
Introduction to GNU Parallel

Siva Prasad Kasetti

HPC User Services

LSU HPC & LONI

sys-help@loni.org

Louisiana State University

Baton Rouge

06 November 2024

Parallelizing Massive Individual Tasks

http://www.hpc.lsu.edu/training/archive/tutorials.php

http://www.hpc.lsu.edu/training/archive/tutorials.php

Outline

❖ Introduction

❖ What is GNU Parallel?

❖ A command-line tool used for parallelizing massive individual tasks

❖ When and Why to use GNU Parallel?

❖ Examples: 1 million small MD simulations, 10k protein analysis

❖ Basic Usage of GNU Parallel

❖ GNU Parallel Syntax and Options

❖ Introducing Running 3 Types of jobs using GNU Parallel:

❖ Serial Tasks - Run each LAMMPS task in serial

❖Multi-Threaded Tasks - Run each LAMMPS task using multiple threads

❖ Small MPI Jobs - Run each LAMMPS task using multiple MPI processes

❖ Proper usage of GNU Parallel

❖ Memory consideration

❖ Task granularity

Introduction to GNU Parallel 2

What is GNU Parallel?

Introduction to GNU Parallel 3

What is GNU Parallel?

Introduction to GNU Parallel 4

Parallelizing Massive Individual Tasks

What is GNU Parallel?

❖ Parallelize

❖ This refers to the process of dividing a workload into multiple smaller tasks and

executing them simultaneously. It allows for better utilization of computational

resources, such as multi-core CPUs or multiple nodes in a cluster.

Introduction to GNU Parallel 5

Parallelizing Massive Individual Tasks

What is GNU Parallel?

❖ Parallelize

❖ This refers to the process of dividing a workload into multiple smaller tasks and

executing them simultaneously. It allows for better utilization of computational

resources, such as multi-core CPUs or multiple nodes in a cluster.

❖ Massive

❖ Indicates the scale or volume of tasks being handled. It often refers to workloads

that consist of hundreds, thousands, or even millions of tasks, which would take

a long time to process sequentially.

Introduction to GNU Parallel 6

Parallelizing Massive Individual Tasks

What is GNU Parallel?

❖ Parallelize

❖ This refers to the process of dividing a workload into multiple smaller tasks and

executing them simultaneously. It allows for better utilization of computational

resources, such as multi-core CPUs or multiple nodes in a cluster.

❖ Massive

❖ Indicates the scale or volume of tasks being handled. It often refers to workloads

that consist of hundreds, thousands, or even millions of tasks, which would take

a long time to process sequentially.

❖ Individual (Independent)

❖ Each task operates independently of the others. This means there’s no

dependency between tasks, allowing them to be executed in parallel without

waiting for one another.

Introduction to GNU Parallel 7

Parallelizing Massive Individual Tasks

What is GNU Parallel?

❖ Parallelize

❖ This refers to the process of dividing a workload into multiple smaller tasks and

executing them simultaneously. It allows for better utilization of computational

resources, such as multi-core CPUs or multiple nodes in a cluster.

❖ Massive

❖ Indicates the scale or volume of tasks being handled. It often refers to workloads

that consist of hundreds, thousands, or even millions of tasks, which would take

a long time to process sequentially.

❖ Individual (Independent)

❖ Each task operates independently of the others. This means there’s no

dependency between tasks, allowing them to be executed in parallel without

waiting for one another.

❖ Tasks

❖ These are the units of work or commands you want to execute. Each task could

be a program, script, or function that processes a specific set of inputs.

Introduction to GNU Parallel 8

Parallelizing Massive Individual Tasks

What do we want to accomplish?

➢ Parallize lots of small independent tasks on a multi-core platform

(compute nodes)

Introduction to GNU Parallel 9

Core

Task 0

Task 1

Task 2

Task 3

Core

0

Task 0

Core

1

Task 1

Core

2

Task 2

Core

3

Task 3

Background and Distribute

Introduction to GNU Parallel 10

Core

0

Task

0

Core

1

Task

1

Core

2

Task

2

Core

3

Task

3

Node 0

Core

0

Task

4

Core

1

Task

5

Core

2

Task

6

Core

3

Task

7

Node 1

The von Neumann Architecture

Introduction to GNU Parallel 11

Main Memory

(code/data)

Central

Processing Unit

Input
Device

Cache

Output
Device

Control Unit

Arithmetic

Logic Unit

Core

Changing Times

➢ From 1986 - 2002, microprocessors were speeding like a rocket,

increasing in performance an average of 50% per year.

➢ Since then, it’s dropped to about 20% increase per year.

Introduction to GNU Parallel 12

Source:
http://www.cs.columbia.edu/~sed

wards/classes/2012/3827-spring/

Limitation:

2 GHz Consumer

4 GHz Server

Moore's Law states that
transistor counts on chips
double roughly every two
years.

A Little Physics Problem

➢ Smaller transistors = faster processors.

➢ Faster processors = increased power consumption.

➢ Increased power consumption = increased heat.

➢ Increased heat = unreliable processors.

➢ Solution:

– Move away from single-core systems to multicore processors.

– “core” = central processing unit (CPU)

– Introducing parallelism

• What if your problem is also not CPU dominant?

Introduction to GNU Parallel 13

The von Neumann Architecture

Introduction to GNU Parallel 14

Main Memory

(code/data)

CPU

I/O I/O

Cache

core core

cachecache

CC-interconnect

Around year

2005

GNU Parallel

➢ GNU parallel is a shell tool for executing “embarrassingly parallel”

tasks using one or more computers (compute nodes).

➢ Terminology:

– Task: Each small, independent piece of computation work to be

finished, e.g., a single genome computation, a single MD simulation

– Job: The list of tasks to be completed on a set of nodes (cores)

➢ A task can be a single command or a small script that must be run for

each of the lines in the input.

➢ The typical input is a list of files, a list of hosts, a list of users, a list of

URLs, or a list of tables.

➢ See more at: https://www.gnu.org/software/parallel/

Introduction to GNU Parallel 15

https://www.gnu.org/software/parallel/

GNU Parallel Syntax

Introduction to GNU Parallel

Adding GNU Parallel to Environment

➢ On SuperMike3:
[fchen14@mike139 ~]$ module av parallel

---- /usr/local/packages/Modules/default/modulefiles/linux-rhel8-icelake ----

parallel-netcdf/1.12.2/intel-2021.5.0
parallel/20210922/intel-2021.5.0

parallel-netcdf/1.12.2/intel-2021.5.0-intel-mpi-2021.5.1

load the module to environment

[fchen14@mike139 ~]$ module load parallel/20210922/intel-2021.5.0

[fchen14@mike139 ~]$ which parallel

/usr/local/packages/parallel/20210922/hrsviur/bin/parallel

[fchen14@mike139 ~]$ parallel –version # check GNU parallel version

GNU parallel 20210922

Copyright (C) 2007-2021 Ole Tange, http://ole.tange.dk and Free Software

Foundation, Inc.

...

➢ Or add the below line to ~/.modules:

module load parallel/20210922/intel-2021.5.0

Introduction to GNU Parallel 17

GNU Parallel Syntax

➢ Reading commands to be run in parallel from an input file:

parallel [OPTIONS] < CMDFILE

➢ Reading command arguments on the command line:

parallel [OPTIONS] COMMAND [ARGUMENTS] ::: ARGLIST

➢ Reading command arguments from an input file:

parallel [OPTIONS] COMMAND [ARGUMENTS] :::: ARGFILE

Introduction to GNU Parallel 18

ARGLIST from command line

➢ parallel [OPTIONS] COMMAND [ARGUMENTS] ::: ARGLIST

➢ Examples:
[fchen14@mike139 ~]$ parallel echo ::: A B C

A

B

C

[fchen14@mike139 ~]$ parallel echo ::: `seq 1 3`

1

2

3

[fchen14@mike139 ~]$ parallel echo ::: {A..Z}

A

B

...

Z

[fchen14@mike139 test]$ ls -1 | parallel echo

2013-06-18.tgz

backups.sh

bigmem_test.pbs

...

Introduction to GNU Parallel 19

ARGLIST from file

➢ parallel [OPTIONS] COMMAND [ARGUMENTS] :::: ARGFILE

[fchen14@mike139 GNU_PARALLEL]$ pwd

/project/fchen14/GNU_PARALLEL

[fchen14@mike139 GNU_PARALLEL]$ cat input.lst | head

01.lj

02.lj

03.lj

...

[fchen14@mike139 GNU_PARALLEL]$ head input.lst -n 5 | parallel echo

01.lj

02.lj

03.lj

04.lj

05.lj

[fchen14@mike139 GNU_PARALLEL]$ parallel echo :::: input.lst

01.lj

02.lj

...

Introduction to GNU Parallel 20

Replacement Strings

➢ ‘{}’ returns a full line read from the input source.
[fchen14@mike139 GNU_PARALLEL]$ parallel echo {} ::: data/in.lj

data/in.lj

➢ ‘{/}’ removes everything up to and including the last forward slash:

[fchen14@mike139 GNU_PARALLEL]$ parallel echo {/} ::: data/in.lj

in.lj

➢ ‘{//}’ returns the directory name of input line.

[fchen14@mike139 GNU_PARALLEL]$ parallel echo {//} ::: data/in.lj

data

➢ ‘{.}’ removes any filename extension:

[fchen14@mike139 GNU_PARALLEL]$ parallel echo {.} ::: data/in.lj

data/in

➢ ‘{/.}’ returns the basename of the input line without extension. It is a

combination of {/} and {.}:

[fchen14@mike139 GNU_PARALLEL]$ parallel echo {/.} ::: data/in.lj

in

➢ See “man parallel” for more detailed explanation.

Introduction to GNU Parallel 21

Replacement String Example

➢ Print the full path of the input file, and then print the desired output file

name, e.g.:

– Input file: data/lj.in

– Output file name: output/lj.out

Process data/lj.in and send result to output/lj.out

$ parallel echo {} output/{/.}.out ::: data/lj.in

data/lj.in output/lj.out

Introduction to GNU Parallel 22

Parallelize Job Script

➢ GNU parallel is often called as this:

cat input_file | parallel command

parallel command ::: foo bar

➢ If command is a script, parallel can be combined into a single file so

this will run the script in parallel:

parallel [OPTIONS] script [ARGUMENTS] ::: ARGLIST

– or

parallel [OPTIONS] script [ARGUMENTS] :::: ARGFILE

➢ See next slide for example...

Introduction to GNU Parallel 23

Parallize Script Example

➢ This is the script we want to parallize "cmd_ex.sh":

#!/bin/bash

print the input, on which host, which working directory

echo "This script uses input: $1 on $HOSTNAME:$PWD"

➢ Parallize the script using ARGLIST from command line:

[fchen14@mike139 GNU_PARALLEL]$ parallel --wd $PWD ./cmd_ex.sh ::: A B C

This script uses input: A on mike139:/project/fchen14/GNU_PARALLEL

This script uses input: B on mike139:/project/fchen14/GNU_PARALLEL

This script uses input: C on mike139:/project/fchen14/GNU_PARALLEL

➢ Parallize the script using ARGFILE:

[fchen14@mike139 GNU_PARALLEL]$ cat argfile

A

B

C

[fchen14@mike139 GNU_PARALLEL]$ parallel --wd $PWD ./cmd_ex.sh :::: argfile

This script uses input: A on mike139:/project/fchen14/GNU_PARALLEL

This script uses input: B on mike139:/project/fchen14/GNU_PARALLEL

This script uses input: C on mike139:/project/fchen14/GNU_PARALLEL

➢ Can parallize Python/Perl scripts, see “man parallel” for details

Introduction to GNU Parallel 24

Common OPTIONS --jobs (-j)

➢ --jobs N (-j N)

– Number of jobslots on each machine (node). Run up to N jobs in

parallel. 0 means as many as possible. Default is 100% which will run

one job per CPU core on each machine.

– On HPC/LONI clusters, N is number of jobslots per node.

– Make sure you use GNU Parallel version >=20161022 to avoid a “Max
jobs to run” bug

[fchen14@mike139 test]$ parallel --version

GNU parallel 20210922

...

➢ -j +N

– Add N to the number of CPU cores. Run this many jobs in parallel.

➢ -j -N

– Subtract N from the number of CPU cores. Run this many jobs in

parallel. If the evaluated number is less than 1 then 1 will be used.

Introduction to GNU Parallel 25

Common OPTIONS --slf (PBS)
➢ --slf filename (--sshloginfile filename)

– File with sshlogins. The file consists of sshlogins on separate lines. Empty

lines and lines starting with ’#’ are ignored.

– Look at “man parallel” for more detailed explanation.

– A typical example on PBS clusters while running batch jobs:

--slf $PBS_NODEFILE

– Recall what is inside $PBS_NODEFILE?

[fchen14@smic139 laplace]$ cat $PBS_NODEFILE # assume we use SuperMIC

smic139

smic139

...

smic139

smic429

smic429

...

smic429

Introduction to GNU Parallel

20 repeats (cores)
on smic139

20 repeats (cores)
on smic429

26

Common OPTIONS --slf (Slurm)

➢ --slf filename (--sshloginfile filename)

– To get the sshloginfile on Slurm job session, use the below command:

scontrol show hostname $SLURM_NODELIST > nodefile

– A typical example on HPC/LONI clusters while running batch jobs:

--slf nodefile

– Look at $SLURM_NODELIST and nodefile
start an interactive job requesting 2 nodes (64x2=128 cores)

[kasetti@mike4 ~]$ srun -N2 -n128 -p workq --cpu-bind none --pty bash

srun: Job is in held state, pending scheduler release

srun: job 39474 queued and waiting for resources

Interactive job 39474 waiting:

srun: job 39474 has been allocated resources # we got mike157 and mike158

[kasetti@mike157 ~]$ echo $SLURM_NODELIST

mike[157-158]

[kasetti@mike157 ~]$ scontrol show hostname $SLURM_NODELIST > nodefile

[kasetti@mike157 ~]$ cat nodefile

mike157

mike158

Introduction to GNU Parallel 27

Common OPTIONS --sshdelay

➢ If many tasks are started on the same compute node, sshd can be

overloaded. On SuperMike3/QB3, some of the tasks might fail to start,

e.g., starting all 64/48 tasks at the same time.

➢ GNU parallel can insert a delay between each task run on the same

server:

[fchen14@mike139 GNU_PARALLEL]$ parallel --sshdelay 0.1 echo ::: A B C

A

B

C

Introduction to GNU Parallel 28

Common OPTIONS --wd

➢ --wd mydir (--workdir mydir)

– Designate the working directory of your commands.

– A typical value can be:

• $PBS_O_WORDIR (PBS)

• $SLURM_SUMBIT_DIR (Slurm)

Introduction to GNU Parallel 29

Common OPTIONS --env

➢ --env ENV_VAR

– --env to tell GNU parallel to transfer an environment variable to the

remote system.

– A typical usage:

export OMP_NUM_THREADS=5

parallel --env OMP_NUM_THREADS cmd ::: ARGLIST

Introduction to GNU Parallel 30

Common OPTIONS --progress

➢ --progress

– Show progress of computations. (Not recommended for batch jobs)

– List the computers involved in the task with number of CPU cores

detected and the max number of jobs to run.

– After that show progress for each node: number of running jobs, number

of completed jobs, and percentage of all jobs done by this computer.

– Example:
[fchen14@mike139 ~]$ parallel --progress echo ::: A B C

Computers / CPU cores / Max jobs to run

1:local / 64 / 3

Computer:jobs running/jobs completed/%of started jobs/Average seconds to complete

local:3/0/100%/0.0s A

local:2/1/100%/1.0s B

local:1/2/100%/0.5s C

local:0/3/100%/0.3s

➢ See also --bar

Introduction to GNU Parallel 31

Common OPTIONS --joblog

➢ --joblog logfile

– Creates a record for each completed subjob (task) to be written to

LOGFILE, with info on how long they took, their exit status, etc.

– Can be used to identify failed jobs, e.g.:

[fchen14@mike139 misc]$ parallel --joblog logfile exit ::: 1 2 0 0

[fchen14@mike139 misc]$ cat logfile

Seq Host Starttime JobRuntime Send Receive Exitval Signal Command

1 : 1477514132.358 0.019 0 0 1 0 exit 1

2 : 1477514132.375 0.003 0 0 2 0 exit 2

3 : 1477514132.376 0.002 0 0 0 0 exit 0

4 : 1477514132.377 0.003 0 0 0 0 exit 0

Introduction to GNU Parallel 32

Common OPTIONS --timeout

➢ --timeout secs

– Time out for command. If the command runs for longer than secs

(seconds) it will get killed.

– If secs is followed by a % then the timeout will dynamically be computed

as a percentage of the median average runtime. Only values > 100%

will make sense.

❖ Useful if you know the command has failed if it runs longer than a

threshold.

Introduction to GNU Parallel 33

Serial Jobs Example

Introduction to GNU Parallel

LAMMPS Introduction

➢ LAMMPS is a classical molecular dynamics code with a focus on

materials modeling. https://www.lammps.org/

➢ You don’t need any background in molecular dynamics/LAMMPS to

understand today’s example.

➢ Typical LAMMPS Syntax

– Serial run

lmp_serial -in in.script

– Multi-Threaded run
env OMP_NUM_THREADS=4 lmp_omp -sf omp -in in.script # use OMP_NUM_THREADS

lmp_omp -sf omp -pk omp 5 -in in.script # use -pk omp to specify threads

– MPI run
srun --overlap -n 4 lmp_mpi -in in.script # Slurm version, --overlap only
needed for interactive job

mpirun -n 4 lmp_mpi -in in.script # PBS version

– Custom command:
lmp_serial -var nsteps 200 –in in.script # we defined a custom variable in
the input file to let nsteps control total steps to run,

The above command will run our input for 200 steps

https://www.lammps.org/

LAMMPS Input File Used Today
3d Lennard-Jones melt

variable x index 1

variable y index 1

variable z index 1

variable xx equal 80*$x

variable yy equal 80*$y

variable zz equal 80*$z

units lj

atom_style atomic

lattice fcc 0.8442

region box block 0 ${xx} 0 ${yy} 0 ${zz}

create_box 1 box

create_atoms 1 box

mass 1 1.0

velocity all create 1.44 87287 loop geom

pair_style lj/cut 2.5

pair_coeff 1 1 1.0 1.0 2.5

neighbor 0.3 bin

neigh_modify delay 0 every 20 check no

fix 1 all nve

${nsteps} is the parameter passing from LAMMPS command line "-var nsteps 200"

run ${nsteps}

Introduction to GNU Parallel 36

Distribute Serial Jobs LAMMPS (Slurm)
#!/bin/bash

#SBATCH -N 2 # request two nodes

#SBATCH -n 128 # specify 128 process

#SBATCH -t 2:00:00

#SBATCH -p checkpt

#SBATCH -A hpc_hpcadmin8

#SBATCH -o gp-serial.out

TASKS_PER_NODE=16

SECONDS=0

scontrol show hostname $SLURM_NODELIST > nodefile

parallel --joblog lmp.serial.log \

-j $TASKS_PER_NODE \

--slf nodefile \

--workdir $SLURM_SUBMIT_DIR \

--sshdelay 0.1 \

`which lmp_serial` -in {} -var nsteps 200 :::: input.lst

echo "took $SECONDS sec"

Introduction to GNU Parallel 37

[fchen14@mike2 GNU_PARALLEL]$ head input.lst
data/01.lj.in
data/02.lj.in
data/03.lj.in
data/04.lj.in
data/05.lj.in
...

In case the task command is too long

(complex)
➢ Use a script for each task to be distributed, example here (call_lmp.sh)

➢ GNU Parallel will distribute each task script

TASKS_PER_NODE=16

scontrol show hostname $SLURM_NODELIST > nodefile

parallel --joblog lmp.serial.log \

-j $TASKS_PER_NODE \

--slf nodefile \

--workdir $SLURM_SUBMIT_DIR \

--sshdelay 0.1 \

./call_lmp.sh {} 200 :::: input.lst

content of call_lmp.sh

#!/bin/bash

echo "\$1=$1,\$2=$2"

lmp_serial -in $1 -var nsteps $2

Introduction to GNU Parallel 38

$1 is the input from input.lst,

e.g. data/01.lj.in

$2 is the input parameter 200

Distribute Serial Jobs LAMMPS (PBS)
#!/bin/bash

#PBS -l nodes=2:ppn=20

#PBS -l walltime=1:00:00

#PBS -q checkpt

#PBS -A hpc_hpcadmin8

#PBS -j oe

#PBS -o gp-serial-pbs.out

module load parallel

module load lammps

TASKS_PER_NODE=20

SECONDS=0

cd $PBS_O_WORKDIR

parallel --joblog lmp.serial.log \

-j $TASKS_PER_NODE \

--slf $PBS_NODEFILE \

--workdir $PBS_O_WORKDIR \

--sshdelay 0.1 \

`which lmp_mpi` -in {} -var nsteps 200 :::: input.lst

echo "took $SECONDS sec"

Introduction to GNU Parallel

[fchen14@smic1 GNU_PARALLEL]$ head input.lst
data/01.lj.in
data/02.lj.in
data/03.lj.in
data/04.lj.in
data/05.lj.in
data/06.lj.in
...

39

Multi-Threaded Example

Introduction to GNU Parallel

Introduction to GNU Parallel

Distribute Multi-Threaded Jobs

➢ Distribute Multi-Threaded jobs is very similar to the pure serial job

example, the only difference is TASKS_PER_NODE:

– TASKS_PER_NODE=CPU_CORES_PER_NODE / NUM_THREADS_PER_TASK

➢ If each job uses 4 threads, each node on SuperMike3 has 64 cores,

then

– TASKS_PER_NODE=64/4=16

➢ Slurm script (#SBATCH comments omitted):

TASKS_PER_NODE=16

export OMP_NUM_THREADS=4

SECONDS=0

scontrol show hostname $SLURM_NODELIST > nodefile

parallel -j $TASKS_PER_NODE \

--slf nodefile \

--workdir $WDIR \

--sshdelay 0.1 \

--env OMP_NUM_THREADS \

`which lmp_omp` -sf omp -in {} -var nsteps 200 :::: input.lst

echo "took $SECONDS sec"

Introduction to GNU Parallel

Put 64/4=16 tasks per node

41

Pass the environmental variable

OMP_NUM_THREADS to each

task

OpenMP switch in lammps

Multi-Threaded LAMMPS (Slurm)
#!/bin/bash

#SBATCH -N 2 # request two nodes

#SBATCH -n 128 # specify 128 process

#SBATCH -t 2:00:00

#SBATCH -p checkpt

#SBATCH -A hpc_hpcadmin8

#SBATCH -o gp-omp.out

TASKS_PER_NODE=16

export OMP_NUM_THREADS=4

SECONDS=0

scontrol show hostname $SLURM_NODELIST > nodefile

parallel --joblog lmp.omp.log \

-j $TASKS_PER_NODE \

--slf nodefile \

--workdir $SLURM_SUBMIT_DIR \

--sshdelay 0.1 \

--env OMP_NUM_THREADS \

`which lmp_omp` -sf omp -in {} -var nsteps 200 :::: input.lst

echo "took $SECONDS sec"

Introduction to GNU Parallel 42

Use 4 OMP threads per task

This script is on SuperMike3, 64 cores per node, so

TASKS_PER_NODE=64/4=16

OpenMP switch in lammps

Multi-Threaded LAMMPS (PBS)
#!/bin/bash

#PBS -l nodes=2:ppn=20

#PBS -l walltime=1:00:00

#PBS -q checkpt

#PBS -A hpc_hpcadmin8

#PBS -j oe

#PBS -o gp-omp-pbs.out

module purge

module load parallel

module load lammps

TASKS_PER_NODE=4

SECONDS=0

cd $PBS_O_WORKDIR

parallel --joblog lmp.omp.pbs.log \

-j $TASKS_PER_NODE \

--slf $PBS_NODEFILE \

--workdir $PBS_O_WORKDIR \

--sshdelay 0.1 \

`which lmp` -sf omp -pk omp 5 -in {} -var nsteps 200 :::: input.lst

echo "took $SECONDS sec"

Introduction to GNU Parallel 43

Use 5 OpenMP threads per task

This script is on SuperMIC, 20 cores per node, so

TASKS_PER_NODE=20/5=4

Multi-Process (MPI) Example

Introduction to GNU Parallel

Distribute MPI Jobs - LAMMPS

➢ This section describes how to distribute small MPI jobs.

➢ Example problem - LAMMPS MPI

– Using the same input file, but with multiple MPI process for each task.

– For simplicity, each MPI process will use only one thread

Introduction to GNU Parallel 45

Distributing MPI Jobs (Slurm)
#!/bin/bash

#SBATCH -N 2 # request two nodes

#SBATCH -n 128 # specify 128 process

#SBATCH -t 2:00:00

#SBATCH -p checkpt

#SBATCH -A hpc_hpcadmin8

#SBATCH -o gp-mpi.out

TASKS_PER_NODE=16

PROC_PER_TASK=4

SECONDS=0

scontrol show hostname $SLURM_NODELIST > nodefile

parallel --joblog lmp.mpi.log \

-j $TASKS_PER_NODE \

--slf nodefile \

--workdir $SLURM_SUBMIT_DIR \

--sshdelay 0.1 \

srun --overlap -n $PROC_PER_TASK `which lmp` -in {} -var nsteps 200 ::::
input.lst

echo "took $SECONDS sec"

Introduction to GNU Parallel

[fchen14@mike4 GNU_PARALLEL]$ head input.lst
data/01.lj.in
data/02.lj.in
data/03.lj.in
data/04.lj.in
data/05.lj.in
...

46

Use 4 MPI processes per task

This script is on SuperMike3, 64 cores per node, so

TASKS_PER_NODE=64/4=16

Distributing MPI Jobs (PBS)
#!/bin/bash

#PBS -l nodes=2:ppn=20

#PBS -l walltime=1:00:00

#PBS -q checkpt

#PBS -A hpc_hpcadmin8

#PBS -j oe

#PBS -o gp-omp-pbs.out

module purge

module load parallel

module load lammps

TASKS_PER_NODE=4

SECONDS=0

cd $PBS_O_WORKDIR

parallel --joblog lmp.mpi.pbs.log \

-j $TASKS_PER_NODE \

--slf $PBS_NODEFILE \

--workdir $PBS_O_WORKDIR \

--sshdelay 0.1 \

mpirun -np 5 `which lmp` -in {} -var nsteps 200 :::: input.lst

echo "took $SECONDS sec"

Introduction to GNU Parallel

[fchen14@mike4 GNU_PARALLEL]$ head input.lst
data/01.lj.in
data/02.lj.in
data/03.lj.in
data/04.lj.in
data/05.lj.in
...

47

Use 5 MPI processes per task

This script is on SuperMIC, 20 cores per node, so

TASKS_PER_NODE=20/5=4

Proper Usage of GNU Parallel

Introduction to GNU Parallel

Common Rules

➢ Don’t use more than one node when you are debugging/testing your

code

➢ Know the performance of single task

➢ Start with only a few tasks in your input.lst

➢ After you are comfortable with one node job, start with two node job

first before jumping to more than three nodes

➢ Typically use no more than 5 nodes.

Introduction to GNU Parallel 49

Memory Consideration

➢ Relationship between node memory and cores

– Rule of Thumb: cannot exceed the available memory on a node

Introduction to GNU Parallel

Available node

memory 256 GB

Available node

memory 256 GB

4 GB mem per task,

How many tasks per node?
8 GB mem per task,

How many tasks per node?

50

Available node

memory 256 GB

Avoid this situation, hard to

calculate/predict memory usage

Waste

Load Balancing in GNU Parallel

➢ GNU Parallel spawns the next job when one finishes - keeping the

CPUs active and thus saving time.

Introduction to GNU Parallel

Job 1

Job 2

Job 3

Job 4

Job 5

Job 6

Job 7

Job 8

Job 9

Waste Waste

Job 1
Job 2 Job 3

Job 4

Job 5Job 6

Job 7

Job 8

Job 9

Job 10

WasteJob 10

Without Load Balancing With Load Balancing

Cpu0 Cpu1 Cpu2 Cpu0 Cpu1 Cpu2

E
x
e
c
u
t
i
o
n

T
i
m
e

51

Task Granularity

➢ In parallel computing, granularity (or grain size) of a task is a measure

of the amount of work (or computation) which is performed by that

task.

➢ Impact of granularity on performance

– Using fine grains or small tasks results in more parallelism and hence

increases the speedup. However, synchronization overhead, scheduling

strategies etc. can negatively impact the performance of fine-grained

tasks.

– Simply increasing parallelism alone cannot give the best performance.

– In order to reduce the communication overhead, granularity can be

increased. Coarse grained tasks have less communication overhead but

they often cause load imbalance. Hence optimal performance is

achieved between the two extremes of fine-grained and coarse-grained

parallelism.

Introduction to GNU Parallel 52

Ref: https://en.wikipedia.org/wiki/Granularity_(parallel_computing)

https://en.wikipedia.org/wiki/Granularity_(parallel_computing)

Components of a Task (Process)

Load program

instructions

Allocate memory

space

Load program

data

Perform

Computation on

CPU cores

Release memory,

data, other

resources

Introduction to GNU Parallel

Process start

Overhead

Process end

overhead

Real

computation

work

53

Typical Misuse -

Tiny grain size case
➢ Tiny grain size

– E.g., each task takes little time (e.g., less than a second)

– Most time will be spent on overhead

Introduction to GNU Parallel 54

single task

core0 core1 core2

An extreme case - Cores are just idling

core0 core1 core2

Typical Misuse -

Large grain size case
➢ Large grain size

– Some tasks are much longer than the rest

– Load balancing can never be achieved

Introduction to GNU Parallel 55

single task

core0 core1 core2

An extreme case - Load imbalancing

core0 core1 core2

Summary

➢ Why need GNU Parallel?

➢ Basic syntax of GNU Parallel and examples

➢ Ho to use it wisely

➢ For more information about GNU Parallel, refer to:

– https://www.gnu.org/software/parallel/parallel_tutorial.html

Introduction to GNU Parallel 56

https://www.gnu.org/software/parallel/parallel_tutorial.html

	IntroAndOverview
	Slide 1: Introduction to GNU Parallel
	Slide 2: Outline
	Slide 3: What is GNU Parallel?
	Slide 4: What is GNU Parallel?
	Slide 5: What is GNU Parallel?
	Slide 6: What is GNU Parallel?
	Slide 7: What is GNU Parallel?
	Slide 8: What is GNU Parallel?
	Slide 9: What do we want to accomplish?
	Slide 10: Background and Distribute
	Slide 11: The von Neumann Architecture
	Slide 12: Changing Times
	Slide 13: A Little Physics Problem
	Slide 14: The von Neumann Architecture
	Slide 15: GNU Parallel
	Slide 16: GNU Parallel Syntax
	Slide 17: Adding GNU Parallel to Environment
	Slide 18: GNU Parallel Syntax
	Slide 19: ARGLIST from command line
	Slide 20: ARGLIST from file
	Slide 21: Replacement Strings
	Slide 22: Replacement String Example
	Slide 23: Parallelize Job Script
	Slide 24: Parallize Script Example
	Slide 25: Common OPTIONS --jobs (-j)
	Slide 26: Common OPTIONS --slf (PBS)
	Slide 27: Common OPTIONS --slf (Slurm)
	Slide 28: Common OPTIONS --sshdelay
	Slide 29: Common OPTIONS --wd
	Slide 30: Common OPTIONS --env
	Slide 31: Common OPTIONS --progress
	Slide 32: Common OPTIONS --joblog
	Slide 33: Common OPTIONS --timeout

	serial
	Slide 34: Serial Jobs Example
	Slide 35: LAMMPS Introduction
	Slide 36: LAMMPS Input File Used Today
	Slide 37: Distribute Serial Jobs LAMMPS (Slurm)
	Slide 38: In case the task command is too long (complex)
	Slide 39: Distribute Serial Jobs LAMMPS (PBS)

	multithread
	Slide 40: Multi-Threaded Example
	Slide 41: Distribute Multi-Threaded Jobs
	Slide 42: Multi-Threaded LAMMPS (Slurm)
	Slide 43: Multi-Threaded LAMMPS (PBS)

	mpi
	Slide 44: Multi-Process (MPI) Example
	Slide 45: Distribute MPI Jobs - LAMMPS
	Slide 46: Distributing MPI Jobs (Slurm)
	Slide 47: Distributing MPI Jobs (PBS)
	Slide 48: Proper Usage of GNU Parallel
	Slide 49: Common Rules
	Slide 50: Memory Consideration
	Slide 51: Load Balancing in GNU Parallel
	Slide 52: Task Granularity
	Slide 53: Components of a Task (Process)
	Slide 54: Typical Misuse - Tiny grain size case
	Slide 55: Typical Misuse - Large grain size case
	Slide 56: Summary

