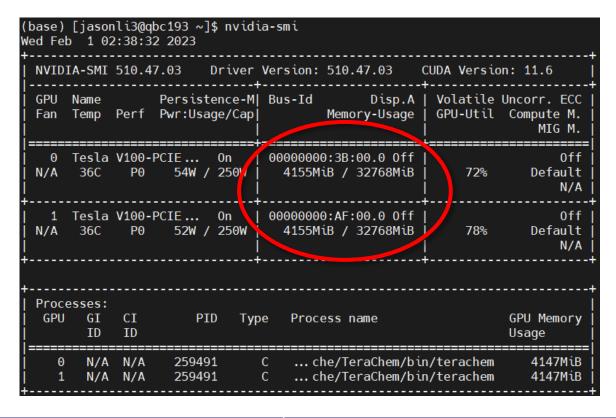
- d) Method 4: nvidia-smi (for GPU only)
 - Displays diagnostic information of GPUs
 - Must run on GPU nodes!
 - * ssh to computing nodes while job running (cannot ssh if you do not have jobs on it)

Method 4: nvidia-smi (for GPU only) d)

	(base) [jasonli3@qbc193 ~]\$ nvidia-smi Wed Feb				
NVIDIA-	SMI 510.	47.03 Driver	Version: 510.47.03 (CUDA Version: 11.6	
•		Persistence-M Pwr:Usage/Cap	Bus-Id Disp.A Memory-Usage	Volatile Uncorr. ECC GPU-Util Compute M. MIG M.	
	esla V100 36C P0		00000000:3B:00.0 Off 4155MiB / 32768MiB		
			00000000:AF:00.0 Off 4155MiB / 32768MiB	Off 78% Default N/A	
+				,	
!	ses: GI CI ID ID	PID Typ	oe Process name	GPU Memory Usage	
•	N/A N/A N/A N/A		C che/TeraChem/bi C che/TeraChem/bi		


What to look at ... Normal behavior ... You should be concerned if ...

d) Method 4: nvidia-smi (for GPU only)


What to look at	Normal behavior	You should be concerned if
GPU usage	Close to 100%	Consistently too low

d) Method 4: nvidia-smi (for GPU only)

What to look at	Normal behavior	You should be concerned if
GPU usage	Close to 100%	Consistently too low
Memory usage (not virtual memory)	Not used up	Used up

Issue	What would happen
Exceeded memory allocation (e.g., using more memory than allocated w/ single queue)	Terminated. Receive email notice.
Exceeded ppn/core allocation (e.g., using more cores than allocated w/ single queue)	Terminated. Receive email notice.
Seriously underutilize node CPU cores (e.g., Requested multiple nodes but only runs on one node)	Receive email warning.
Submitting to bigmem but only using little memory	Nothing. Just not nice.
Running intensive calculation on head nodes	Terminated. Receive email notice.
Submitting too many (i.e., hundreds of) single-thread jobs	Poor parallelization and bad for server. We may reach out to you to help. (Better yet, reach out to us first)

Issue	What would happen
-------	-------------------

Issue	What would happen
Exceeded memory allocation (e.g., using more memory than allocated w/ single queue)	Terminated. Receive email notice.

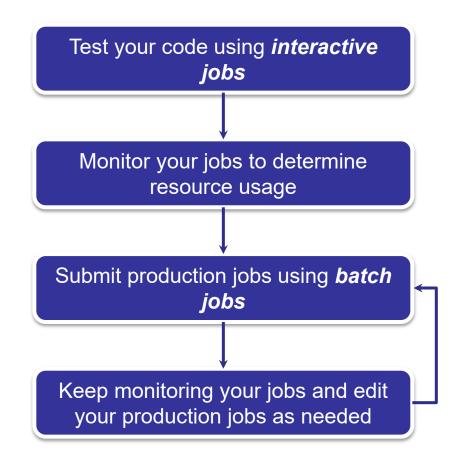
Issue	What would happen
Exceeded memory allocation (e.g., using more memory than allocated w/ single queue)	Terminated. Receive email notice.
Exceeded ppn/core allocation (e.g., using more cores than allocated w/ single queue)	Terminated. Receive email notice.

Issue	What would happen
Exceeded memory allocation (e.g., using more memory than allocated w/ single queue)	Terminated. Receive email notice.
Exceeded ppn/core allocation (e.g., using more cores than allocated w/ single queue)	Terminated. Receive email notice.
Seriously underutilize node CPU cores (e.g., Requested multiple nodes but only runs on one node)	Receive email warning.

Issue	What would happen
Exceeded memory allocation (e.g., using more memory than allocated w/ single queue)	Terminated. Receive email notice.
Exceeded ppn/core allocation (e.g., using more cores than allocated w/ single queue)	Terminated. Receive email notice.
Seriously underutilize node CPU cores (e.g., Requested multiple nodes but only runs on one node)	Receive email warning.
Submitting to bigmem but only using little memory	Nothing. Just not nice.

Issue	What would happen
Exceeded memory allocation (e.g., using more memory than allocated w/ single queue)	Terminated. Receive email notice.
Exceeded ppn/core allocation (e.g., using more cores than allocated w/ single queue)	Terminated. Receive email notice.
Seriously underutilize node CPU cores (e.g., Requested multiple nodes but only runs on one node)	Receive email warning.
Submitting to bigmem but only using little memory	Nothing. Just not nice.
Running intensive calculation on head nodes	Terminated. Receive email notice.

Issue	What would happen
Exceeded memory allocation (e.g., using more memory than allocated w/ single queue)	Terminated. Receive email notice.
Exceeded ppn/core allocation (e.g., using more cores than allocated w/ single queue)	Terminated. Receive email notice.
Seriously underutilize node CPU cores (e.g., Requested multiple nodes but only runs on one node)	Receive email warning.
Submitting to bigmem but only using little memory	Nothing. Just not nice.
Running intensive calculation on head nodes	Terminated. Receive email notice.
Submitting too many (i.e., hundreds of) single-thread jobs	Poor parallelization and bad for server. We may reach out to you to help. (Better yet, reach out to us first)



Summary

A typical workflow ---

Take home message

HPC User Environment 2

- Basic concepts
- 2. How jobs are handled
 - Job schedulers
 - Job queues
 - 3) Choose your queue
- 3. Submitting a job
 - Interactive job
 - Batch job
 - 3) Cheat sheets
- 4. Manage jobs
 - 1) Useful commands

- → All calculation must be submitted as jobs
- → A "traffic police" to schedule user jobs
- → Get to know different queues and how to choose queues
- → Good for testing and debugging
- → Good for production

Monitoring job health → How to monitor jobs health, and how to create health jobs

Next week

Basic Shell Scripting

Contact us

Contact user services

Email Help Ticket: sys-help@loni.org

■ Telephone Help Desk: +1 (225) 578-0900

