

HPC User Environment 2

Jason Li

HPC User Services

LSU HPC / LONI

sys-help@loni.org

Louisiana State University

Baton Rouge Jul 19, 2023

- HPC User Environment 1
 - 1. Intro to HPC
 - 2. Getting started
 - 3. Into the cluster
 - 4. Software environment (modules)

- HPC User Environment 2
 - 1. Basic concepts
 - 2. Preparing my job
 - 3. Submitting my job
 - 4. Managing my jobs

HPC User Environment 2

- 1. Basic concepts
- 2. Preparing my job
- 3. Submitting my job
- 4. Managing my jobs

HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

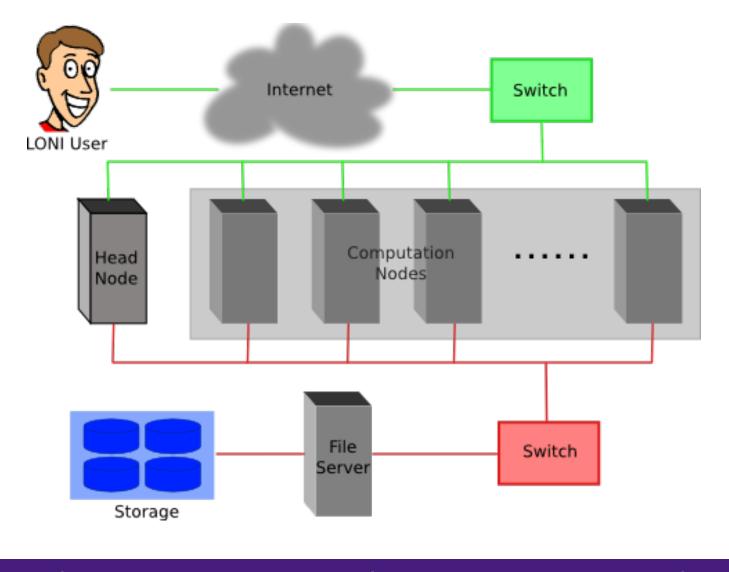
2. Preparing my job

3. Submitting my job

Two things needed to run jobs on our clusters:

1) Account

2) Allocation


1. Basic concepts

2. Preparing my job

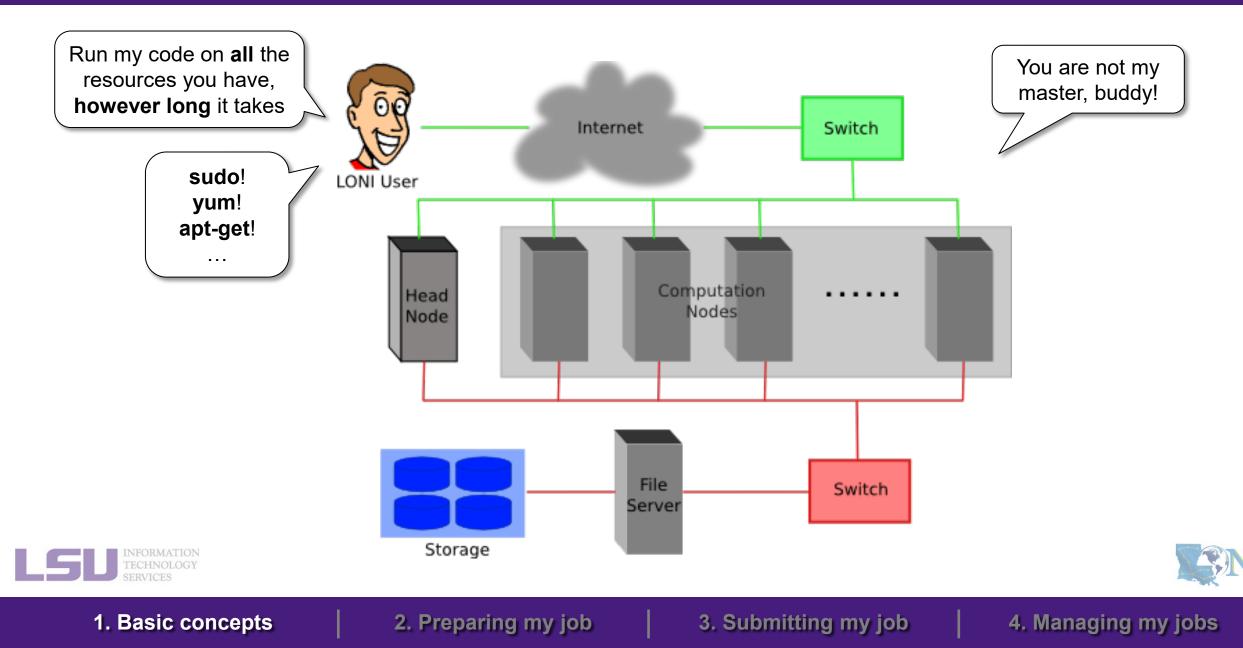
3. Submitting my job

1) Previously on HPC User Environment 1...

1. Basic concepts

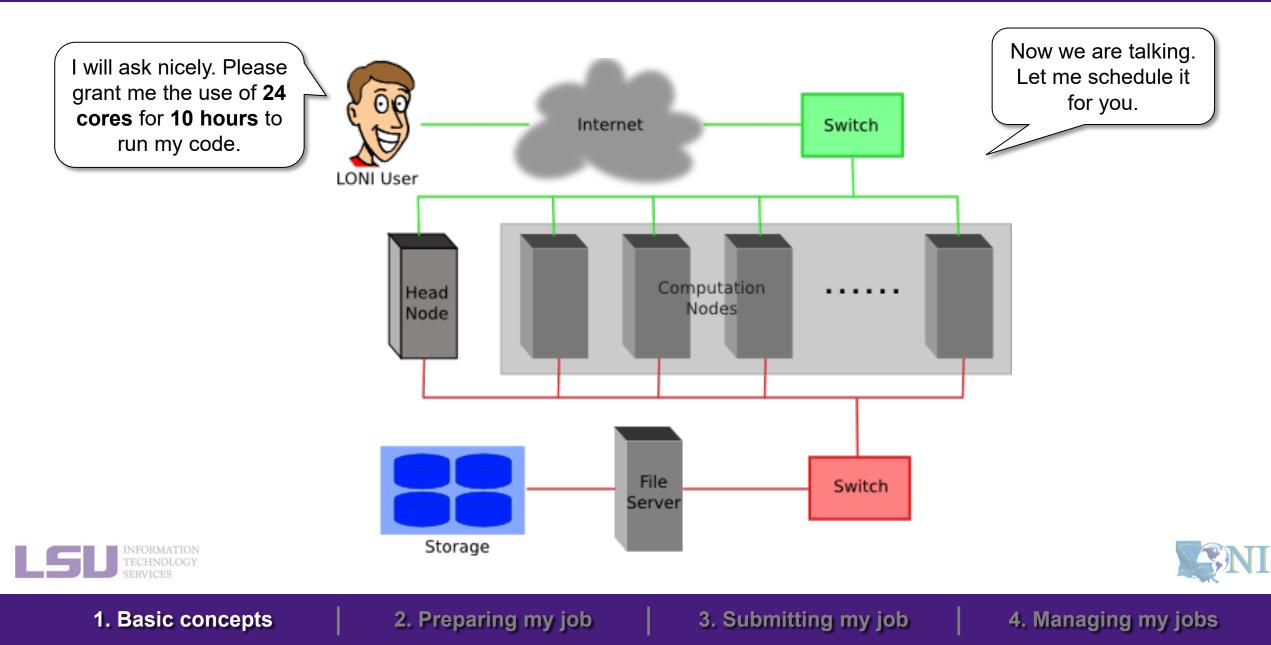
2. Preparing my job

3. Submitting my job


1. Basic concepts

2. Preparing my job

3. Submitting my job


1) Previously on HPC User Environment 1...

1) Previously on HPC User Environment 1...

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

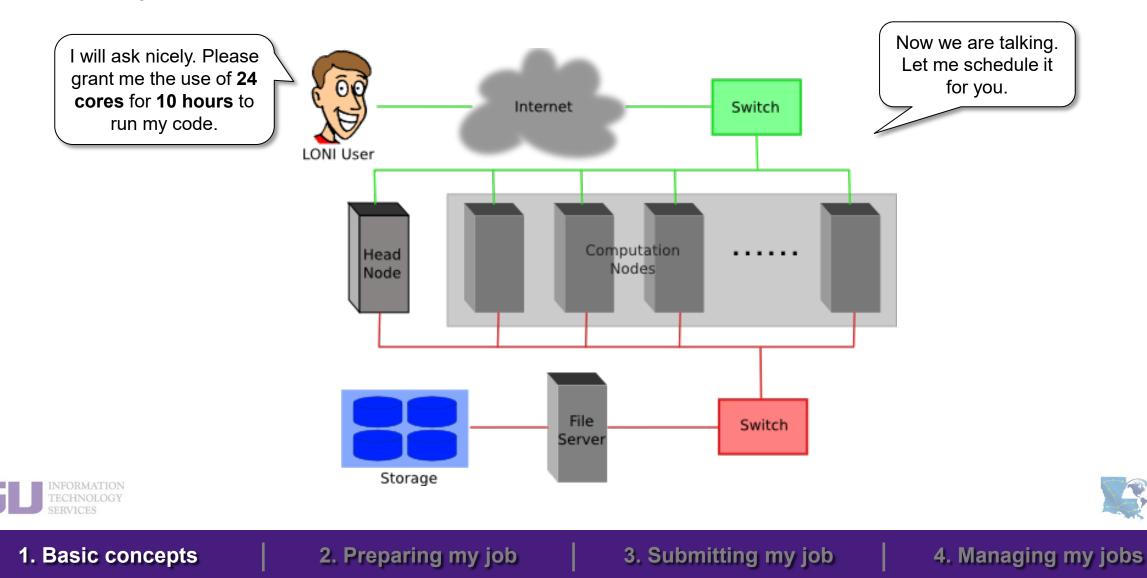
- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

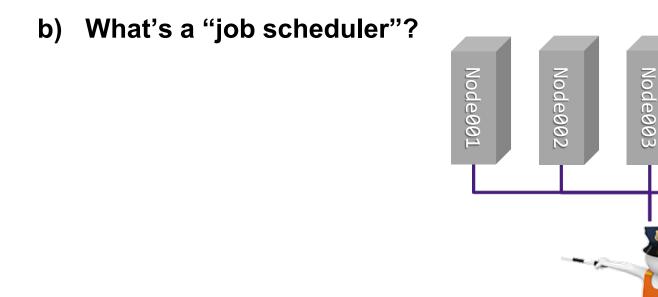
1. Basic concepts

2. Preparing my job

3. Submitting my job

a) What's a "job"?


- A user's request to use a number of nodes/cores for a certain amount of time on a cluster.
- Calculation **MUST** be done via jobs (**NO** heavy calculation on head nodes!!)
- SUs deducted from allocations based on actual usage of each job.
 - Example:
 - My allocation: 50,000 SU
 - Running a job: 24 core * 10 hours = 240 SU
 - Balance: 49,760 SU



b) What's a "job scheduler"?

LSU

1. Basic concepts

TECHNOLOGY

2. Preparing my job

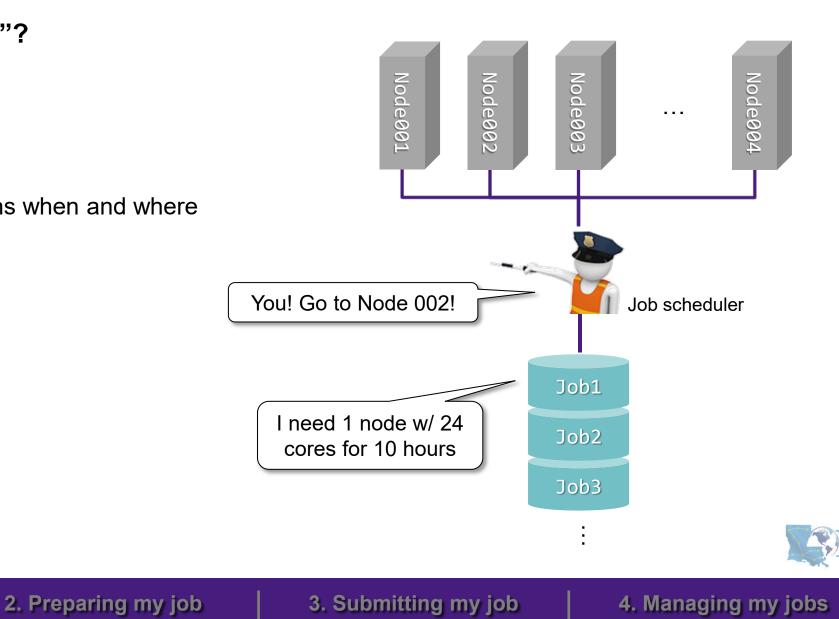
3. Submitting my job

Node004

. . .

Job scheduler

Job1

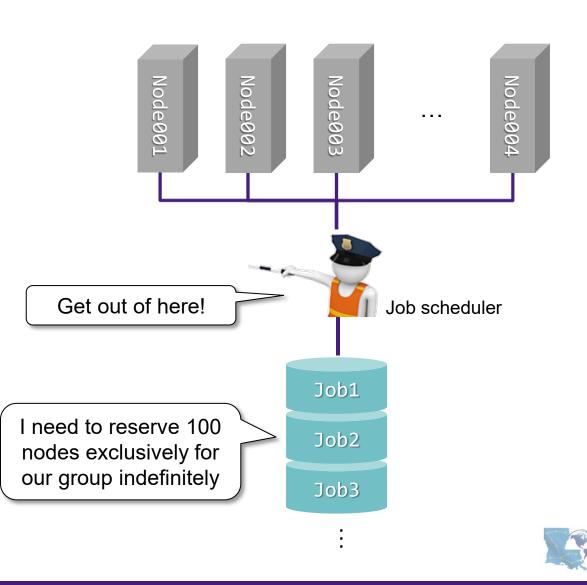

Job2

Job3

÷

b) What's a "job scheduler"?

i. Decides which job runs when and where


1. Basic concepts

LSU

b) What's a "job scheduler"?

i. Decides which job runs when and where

ii. Enforces job policies

1. Basic concepts

2. Preparing my job

3. Submitting my job

b) What's a "job scheduler"?

Job scheduler's responsibilities	Your responsibilities
 Decides which job runs when and where Enforces job policies 	 Decide a job's size and duration Understand the job queuing system and policies Submit/monitor/cancel jobs Diagnose job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

b) What's a "job scheduler"?

i) PBS

1. Basic concepts

2. Preparing my job

3. Submitting my job

b) What's a "job scheduler"?

i) PBS

ii) Slurm

1. Basic concepts

2. Preparing my job

3. Submitting my job

b) What's a "job scheduler"?

	LSU HPC	LONI
i) PBS	SMIC	QB2
ii) Slurm	Deep Bayou SuperMike III	QB3

1. Basic concepts

2. Preparing my job

3. Submitting my job

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

1) Basic principles

- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

1) Basic principles

- Two basic principles of requesting resources
 - Number of nodes / cores, RAM size, job duration, ...

Large enough ...

Small enough ...

1. Basic concepts

2. Preparing my job

3. Submitting my job

1) Basic principles

- Two basic principles of requesting resources
 - Number of nodes / cores, RAM size, job duration, ...

Large enough	Small enough …
To successfully complete your job	To ensure quick turnaroundNot to waste resources for other users

1. Basic concepts

2. Preparing my job

3. Submitting my job

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

1) Basic principles

2) Job duration (wall time)

- 3) Number of nodes & cores
- 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

- What is it?
 - Real-world (wall) time taken from the start to the end
 - Must tell job scheduler how long you want your job to run
 - There is a **maximum** wall time you may request (see later)

3. Submitting my job

• FAQ

Q	Α
What if my command is still running when the wall time runs out?	 Job terminated, any running process killed
 What if all my commands in the job finished before the wall time runs out? 	 Job exits successfully when all commands finished
 If my job exits before requested wall time, how many SUs will I be charged? 	 You will be charged based on your actual time used (if less than requested)
 In that case, why don't I just request maximum wall time every time? 	Your queuing time may be long

4. Managing my jobs

3. Submitting my job

2) Job duration (wall time)

• Back to basic principles...

Large enough	Small enough …
To successfully complete your job	To ensure quick turnaroundNot to waste resources for other users

1. Basic concepts

2. Preparing my job

3. Submitting my job

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)

3) Number of nodes & cores

- 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

• Previously in HPC User Environment 1 ...

SuperMIC		Deep Bayou		SuperMike III	
Hostname	smic.hpc.lsu.edu	Hostname	db1.lsu.edu	Hostname	mike.hpc.lsu.edu
Peak Performance/TFlops	925	Peak Performance/TFlops	257	Peak Performance/TFlops	1,285
Compute nodes	360	Compute nodes	13	Compute nodes	183
Processor/node	2 10-core	Processor/node	2 24-core	Processor/node	2 32-core
Processor Speed	2.8 GHz	Processor Speed	2.4 GHz	Processor Speed	2.6GHz
Processor Type	Intel Xeon 64bit	Processor Type	Intel Cascade Lake Xeon 64bit	Processor Type	Intel Xeon Ice Lake
Nodes with Accelerators	360	Nodes with Accelerators	13	Nodes with Accelerators	8
Accelerator Type	Xeon Phi 7120P	Accelerator Type	2 x NVIDIA Volta V100S	Accelerator Type	4 NVIDIA A100
OS	RHEL v6	OS	RHEL v7	OS	RHEL v8
Vendor		Vendor	Dell	Vendor	Dell
Memory per node	64 GB	Memory per node	192 GB	Memory per node	256/2048 GB
Detailed Cluster Description		Detailed Cluster Description		Detailed Clust	er Description
User Guide		User Guide		User Guide	
Available Software		Available Software		<u>Available Software</u>	

LGU INFORMATION TECHNOLOGY SERVICES

1. Basic concepts

2. Preparing my job

3. Submitting my job

- When submitting you job...
 - Must tell job scheduler the number of nodes & cores you need

1. Basic concepts

2. Preparing my job

3. Submitting my job

• FAQ

Q	Α
 My code runs slow. Can I request more nodes / cores to make it faster? 	 Not quite! Your code most likely is NOT using multiple nodes / cores, if: You do not know if it is using multiple nodes / cores You did not tell it to use multiple nodes / cores You are not familiar with names like "MPI" / "OpenMP" Underutilization is THE most common warning received on our clusters
 How many nodes / cores should I request? 	 In short: We can't answer that Each code / job is different. You must test to determine

LSU INFORMATION TECHNOLOGY SERVICES

1. Basic concepts

2. Preparing my job

3. Submitting my job

3) Number of nodes & cores

• Back to basic principles...

Large enough	Small enough …
To successfully complete your job	To ensure quick turnaroundNot to waste resources for other users

1. Basic concepts

2. Preparing my job

3. Submitting my job

• HPC User Environment 2

1. Basic concepts

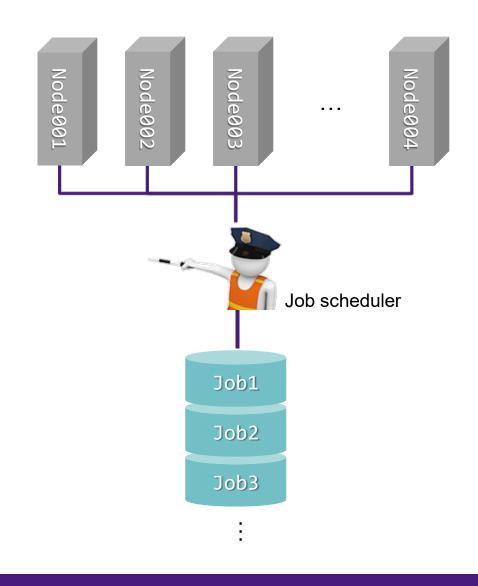
- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores

4) Job queues

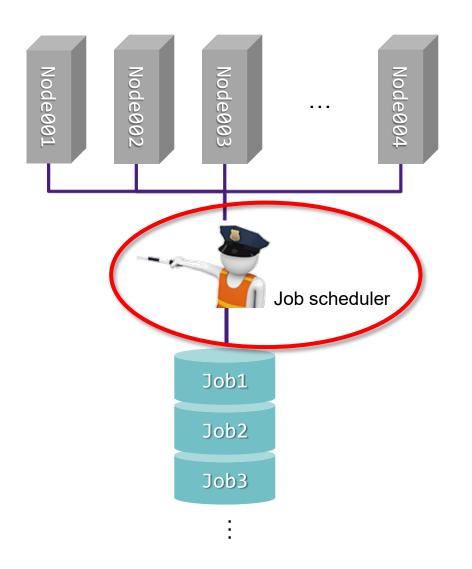
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health



1. Basic concepts

2. Preparing my job

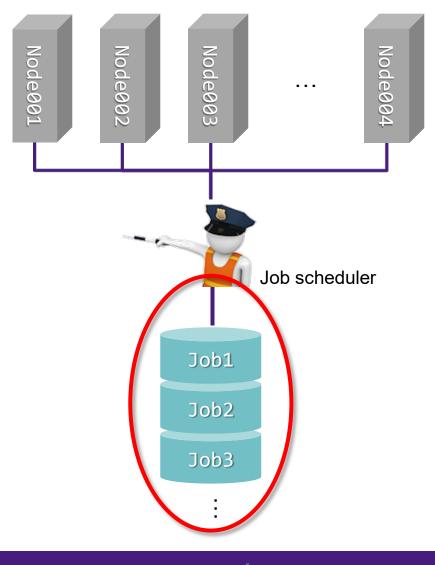
3. Submitting my job



1. Basic concepts

2. Preparing my job

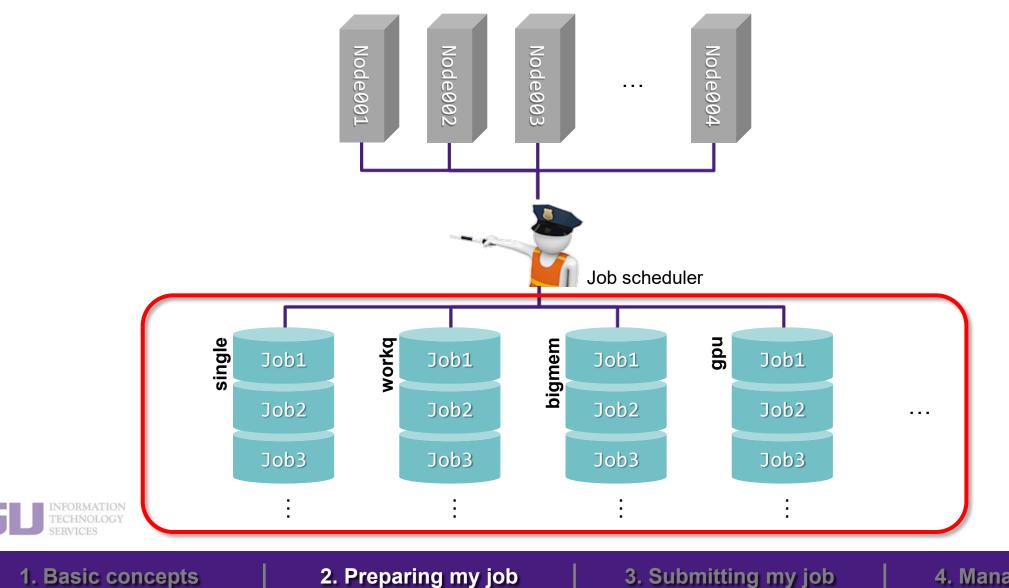
3. Submitting my job



1. Basic concepts

2. Preparing my job

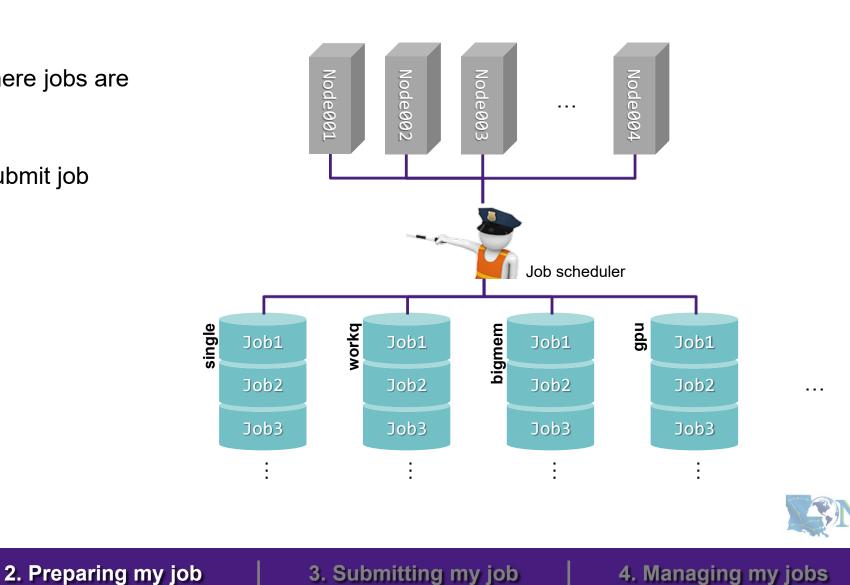
3. Submitting my job


SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job


4. Managing my jobs

SNI

a) Definition

- Different groups / lines where jobs are being grouped into
- Must pick one queue to submit job

1. Basic concepts

a) Definition

NI

1. Basic concepts

2. Preparing my job

3. Submitting my job

b) Available queues

i. workq / checkpt

Description		 General purposes Most likely your default queue Difference: non-preemptable (workq) vs. preemptable (checkpt)
Names		 All clusters: workq / checkpt
Resource	Nodes	 One or multiple Up to a maximum
availability	Cores	All cores on the node(s)
	Memory	All memory on the node(s)
Max duration		• 72 hours (3 days)

1. Basic concepts

2. Preparing my job

3. Submitting my job

- b) Available queues
 - ii. single

Description		Only need a portion of one node	[SuperMike 3]
Names		All clusters: single	- Total: 64 cores & 256 GB memory \rightarrow 4 GB / core
	Nodes	A portion of one node	
Resource availability	Cores	 PBS: 1/2/4/6/8 Slurm: 1 ~ all cores 	 Request: 10 cores → 40 GB memory
	Memory	A portion, proportional to the number of requested cores	
Max duration		• 168 hours (7 days)	

2. Preparing my job

3. Submitting my job

TRACTION

IS

EXPRESS

b) Available queues

iii. bigmem

Description		Your job needs large memory
Names		All clusters: bigmem
Resource availability	Nodes	One node
	Cores	All cores on the node
	Memory	All memory on the node
Max duration		• 72 hours (3 days)

1. Basic concepts

2. Preparing my job

3. Submitting my job

b) Available queues

iv. GPU

Description		Your job needs GPU					
Names		 SMIC: v100 Deep Bayou: checkpt / nvlink QB2: k40 (too old) QB3: gpu SuperMike 3 (*): gpu 	 SuperMike 3 (*): gpu (4 GPUs / node) 				
Nodes		One or multiple	Portion of one node				
Resource availability	Cores	All cores on the node	Portion of one node				
	Memory	All memory on the node	Portion of one node				
	GPU	All GPU devices on the node	 1 ~ all GPU devices 				
Max duration		• 72 hours (3 days)					

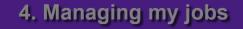
1. Basic concepts

2. Preparing my job

3. Submitting my job

c) Queues by clusters (LSU HPC)

Cluster	Queue	Cores per node (ppn)	Max running jobs	Max nodes per job	
	workq	20		128	
	checkpt	20		200	
SuperMIC	single	1,2,4,6,8,16	34	1	
	v100	36		2	
	bigmem	28		3	
DoopBoyou	checkpt	48	4	4	
DeepBayou	nvlink	48	4	2	
	workq	64		84	
	checkpt	04		04	
SuperMike3	single	1 ~ 64	32	1	
	gpu	16,32,48,64		4	
	bigmem	64		4	



1. Basic concepts

INFORMATION TECHNOLOGY

2. Preparing my job

3. Submitting my job

c) Queues by clusters (LONI)

Cluster	Queue	Cores per node (ppn)	Max running jobs	Max nodes per job	
	workq	20		128	
QB-2	checkpt	20	64		
QD-2	single	1,2,4,6,8	04	1	
	bigmem	48		1	
	workq	48		96	
	checkpt				
QB-3	single	1 ~ 48	32	1	
	gpu	48		4	
	bigmem	48		1	

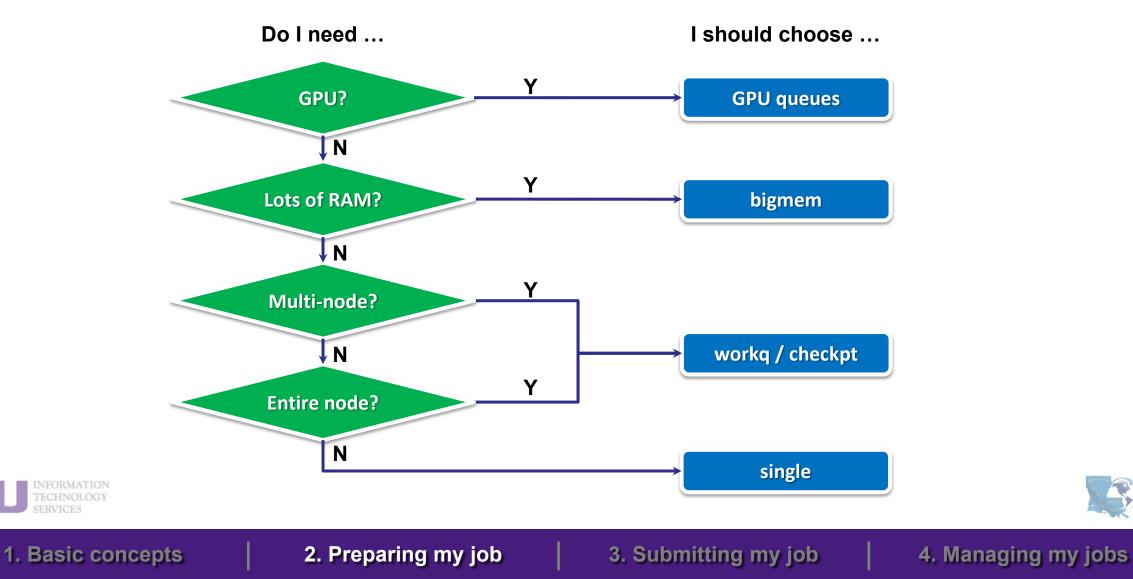
1. Basic concepts

2. Preparing my job

3. Submitting my job

d) Choose your queue

Large enough	Small enough …
To successfully complete your job	To ensure quick turnaroundNot to waste resources for other users


1. Basic concepts

2. Preparing my job

3. Submitting my job

d) Choose your queue

d) Choose your queue

Test

My job …	Queue choice? (include number of nodes / cores)
 SMIC MPI code, needs 100 CPU cores, not memory heavy Hint: SMIC has 20 cores per node 	workq / checkpt (nodes=5, ppn=20)
 QB-3 Trains neural network with GPU CPU portion of the code only needs one core Hint: QB-3 has 48 cores per node 	gpu (nodes=1, ppn=48)
 SuperMike 3 Single-core serial code Needs to store and process 30 GB data in RAM Hint: SuperMike 3 has 256 GB RAM per node, 4 GB RAM per core 	<mark>single</mark> (nodes=1, ppn=8)

1. Basic concepts

2. Preparing my job

3. Submitting my job

- e) Useful commands to check queues
 - i. qstat -q : All queue information

(base) [jaso Queue		-q Walltime	Node	Run	Que Lm	State
admin				Θ	0	ΕR
single		168:00:00) 1	Θ	0	ΕR
checkpt		72:00:00		3	0	ER
workg		72:00:00		12	0	ER
bigmem		72:00:00		0	0	ER
gpu		72:00:00		0	0	ER
51						
				15	5 0	

1. Basic concepts

2. Preparing my job

3. Submitting my job

e) Useful commands to check queues

ii. showq : All active, eligible, blocked, and/or recently completed jobs

(base) [jasonli3@	₫smic4 ~]\$ sh	owq			
active jobs					
JOBID	USERNAME	STATE	PROCS	REMAINING	STARTTIME
	you3	Running	1	00:59:54	Tue Jan 31 00:24:12
911071	lsuriver			3:36:05	
911289	peidong			3:59:53	
	lsuriver	J		4:16:06	
911296	ray	Running		11:25:12	
911297	ray	Running	400	11:25:23	Mon Jan 30 21:49:41
eligible jobs	98 o	of 494 node	es acti	.ve (19.	
0 eligible jobs					
blocked jobs					
	USERNAME		PR0CS	WCLIMIT	QUEUETIME
0 blocked jobs					
Total jobs: 46					

1. Basic concepts

2. Preparing my job

3. Submitting my job

- e) Useful commands to check queues
 - iii. qfree : Free nodes in each queue

(base) [jasonli3@mike2 ~]\$ qfree
PBS total nodes: 183, free: 120, busy: 58, down: 2, use: 31%
PBS workq nodes: 171, free: 108, busy: 54, queued: 0
PBS single nodes: 171, free: 108, busy: 0, queued: 0
PBS checkpt nodes: 171, free: 108, busy: 4, queued: 0
PBS bigmem nodes: 4, free: 4, busy: 0, queued: 0
PBS gpu nodes: 8, free: 8, busy: 0, queued: 0

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

e) Useful commands to check queues

iv. sinfo (Slurm only) : Detailed node health information of all queues

(base) [ja	asonli3@mike2 ~]\$	sinfo	
PARTITION	AVAIL TIMELIMIT		STATE NODELIST
single*	up 7-00:00:00	2	inval mike[035,138]
single*	up 7-00:00:00	1	comp mike144
single*	up 7-00:00:00	58	alloc mike[008-026,031-034,036-044,046-050,141-143,148-162,167-169]
single*	up 7-00:00:00	108	idle mike[001-007,027-030,045,051-137,139,145-146,163-166,170-171]
single*	up 7-00:00:00	2	down mike[140,147]
checkpt	up 3-00:00:00	2	inval mike[035,138]
checkpt	up 3-00:00:00	1	comp mike144
checkpt	up 3-00:00:00	58	alloc mike[008-026,031-034,036-044,046-050,141-143,148-162,167-169]
checkpt	up 3-00:00:00	108	idle mike[001-007,027-030,045,051-137,139,145-146,163-166,170-171]
checkpt	up 3-00:00:00	2	down mike[140,147]
workq	up 3-00:00:00	2	inval mike[035,138]
workq	up 3-00:00:00	1	comp mike144
workq	up 3-00:00:00	58	alloc mike[008-026,031-034,036-044,046-050,141-143,148-162,167-169]
workq	up 3-00:00:00	108	idle mike[001-007,027-030,045,051-137,139,145-146,163-166,170-171]
workq	up 3-00:00:00	2	down mike[140,147]
bigmem	up 3-00:00:00	4	idle mike[172-175]
gpu	up 3-00:00:00	8	idle mike[176-183]
INFORMATION TECHNOLOGY			

1. Basic concepts

2. Preparing my job

3. Submitting my job

1. Basic concepts

Summary

- a) How job works on clusters
- b) Job scheduler and how it works

2. Preparing my job

- a) Basic principles
 - "large enough" and "small enough"
- b) Information you need to tell job scheduler:
 - Duration
 - Number of nodes & cores
 - Job queue

1. Basic concepts

2. Preparing my job

3. Submitting my job

Break

- 1) Have your terminal open and ready to connect to HPC
- 2) Download our testing code (π calculation) to your /home directory
 - <u>http://www.hpc.lsu.edu/training/weekly-materials/Downloads/pi_Jason.tar.gz</u>
 - Hint: use *wget* command

Outlines

• HPC User Environment 2

1. Basic concepts

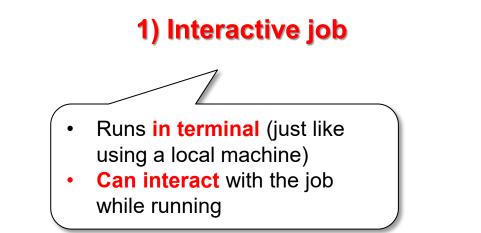
- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues

3. Submitting my job

- 1) Interactive job
- 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health


4. Managing my jobs

3. Submitting my job

3. Submitting a job

• Two types of jobs:

2) Batch job

- Submit to server and runs by itself, until finished or error
- Cannot interact with the job while running

3. Submitting my job

3. Submitting a job

• Two types of jobs:

	1) Interactive job	2) Batch job
Pros	 Can interact and monitor with job in real time 	Submit and leave it
Cons	 Waiting for human intervention is the opposite of "high performance" 	 Cannot edit or interact with job while running
Ideal for	Debugging and testingLarge compilation	Production

1. Basic concepts

INFORMATION TECHNOLOGY

2. Preparing my job

3. Submitting my job

Outlines

• HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

4. Managing my jobs

3. Submitting my job

a) Command

PBS	Slurm


1. Basic concepts

2. Preparing my job

3. Submitting my job

a) Command

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

a) Command

PBS	Slurm
<pre>qsub -I \ -X \ -A <allocation name=""> \ -q <queue name=""> \ -1 walltime=<hh:mm:ss>,nodes=<# of nodes>:ppn=<# of cores PER NODE></hh:mm:ss></queue></allocation></pre>	<pre>srun \ x11 \ -A <allocation name=""> \ -p <queue name=""> \ -t <hh:mm:ss> \ -N <# of nodes> \ -n <# of TOTAL cores> \ pty bash</hh:mm:ss></queue></allocation></pre>

1. Basic concepts

2. Preparing my job

3. Submitting my job

a) Command

PBS	Slurm
qsub –I \	Srun \ x11 \
<pre>-A <allocation name=""> \ -q <queue name=""> \ -1 walltime=<hh:mm:ss>,nodes=<# of nodes>:ppn=<# of cores PER NODE></hh:mm:ss></queue></allocation></pre>	-A <allocation name=""> \ -p <queue name=""> \ -t <hh:mm:ss> \ -N <# of nodes> \ -n <# of TOTAL cores> \ pty bash</hh:mm:ss></queue></allocation>

1. Basic concepts

2. Preparing my job

3. Submitting my job

a) Command

PBS	Slurm
<pre>qsub -I \ -X \ -A <allocation name=""> \ -q <queue name=""> \ -1 walltime=<hh:mm:ss>,nodes=<# of nodes>:ppn=<# of cores PER NODE></hh:mm:ss></queue></allocation></pre>	<pre>srun \ Allocation namex11 \ -A <allocation name=""> \ -p <queue name=""> \ -t <hh:mm:ss> \ -N <# of nodes> \ -n <# of TOTAL cores> \ pty bash</hh:mm:ss></queue></allocation></pre>

1. Basic concepts

INFORMATION TECHNOLOGY SERVICES

2. Preparing my job

3. Submitting my job

a) Command

PBS	Slurm
<pre>qsub -I \ -X \ -A <allocation name=""> \ -q <queue name=""> \ -1 walltime=<hh:mm:ss>,nodes=<# of nodes>:ppn=<# of cores PER NODE></hh:mm:ss></queue></allocation></pre>	<pre>srun \ x11 \ Queue name -A <allocation name=""> \ -p <queue name=""> \ -t <hh:mm:ss> \ -t <hh:mm:ss> \ -n <# of nodes> \ -n <# of TOTAL cores> \ pty bash</hh:mm:ss></hh:mm:ss></queue></allocation></pre>

SNI

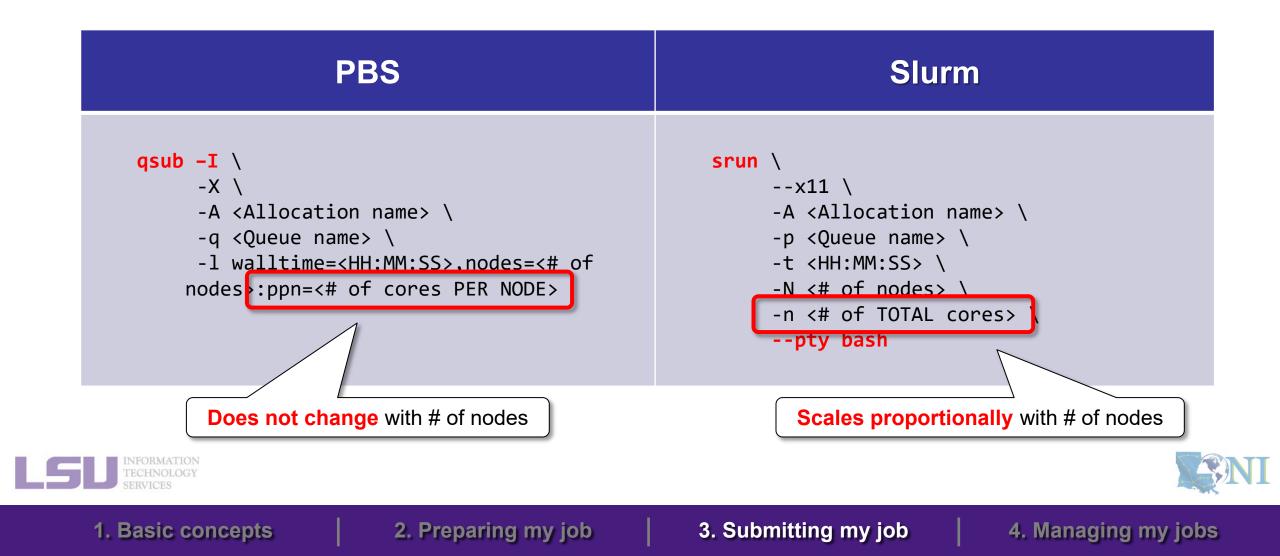
1. Basic concepts

2. Preparing my job

3. Submitting my job

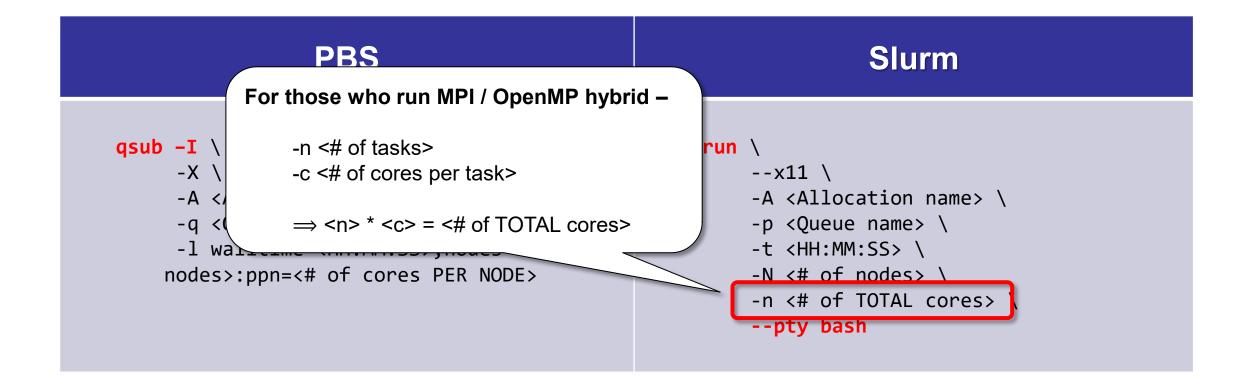
a) Command

PBS	Slurm
<pre>qsub -I \ -X \ -A <allocation name=""> \ -q <queue name=""> \ -1 walltime=<hh:mm:ss>,nodes=<# of nodes>:ppn=<# of cores PER NODE></hh:mm:ss></queue></allocation></pre>	<pre>srun \ x11 \ -A <allocation -p="" <queue="" cores="" name="" nodes,="" number="" of="" time,="" wall=""> \ -t <hh:mm:ss> \ -N <# of nodes> \ -n <# of TOTAL cores> \ pty bash</hh:mm:ss></allocation></pre>


1. Basic concepts

2. Preparing my job

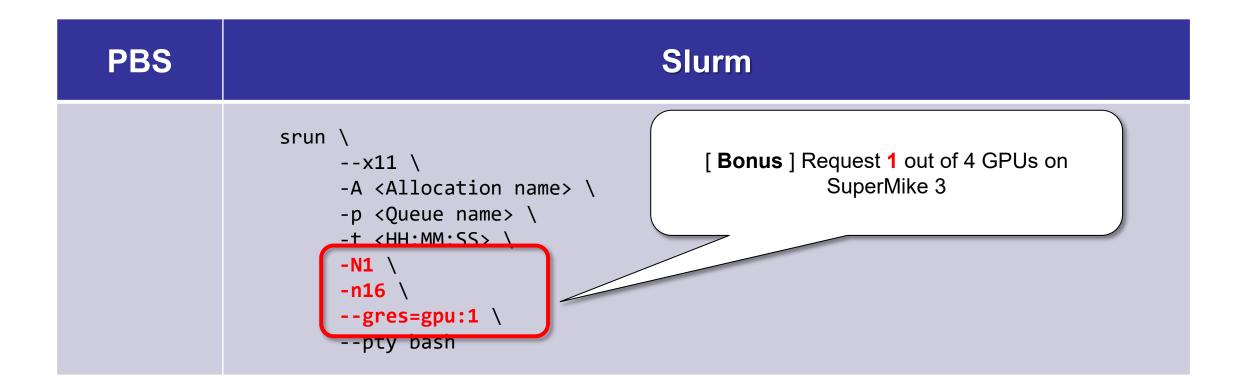
3. Submitting my job



a) Command

a) Command

NI


1. Basic concepts

2. Preparing my job

3. Submitting my job

a) Command

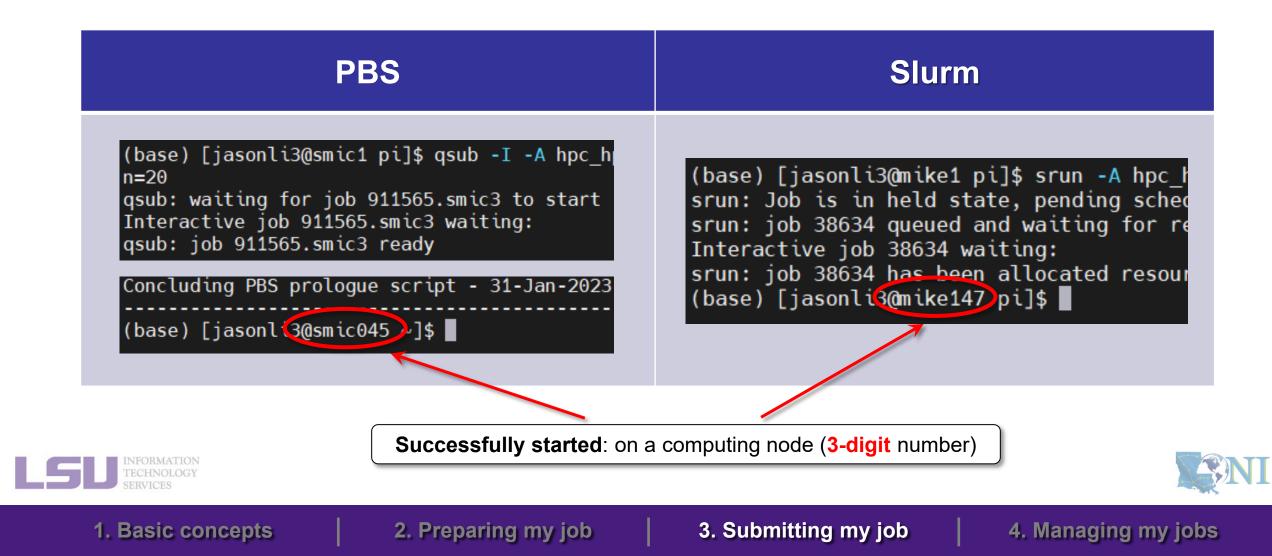
1. Basic concepts

2. Preparing my job

3. Submitting my job

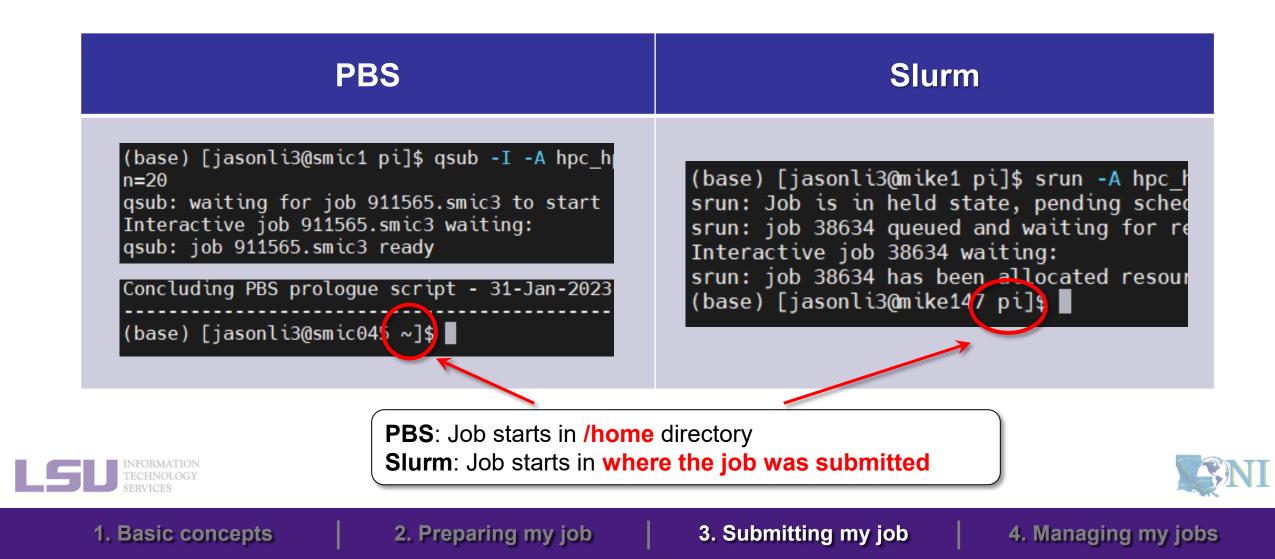
b) Starting an interactive job

PBS	Slurm
<pre>(base) [jasonli3@smic1 p]\$ qsub -I -A hpc_h n=20 qsub: waiting for job 911565.smic3 to start Interactive job 911565.smic3 waiting: qsub: job 911565.smic3 ready Concluding PBS prologue script - 31-Jan-2023 (base) [jasonli3@smic045 ~]\$</pre>	<pre>(base) [jasonl(3@mike1 pi]\$ srun -A hpc_k srun: Job is in held state, pending schec srun: job 38634 queued and waiting for re Interactive job 38634 waiting: srun: job 38634 has been allocated resour (base) [jasonli3@mike147 pi]\$</pre>


1. Basic concepts

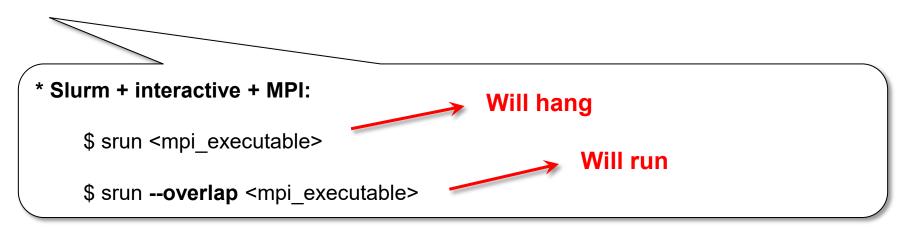
2. Preparing my job

3. Submitting my job



b) Starting an interactive job

b) Starting an interactive job



1) Interactive job

c) Running an interactive job

- i. Serial (single-thread)
- ii. Parallel (MPI)

3. Submitting my job

Outlines

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues

3. Submitting my job

- 1) Interactive job
- 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

3. Submitting my job

• What do you need?

- i. A **batch file** (containing job parameters and bash scripts)
- ii. Run a **submission command** to submit this batch file

1. Basic concepts

2. Preparing my job

3. Submitting my job

a) Batch file

PBS	Slurm	

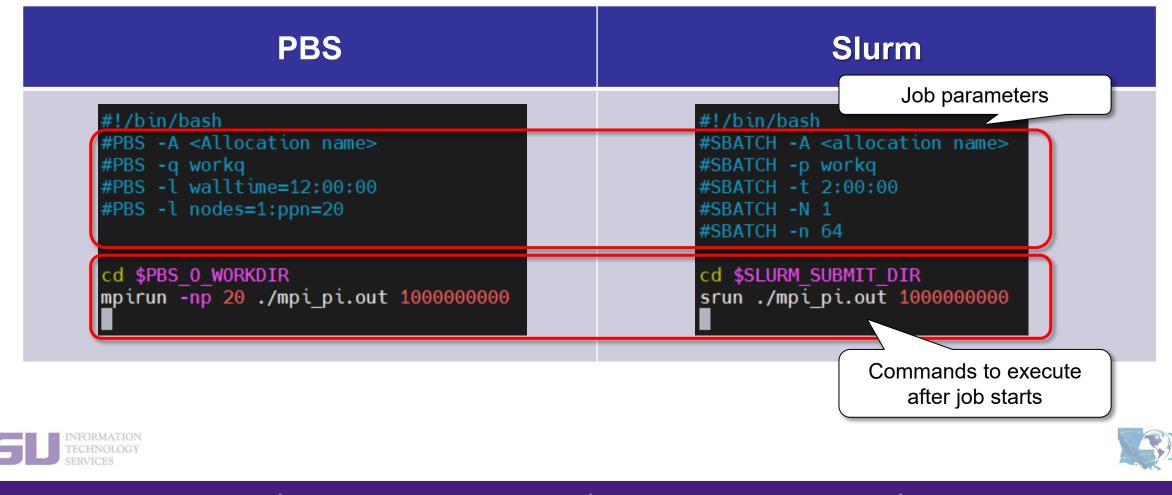
1. Basic concepts

2. Preparing my job

3. Submitting my job

a) Batch file

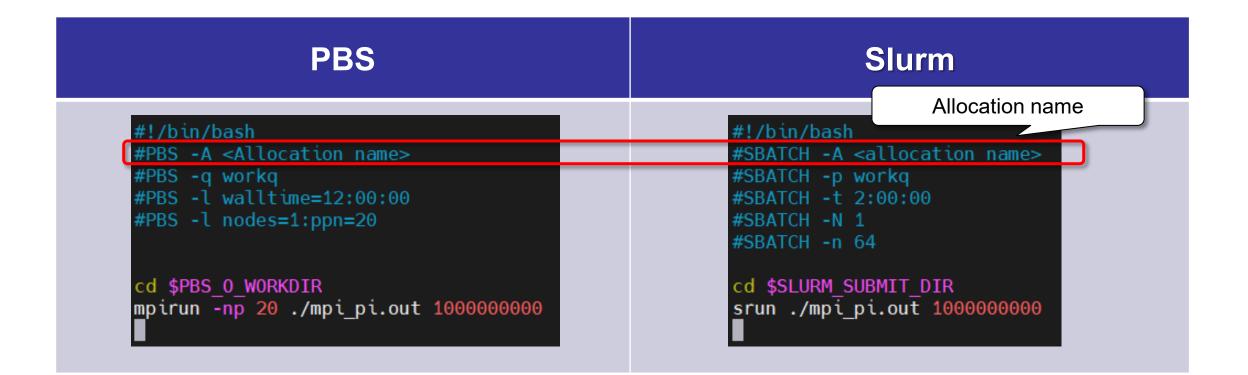
PBS	Slurm		
<pre>#!/bin/bash #PBS -A <allocation name=""> #PBS -q workq #PBS -l walltime=12:00:00 #PBS -l nodes=1:ppn=20</allocation></pre>	<pre>#!/bin/bash #SBATCH -A <allocation name=""> #SBATCH -p workq #SBATCH -t 2:00:00 #SBATCH -N 1 #SBATCH -n 64</allocation></pre>		
cd \$PBS_0_WORKDIR mpirun -np 20 ./mpi_pi.out 1000000000	cd \$SLURM_SUBMIT_DIR srun ./mpi_pi.out 100000000		


1. Basic concepts

2. Preparing my job

3. Submitting my job

a) Batch file


1. Basic concepts

2. Preparing my job

3. Submitting my job

a) Batch file

1. Basic concepts

INFORMATION TECHNOLOGY

2. Preparing my job

3. Submitting my job

a) Batch file

PBS	Slurm		
#!/bin/bash #PBS -A <allocation name=""> #PBS -q workq</allocation>	#!/bin/bash Queue name #SBATCH -A <actocacton name<br="">#SBATCH -p workq</actocacton>		
<pre>#PBS -t walltume=12:00:00 #PBS -l nodes=1:ppn=20</pre>	#SBATCH -t 2:00:00 #SBATCH -N 1 #SBATCH -n 64		
cd \$PBS_0_WORKDIR mpirun -np 20 ./mpi_pi.out 1000000000	<pre>cd \$SLURM_SUBMIT_DIR srun ./mpi_pi.out 100000000</pre>		

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

a) Batch file

PBS	Slurm	
<pre>#!/bin/bash #PBS -A <allocation name=""> #PBS -q workq #PBS -l walltime=12:00:00 #PBS -l nodes=1:ppn=20</allocation></pre>	<pre>#!/bin/bash #SBATCH -A <a #sbatch="" -n="" -p="" -t="" 1="" 2:00:00="" 64<="" pre="" time="" wall="" workq=""></pre>	
cd \$PBS_0_WORKDIR mpirun -np 20 ./mpi_pi.out 1000000000	<pre>cd \$SLURM_SUBMIT_DIR srun ./mpi_pi.out 100000000</pre>	

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

a) Batch file

PBS	Slurm	
<pre>#!/bin/bash #PBS -A <allocation name=""> #PBS -q workq #PBS -l walltime=12:00:00 #PBS -l nodes=1:ppn=20</allocation></pre>	<pre>#!/bin/bash #SBATCH -A <allecation #sbatch="" &="" -n="" -p="" -t="" 1="" 2:00:00="" 64<="" cores="" nodes="" nome="" number="" of="" pre="" wc=""></allecation></pre>	
cd \$PBS_0_WORKDIR mpirun -np 20 ./mpi_pi.out 1000000000	cd \$SLURM_SUBMIT_DIR srun ./mpi_pi.out 100000000	

1. Basic concepts

2. Preparing my job

3. Submitting my job

a) Batch file

PBS	Slurm		
<pre>#!/bin/bash #PBS -A <allocation name=""> #PBS -q workq #PBS -l walltime=12:00:00 #PBS -l nodes=1:ppn=20</allocation></pre>	<pre>#!/bin/bash #SBATCH -A <allocation name=""> #SBATCH -p workq #SBATCH -t 2:00:00 #SBATCH - Commands to run after job starts</allocation></pre>		
cd \$PBS_0_WORKDIR mpirun -np 20 ./mpi pi.out 1000000000	cd \$SLURM_SUBMIT_DIR srun ./mpi pi.out 100000000		

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

a) Batch file

PBS	Slurm	
<pre>#!/bin/bash #PBS -A <allocation name=""> #PBS -q workq #PBS -l walltime=12:00:00 #PBS -l nodes=1:ppn=20</allocation></pre>	<pre>#!/bin/bash #SBATCH -A <allocation name=""> #SBATCH -p workq #SBATCH -t 2:00:00 #SBATCH -N 1 #SBATCH -n 64</allocation></pre>	
cd \$PBS_0_WORKDIR mpirun -np 20 ./mpi pi.out 1000000000	cd \$SLURI An empty line (avoid error)	

1. Basic concepts

2. Preparing my job

3. Submitting my job

a) Batch file

PBS [[]	1]	Slurm ^[2]		Description	
#PBS –A		#SBATCH -A		Allocation name	
#PBS −q		#SBATCH -p		Queue name	
		#SBATCH -t			Wall time
#PBS -1		#SBATCH -N		Pocourco roquost	Number of nodes
#PD3 -1		#SBATCH –n		Resource request	Number of tasks
		#SBATCH -c			Number of cores per task
#PBS -o		#SBATCH -o		Standard output file	
#PBS −e		#SBATCH -e		Standard error file	
	а		FAIL		Job aborts / fails
#PBS -m	b	#SBATCHmail-type	BEGIN	Send email when	Job begins
	е		END		Job ends
#PBS -M		#SBATCHmail-user		Email address	
#PBS -N		#SBATCH -J		Job name	

2. Preparing my job

1. Basic concepts

[1] <u>http://www.hpc.lsu.edu/docs/pbs.php</u>[2] <u>http://www.hpc.lsu.edu/docs/slurm.php</u>

3. Submitting my job

b) Command

PBS	Slurm	
<mark>qsub</mark> <batch file="" name=""></batch>	<pre>sbatch <batch file="" name=""></batch></pre>	

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

c) Useful environmental variables

PBS ^[1]	Slurm ^[2]	Description	
\$PBS_JOBID	\$SLURM_JOBID	Job ID	
\$PBS_O_WORKDIR	<pre>\$SLURM_SUBMIT_DIR</pre>	Job submit directory	
\$PBS_NODEFILE	<pre>\$SLURM_JOB_NODELIST</pre>	A temp file, contains a list of allocated nodes' names (for MPI)	
\$PBS_NUM_NODES	\$SLURM_NNODES	Number of allocated nodes	
\$PBS_NP	\$SLURM_NTASKS	Number of allocated cores (tasks)	
#PBS -q #PBS -l #PBS -l cd \$PBS_	<allocation name=""></allocation>	[1] <u>http://www.hpc.lsu.edu/docs/pbs.php</u> [2] <u>http://www.hpc.lsu.edu/docs/slurm.php</u>	
1. Basic concepts	2. Preparing my job	3. Submitting my job4. Managing my jobs	

Outlines

• HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job

4. Managing my jobs

- 1) Useful commands
- 2) Monitoring job health

3. Submitting my job

Running jobs on HPC ≠ "Submit and done"

- Monitoring and managing jobs are part of the work

1. Basic concepts

2. Preparing my job

3. Submitting my job

Outlines

• HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

4. Managing my jobs

3. Submitting my job

I	PBS ^[1]		urm ^[2]	Description
				List all jobs
qstat	- n	squeue		List job details
	-u <username></username>		-u <username></username>	List all jobs belong to <username></username>
qde	qdel <job id=""></job>		l <job id=""></job>	Cancel <job id=""></job>
check	<pre>checkjob <job id=""></job></pre>		ow job <job id=""></job>	Show job details (running or recently finished)

Alter jobs after submission? \rightarrow NOT allowed!

2. Preparing my job

1. Basic concepts

[1] <u>http://www.hpc.lsu.edu/docs/pbs.php</u>[2] <u>http://www.hpc.lsu.edu/docs/slurm.php</u>

3. Submitting my job

Outlines

• HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job

4. Managing my jobs

- 1) Useful commands
- 2) Monitoring job health

3. Submitting my job

A job requesting n cores ≠ A job utilizing n cores

- Goal
 - Use the allocated resources (CPU cores, RAM, time, ...) as fully and efficiently as possible
 - No serious underutilizing
 - No serious overutilizing
- Things to check
 - CPU load
 - RAM usage

3. Submitting my job

- a) Method 1: qshow <Job ID>
 - Displays diagnostic information of a running job
 - Can be run on head node

1. Basic concepts

2. Preparing my job

3. Submitting my job

a) Method 1: qshow <Job ID>

(base) [jasonli3@mike4 ~]\$ gshow 38581 PBS job: 38581, nodes: 1 Hostname Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours) 278 64.12 6033 68 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:533M:107M:13.5 yxan:lmp mik+:748M:128M:13.5 mike145 yxan:lmp mik+:738M:124M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:587M:109M:13.5 yxan:lmp mik+:743M:128M:13.5 yxan:lmp mik+:696M:118M:13.5 yxan:lmp mik+:528M:101M:13.5 yxan:lmp mik+:578M:108M:13.5 yxan:lmp mik+:528M:105M:13.5 yxan:lmp mik+:528M:106M:13.5 yxan:lmp mik+:520M:105M:13.5 yxan:lmp mik+:561M:106M:13.5 yxan:lmp mik+:583M:109M:13.5 yxan:lmp mik+:520M:103M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:738M:125M:13.5 yxan:lmp mik+:709M:119M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:574M:107M:13.5 yxan:lmp mik+:697M:121M:13.5 yxan:lmp mik+:658M:115M:13.5 yxan:lmp mik+:528M:102M:13.5 yxan:lmp mik+:557M:108M:13.5 yxan:lmp mik+:524M:105M:13.5 yxan:lmp mik+:524M:105M:13.5 yxan:lmp mik+:515M:102M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:567M:108M:13.5 yxan:lmp mik+:566M:108M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:536M:105M:13.5 yxan:lmp_mik+:519M:104M:13.5_yxan:lmp_mik+:528M:103M:13.5_yxan:lmp_mik+:519M:103M:13.5_yxan:lmp_mik+:524M:104M:13.5_yxan:lmp_mik+:524 yxan:lmp_mik+:528M:104M:13.5_yxan:lmp_mik+:516M:101M:13.5_yxan:lmp_mik+:515M:101M:13.5_yxan:lmp_mik+:515M:104M:13.5_yxan:lmp_mik+:520M:101M:13.5_ yxan:lmp_mik+:524M:103M:13.5_yxan:lmp_mik+:520M:101M:13.5_yxan:lmp_mik+:515M:103M:13.5_yxan:lmp_mik+:516M:102M:13.5_yxan:lmp_mik+:587M:110M:13.5 yxan:lmp_mik+:558M:108M:13.5_yxan:lmp_mik+:524M:102M:13.5_yxan:lmp_mik+:537M:103M:13.5_yxan:lmp_mik+:572M:109M:13.5_yxan:lmp_mik+:549M:104M:13.5 yxan:lmp_mik+:519M:103M:13.5_yxan:lmp_mik+:528M:104M:13.5_yxan:lmp_mik+:520M:104M:13.5_yxan:lmp_mik+:515M:103M:13.5_yxan:lmp_mik+:515 yxan:lmp_mik+:520M:105M:13.5_yxan:lmp_mik+:528M:105M:13.5_yxan:lmp_mik+:515M:103M:13.5_yxan:lmp_mik+:515M:104M:13.5_yxan:lmp_mik+:515M:104M:13.5_ yxan:slurm s+:12M:3M yxan:srun:324M:8M yxan:srun:53M:1M PBS job=38581 user=yxan allocation=hpc lipidhpre queue=checkpt total load=64.12 cpu hours=866.08 wall hours=13.21 unused nodes=0 total nodes=1 pp n=64 avg load=64.12 avg cpu=6033% avg mem=6852mb avg vmem=36176mb top proc=yxan:lmp mik+:mike145:524M:104M:13.5hr:100% toppm=yxan:lmp mikeCpu:mik e145:730M:125M node processes=68

What to look at …	Normal behavior	You should be concerned if

1. Basic concepts

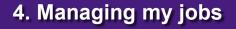
2. Preparing my job

3. Submitting my job

a) Method 1: qshow <Job ID>

(base) [jasonli3@mike4 ~]\$ gshow 38581 PBS job: 38581, nodes: 1 Hostname Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours) 278 64.12 6033 68 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:533M:107M:13.5 yxan:lmp mik+:748M:128M:13.5 mike145 yxan:lmp mik+:738M:124M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:587M:109M:13.5 yxan:lmp mik+:743M:128M:13.5 yxan:lmp mik+:696M:118M:13.5 yxan:lmp mik+:528M:101M:13.5 yxan:lmp mik+:578M:108M:13.5 yxan:lmp mik+:528M:105M:13.5 yxan:lmp mik+:528M:106M:13.5 yxan:lmp mik+:520M:105M:13.5 yxan:lmp mik+:561M:106M:13.5 yxan:lmp mik+:583M:109M:13.5 yxan:lmp mik+:520M:103M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:738M:125M:13.5 yxan:lmp mik+:709M:119M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:574M:107M:13.5 yxan:lmp mik+:697M:121M:13.5 yxan:lmp mik+:658M:115M:13.5 yxan:lmp mik+:528M:102M:13.5 yxan:lmp mik+:557M:108M:13.5 yxan:lmp mik+:524M:105M:13.5 yxan:lmp mik+:524M:105M:13.5 yxan:lmp mik+:515M:102M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:567M:108M:13.5 yxan:lmp mik+:566M:108M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:536M:105M:13.5 yxan:lmp_mik+:519M:104M:13.5_yxan:lmp_mik+:528M:103M:13.5_yxan:lmp_mik+:519M:103M:13.5_yxan:lmp_mik+:524M:104M:13.5_yxan:lmp_mik+:524 yxan:lmp_mik+:528M:104M:13.5_yxan:lmp_mik+:516M:101M:13.5_yxan:lmp_mik+:515M:101M:13.5_yxan:lmp_mik+:515M:104M:13.5_yxan:lmp_mik+:520M:101M:13.5_ yxan:lmp_mik+:524M:103M:13.5_yxan:lmp_mik+:520M:101M:13.5_yxan:lmp_mik+:515M:103M:13.5_yxan:lmp_mik+:516M:102M:13.5_yxan:lmp_mik+:587M:110M:13.5 yxan:lmp_mik+:558M:108M:13.5_yxan:lmp_mik+:524M:102M:13.5_yxan:lmp_mik+:537M:103M:13.5_yxan:lmp_mik+:572M:109M:13.5_yxan:lmp_mik+:549M:104M:13.5 yxan:lmp_mik+:519M:103M:13.5_yxan:lmp_mik+:528M:104M:13.5_yxan:lmp_mik+:520M:104M:13.5_yxan:lmp_mik+:515M:103M:13.5_yxan:lmp_mik+:515 yxan:lmp_mik+:520M:105M:13.5_yxan:lmp_mik+:528M:105M:13.5_yxan:lmp_mik+:515M:103M:13.5_yxan:lmp_mik+:515M:104M:13.5_yxan:lmp_mik+:515 yxan:slurm s+:12M:3M yxan:srun:324M:8M yxan:srun:53M:1M PBS job=20501 user=yxan allocation=hpc lipidhpre queue=checkpt total load=64.12 cpu hours=866.08 wall hours=13.21 unused nodes=0 total nodes=1 pp n=64 avg load=64.12 avg cpu=6033% avg mem=6852mb avg vmem=36176mb top proc=yxan:lmp mik+:mike145:524M:104M:13.5hr:100% toppm=yxan:lmp mikeCpu:mik e145:730M·125M_pode_processes=68

What to look at	Normal behavior	You should be concerned if
avg_load	Close to allocated number of cores on the node	Consistently too low or too high



1. Basic concepts

2. Preparing my job

3. Submitting my job

a) Method 1: qshow <Job ID>

(base) [jasonli3@mike4 ~]\$ gshow 38581 PBS job: 38581, nodes: 1 Hostname Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours) 278 64.12 6033 68 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:533M:107M:13.5 yxan:lmp mik+:748M:128M:13.5 mike145 yxan:lmp mik+:738M:124M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:587M:109M:13.5 yxan:lmp mik+:743M:128M:13.5 yxan:lmp mik+:696M:118M:13.5 yxan:lmp mik+:528M:101M:13.5 yxan:lmp mik+:578M:108M:13.5 yxan:lmp mik+:528M:105M:13.5 yxan:lmp mik+:528M:106M:13.5 yxan:lmp mik+:520M:105M:13.5 yxan:lmp mik+:561M:106M:13.5 yxan:lmp mik+:583M:109M:13.5 yxan:lmp mik+:520M:103M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:738M:125M:13.5 yxan:lmp mik+:709M:119M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:574M:107M:13.5 yxan:lmp mik+:697M:121M:13.5 yxan:lmp mik+:658M:115M:13.5 yxan:lmp mik+:528M:102M:13.5 yxan:lmp mik+:557M:108M:13.5 yxan:lmp mik+:524M:105M:13.5 yxan:lmp mik+:524M:105M:13.5 yxan:lmp mik+:515M:102M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:567M:108M:13.5 yxan:lmp mik+:566M:108M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:536M:105M:13.5 yxan:lmp mik+:519M:104M:13.5 yxan:lmp mik+:528M:103M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp_mik+:528M:104M:13.5_yxan:lmp_mik+:516M:101M:13.5_yxan:lmp_mik+:515M:101M:13.5_yxan:lmp_mik+:515M:104M:13.5_yxan:lmp_mik+:520M:101M:13.5_ yxan:lmp_mik+:524M:103M:13.5_yxan:lmp_mik+:520M:101M:13.5_yxan:lmp_mik+:515M:103M:13.5_yxan:lmp_mik+:516M:102M:13.5_yxan:lmp_mik+:587M:110M:13.5 yxan:lmp_mik+:558M:108M:13.5_yxan:lmp_mik+:524M:102M:13.5_yxan:lmp_mik+:537M:103M:13.5_yxan:lmp_mik+:572M:109M:13.5_yxan:lmp_mik+:549M:104M:13.5 yxan:lmp_mik+:519M:103M:13.5_yxan:lmp_mik+:528M:104M:13.5_yxan:lmp_mik+:520M:104M:13.5_yxan:lmp_mik+:515M:103M:13.5_yxan:lmp_mik+:515 yxan:lmp_mik+:520M:105M:13.5_yxan:lmp_mik+:528M:105M:13.5_yxan:lmp_mik+:515M:103M:13.5_yxan:lmp_mik+:515M:104M:13.5_yxan:lmp_mik+:515M:104M:13.5_ yxan:slurm s+:12M:3M yxan:srun:324M:8M yxan:srun:53M:1M PBS_job=38581 user=yxan allocation=hpc_lipidhpre_queue=checkpt total_load=64.12 cpu_hours=866.08 wall_hours=13.21 unused_nodes=0 total_nodes=1 pp n=64 avg load=64.12 avg cpu=603 % avg mem=6852mb avg vmem=36176mb top proc=yxan:lmp mik+:mike145:524M:104M:13.5hr:100% toppm=yxan:lmp mikeCpu:mik e145:730M:125M node processes=68

What to look at …	Normal behavior	You should be concerned if
avg_load	Close to allocated number of cores on the node	Consistently too low or too high
ave_mem	Does not exceed total allocated memory	Exceeds total allocated memory

1. Basic concepts

TECHNOLOGY

2. Preparing my job

3. Submitting my job

- Displays dynamic real-time view of a **computing node**
- Must run on **computing nodes** !

* ssh to computing nodes while job running (cannot ssh if you do not have jobs on it)

1. Basic concepts

2. Preparing my job

3. Submitting my job

Tasks: 981 total,	65 9. 8 to	run 2 sy tal,	ning, 91 , 0.0 n 211261.	6 sleep i, 0.0 0 free,	ing, 0 id, 0.0 41926.9	stoppe) wa,) used,	d, 0 0.5 hi 3810	
Http 3wdp: 10041.	0 10	cac,	10500.	/ 1100,	00.2	useu.	212/5	
PID USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+ COMMAND
2701318 jasonli3	20	0	595668	582356	2568 R	100.0	0.2	4:08.94 TDSE_np3_e0
2701342 jasonli3	20	0	595668	581944	2616 R	100.0	0.2	4:08.90 TDSE_np3_e0
2701249 jasonli3	20	0	595668	581792	2464 R	99.7	0.2	4:08.97 TDSE_np3_e0
2701252 jasonli3	20	0	595668	514684	2520 R	99.7	0.2	4:09.00 TDSE np3 e0
2701261 jasonli3	20	0	595668	393828	2616 R	99.7	0.1	4:08.97 TDSE np3 e0
2701264 jasonli3	20	0	595668	581856	2532 R	99.7	0.2	4:08.92 TDSE np3 e0
2701270 jasonli3	20	0	595668	582480	2432 R	99.7	0.2	4:08.95 TDSE_np3_e0
2701273 jasonli3	20	0	595668	581776	2448 R	99.7	0.2	4:08.81 TDSE_np3_e0
2701276 jasonli3	20	0	595668	582160	2568 R	99.7	0.2	4:08.98 TDSE np3 e0
2701270 jacon1j2	20	0	FOFCO	222064	2644 D	00 7	0 1	4.00 00 TDCC nn2 00

What to look at …	Normal behavior …	You should be concerned if
-------------------	-------------------	----------------------------

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

ton 02,22,50 up	270	day	a 10.17	2		d avar		0 62 20 81 17 40
•		-						3.63, 39.81, 17.49
Tasks: 981 total,	65	run	ning, 91	6 sleep	ing, U	scoppe	u, U	zombie
%Cpu(s): 90.2 us,	9.	2 sy	, 0.0 n	i, 0.0	id, 0.0) wa,	0.5 hi,	, 0.0 si, 0.0 st
MiB Mem : 257004.	8 to	tal,	211261.	🤉 free,	41926.9	used,	3816	6.9 buff/cache
MiB Swap: 16641.				*		*		-
		,	10000.	,	0011			
PID USER	PR	NI	VIRT	RES	SHR S	&CPI1	%MEM	TIME+ COMMAND
2701318 jasonli3		0	595668		2568 R		0.2	4:08.94 TDSE np3 e0
		_						<u> </u>
2701342 jasonli3	20	0	595668	581944	2616 R	100.0	0.2	4:08.90 TDSE_np3_e0
2701249 jasonli3	20	0	595668	581792	2464 R	99.7	0.2	4:08.97 TDSE np3 e0
2701252 jasonli3	20	0	595668	514684	2520 R	99.7	0.2	4:09.00 TDSE np3 e0
2701261 jasonli3	20	0	595668	393828	2616 R	99.7	0.1	4:08.97 TDSE_np3_e0
2701264 jasonli3	20	0	595668	581856	2532 R	99.7	0.2	4:08.92 TDSE_np3_e0
2701270 jasonli3	20	0	595668	582480	2432 R	99.7	0.2	4:08.95 TDSE_np3_e0
2701273 jasonli3	20	0	595668	581776	2448 R	99.7	0.2	4:08.81 TDSE_np3_e0
2701276 jasonli3	20	0	595668	582160	2568 R	99.7	0.2	4:08.98 TDSE np3 e0
2701270 jacon112	20	0	FOFGO	122064	2644 D	00 7	0 1	4.00 00 TOCT 00 00.1

What to look at	Normal behavior	You should be concerned if
Load average	Close to allocated number of cores on the node	Consistently too low or too high

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

top - 02:23:58 up Tasks: 981 total, %Cpu(s): 90.2 us,	65	run	ning, 91	6 sleep	ing, O	stoppe	ed, 0	3.63, 39.81, 17.49 zombie , 0.0 si, 0.0 st
MiB Mem : 257004.								
MiB Swap: 16641.								
PID USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+ COMMAND
2701318 jasonli3	20	0	595668	582356	2568 R	100.0	0.2	4:08.94 TDSE np3 e0
2701342 jasonli3	20	0	595668	581944	2616 R	100.0	0.2	4:08.90 TDSE np3 e0
2701249 jasonli3	20	0	595668	581792	2464 R	99.7	0.2	4:08.97 TDSE np3 e0
2701252 jasonli3	20	0	595668	514684	2520 R	99.7	0.2	4:09.00 TDSE np3 e0
2701261 jasonli3	20	0	595668	393828	2616 R	99.7	0.1	4:08.97 TDSE_np3_e0
2701264 jasonli3	20	0	595668	581856	2532 R	99.7	0.2	4:08.92 TDSE_np3_e0
2701270 jasonli3	20	0	595668	582480	2432 R	99.7	0.2	4:08.95 TDSE_np3_e0
2701273 jasonli3	20	0	595668	581776	2448 R	99.7	0.2	4:08.81 TDSE_np3_e0
2701276 jasonli3	20	Θ	595668	582160	2568 R	99.7	0.2	4:08.98 TDSE_np3_e0

What to look at	Normal behavior	You should be concerned if
Load average	Close to allocated number of cores on the node	Consistently too low or too high
Memory usage (not virtual memory)	Does not exceed total allocated memory	Exceeds total allocated memory

1. Basic concepts

INFORMATION TECHNOLOGY

2. Preparing my job

3. Submitting my job

c) Method 3: free

- Displays free and used **physical and swap memory** in the system
- Must run on **computing nodes** !

* ssh to computing nodes while job running (cannot ssh if you do not have jobs on it)

1. Basic concepts

2. Preparing my job

3. Submitting my job

c) Method 3: free

(base)	[jasonli3@mike	166 ~]\$ free	9			
	total	used	free	shared	buff/cache	available
Mem:	263172900	43248372	216007308	406352	3917220	217528356
Swap:	17040380	616 <u>9</u> 6	16978684			

What to look at	Normal behavior	You should be concerned if …
-----------------	-----------------	------------------------------

1. Basic concepts

2. Preparing my job

3. Submitting my job

c) Method 3: free

(base)	[jasonli3@mike	166 ~]\$ free				
	total	used	free	shared	buff/cache	available
Mem:	263172900	43248372	216007308	406352	3917220	217528356
Swap:	17040380	61696	16978684			

What to look at …	Normal behavior	You should be concerned if
Memory usage (not virtual memory)	Does not exceed total allocated memory	Exceeds total allocated memory

1. Basic concepts

2. Preparing my job

3. Submitting my job

- d) Method 4: nvidia-smi (for GPU only)
 - Displays diagnostic information of GPUs
 - Must run on GPU nodes !

* ssh to computing nodes while job running (cannot ssh if you do not have jobs on it)

1. Basic concepts

2. Preparing my job

3. Submitting my job

d) Method 4: nvidia-smi (for GPU only)

(base) [jasonli3@qbc193 ~]\$ nvidia-smi Wed Feb 1 02:38:32 2023									
NVID]	A-SMI	510.4	7.03 Dr	iver	Version:	510.47.0)3 (CUDA Versio	m: 11.6
GPU Fan	Name Temp		Persisten Pwr:Usage	•					Uncorr. ECC Compute M. MIG M.
0 N/A 	Tesla 36C	V100- P0	PCIE 00 54W / 29			0:3B:00.0 iB / 3276		72%	Off Default N/A
1 N/A 	Tesla 36C		PCIE 00 52W / 2			0:AF:00.0 iB / 3276		78%	Off Default N/A
+									+
Proce GPU 	sses: GI ID	CI ID	PID	Тур	e Proc	ess name			GPU Memory Usage
 0 1 +	N/A N/A	N/A N/A	259491 259491					/terachem /terachem	4147MiB 4147MiB

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

d) Method 4: nvidia-smi (for GPU only)

(base) [jasonli3@qbc193 ~]\$ nvidia-smi Ved Feb 1 02:38:32 2023									
NVIDI	NVIDIA-SMI 510.47.03 Driver Version: 510.47.03 CDDA Version: 11.6								
			Persistenc Pwr:Usage/						Incorr. ECC Compute M. MIG M.
0 N/A 	Tesla 36C		PCIE On 54W / 25	•		0:3B:00.0 (iB / 32768		72%	Off Default N/A
1 N/A 	Tesla 36C		PCIE On 52W / 25			0:AF:00.0 (iB / 32768		78%	Off Default N/A
Proce GPU	sses: GI ID	CI ID	PID	Тур	e Proce	ess name			GPU Memory Usage
 0 1	N/A N/A	N/A N/A	259491 259491			he/TeraCher he/TeraCher		n/terachem n/terachem	4147MiB 4147MiB

What to look at	Normal behavior …	You should be concerned if	
GPU usage	Close to 100%	Consistently too low	

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

d) Method 4: nvidia-smi (for GPU only)

	(base) [jasonli3@qbc193 ~]\$ nvidia-smi Wed Feb 1 02:38:32 2023						
NVIDIA-S	MI 510.4	17.03 Driver	Version: 510.47.03	CUDA Versio	n: 11.6		
GPU Nan Fan Ten 			Bus-Id Disp.A Memory-Usage				
		•PCIE On 54W / 2501	00000000:3B:00.0 Off 4155MiB / 32768MiB	 72% 	Off Default N/A		
· •		•PCIE On 52W / 250W	00000000:AF:00.0 Off 4155MiB / 32768MiB	 78% 	Off Default N/A		
+					+		
	es: GICI DID	PID Typ	pe Process name		GPU Memory Usage		
•	I/A N/A I/A N/A		Cche/TeraChem/bi Cche/TeraChem/bi		4147MiB 4147MiB		

	What to look at …	Normal behavior	You should be concerned if
	GPU usage	Close to 100%	Consistently too low
	Memory usage (not virtual memory)	Not used up	Used up
LSL	INFORMATION TECHNOLOGY SERVICES		

1. Basic concepts

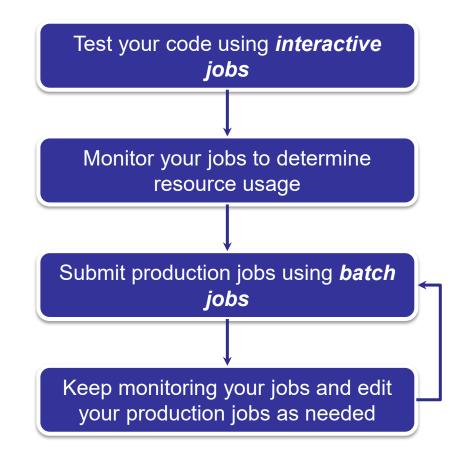
2. Preparing my job

3. Submitting my job

e) Common issues

Issue	What would happen		
Exceeded memory allocation (e.g., using more memory than allocated w/ single queue)	Terminated. Receive email notice.		
Exceeded ppn/core allocation (e.g., using more cores than allocated w/ single queue)	Terminated. Receive email notice.		
Seriously underutilize node CPU cores (e.g., Requested multiple nodes but only runs on one node)	Receive email warning.		
Submitting to bigmem but only using little memory	Nothing. Just not nice.		
Running intensive calculation on head nodes	Terminated. Receive email notice.		
Submitting too many (i.e., hundreds of) single-thread jobs	Poor parallelization and bad for server. We may reach out to you to help. (Better yet, reach out to us first)		

1. Basic concepts


2. Preparing my job

3. Submitting my job

Summary

• A typical workflow --

1. Basic concepts

SNI

2. Preparing my job

3. Submitting my job

Outlines

HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers \rightarrow All calculation must be submitted as jobs
- 2. Preparing my job
 - 1) Basic principles

- \rightarrow Large enough & small enough
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

- \rightarrow Good for testing and debugging
- \rightarrow Good for production
- \rightarrow How to monitor jobs health, and how to create health jobs

Basic Shell Scripting

Contact us

Contact user services

- Email Help Ticket: <u>sys-help@loni.org</u>
- Telephone Help Desk: +1 (225) 578-0900

