

HPC User Environment 2

Jason Li

HPC User Services LSU HPC / LONI

sys-help@loni.org

Louisiana State University, Baton Rouge Feb 7, 2024

- HPC User Environment 1
 - 1. Intro to HPC
 - 2. Getting started
 - 3. Into the cluster
 - 4. Software environment (modules)

- HPC User Environment 2
 - 1. Basic concepts
 - 2. Preparing my job
 - 3. Submitting my job
 - 4. Managing my jobs

HPC User Environment 2

- 1. Basic concepts
- 2. Preparing my job
- 3. Submitting my job
- 4. Managing my jobs

HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

Two things needed to run jobs on our clusters:

1) Account

2) Allocation

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

1. Basic concepts

2. Preparing my job

3. Submitting my job

[■]1) Previously on HPC User Environment 1…

1) Previously on HPC User Environment 1...

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

12

1. Basic concepts

2. Preparing my job

3. Submitting my job

a) What's a "job"?

- A user's request to use a number of nodes/cores for a certain amount of time on a cluster.
- Calculation **MUST** be done via jobs (**NO** heavy calculation on head nodes!!)
- SUs deducted from allocations based on actual usage of each job.
 - Example:
 - My allocation: 50,000 SU
 - Running a job: 24 core * 10 hours = 240 SU
 - Balance: 49,760 SU

13

1. Basic concepts

2. Preparing my job

3. Submitting my job

[■]2) Job & Job scheduler

LSU

What's a "job scheduler"? Node001 Node002 Node004 Node003 . . . -Job scheduler Job1 Job2 Job3 . :

1. Basic concepts

b)

2. Preparing my job

3. Submitting my job

4. Managing my jobs

2) Job & Job scheduler

LSU

b) What's a "job scheduler"?

i. Decides which job runs when and where

2. Preparing my job

3. Submitting my job

2) Job & Job scheduler

b) What's a "job scheduler"?

i. Decides which job runs when and where

ii. Enforces job policies

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

Job scheduler's responsibilities	Your responsibilities
 Decides which job runs when and where Enforces job policies 	 Decide a job's size and duration Understand the job queuing system and policies Submit/monitor/cancel jobs Diagnose job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

i) PBS

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

i) PBS

ii) Slurm

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

	LSU HPC	LONI
i) PBS	SMIC	QB2
ii) Slurm	Deep Bayou SuperMike III	QB3

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

1) Basic principles

- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

[■]1) Basic principles

- Two basic principles of requesting resources
 - Number of nodes / cores, RAM size, job duration, ...

Large enough ...

Small enough ...

SNI

24

1. Basic concepts

2. Preparing my job

3. Submitting my job

[■]1) Basic principles

- Two basic principles of requesting resources
 - Number of nodes / cores, RAM size, job duration, ...

Large enough	Small enough
To successfully complete your job	To ensure quick turnaroundNot to waste resources for other users

1. Basic concepts

2. Preparing my job

3. Submitting my job

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

1) Basic principles

2) Job duration (wall time)

- 3) Number of nodes & cores
- 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

- What is it?
 - Real-world (wall) time taken from the start to the end
 - Must tell job scheduler how long you want your job to run
 - There is a **maximum** wall time you may request (see later)

27

2. Preparing my job

3. Submitting my job

• FAQ

	Q	Α
•	What if my command is still running when the wall time runs out?	 Job terminated, any running process killed
•	What if all my commands in the job finished before the wall time runs out?	Job exits successfully when all commands finished
•	If my job exits before requested wall time, how many SUs will I be charged?	 You will be charged based on your actual time used (if less than requested)
•	In that case, why don't I just request maximum wall time every time?	Your queuing time may be long

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

2) Job duration (wall time)

• Back to basic principles...

Large enough	Small enough
 To successfully complete your job 	To ensure quick turnaroundNot to waste resources for other users

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)

3) Number of nodes & cores

- 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

• Previously in HPC User Environment 1 ...

	SuperMIC			Deep Bayou		SuperMike III	
	Hostname	smic.hpc.lsu.edu		Hostname	db1.lsu.edu	Hostname	mike.hpc.lsu.edu
	Peak Performance/TFlops	925		Peak Performance/TFlops	257	Peak Performance/TFlops	1,285
\square	Compute nodes	360		Compute nodes	13	Compute nodes	183
	Processor/node	2 10-core		Processor/node	2 24-core	Processor/node	2 32-core
_	Processor Speed	2.8 GHz		Processor Speed	2.4 GHz	Processor Speed	2.6GHz
	Processor Type	Intel Xeon 64bit		Processor Type	Intel Cascade Lake Xeon 64bit	Processor Type	Intel Xeon Ice Lake
	Nodes with Accelerators	360		Nodes with Accelerators	13	Nodes with Accelerators	8
	Accelerator Type	Xeon Phi 7120P		Accelerator Type	2 x NVIDIA Volta V100S	Accelerator Type	4 NVIDIA A100
	OS	RHEL v6		OS	RHEL v7	OS	RHEL v8
	Vendor			Vendor	Dell	Vendor	Dell
	Memory per node	64 GB		Memory per node	192 GB	Memory per node	256/2048 GB
	Detailed Clust	er Description		Detailed Cluster	Description	Detailed Clust	er Description
	User Guide		User Guide		User Guide		
	Available	Software		Available So	oftware	Available	Software

31

1. Basic concepts

2. Preparing my job

3. Submitting my job

- When submitting you job...
 - Must tell job scheduler the number of nodes & cores you need

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

• FAQ

	Q	Α
•	My code runs slow. Can I request more nodes / cores to make it faster?	 Not quite! Your code most likely is NOT using multiple nodes / cores, if: You do not know if it is using multiple nodes / cores You did not tell it to use multiple nodes / cores You are not familiar with names like "MPI" / "OpenMP" Underutilization is THE most common warning received on our clusters
•	How many nodes / cores should I request?	 In short: We can't answer that Each code / job is different. You must test to determine

1. Basic concepts

2. Preparing my job

3. Submitting my job

3) Number of nodes & cores

• Back to basic principles...

Large enough	Small enough
To successfully complete your job	To ensure quick turnaroundNot to waste resources for other users

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores

4) Job queues

- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

S

39

SNI

a) Definition

- Different groups / lines where jobs are being grouped into
- Must pick one queue to submit job
- Goal: Use the resources more efficiently

2. Preparing my job

3. Submitting my job

4. Managing my jobs

[■]4) Job queues

a) Definition

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

b) Available queues

i. workq / checkpt

Description		 General purposes Most likely your default queue Difference: non-preemptable (workq) vs. preemptable (checkpt)
Names		All clusters: workq / checkpt
Resource	Nodes	 One or multiple Up to a maximum
availability	Cores	All cores on the node(s)
	Memory	All memory on the node(s)
Max duration		• 72 hours (3 days)

42

2. Preparing my job

3. Submitting my job

- b) Available queues
 - ii. single

Description		Only need a portion of one node	[SuperMike 3]
Names		All clusters: single	- Total : 64 cores & 256 GB memory \rightarrow 4 GB / core
	Nodes	A portion of one node	
Resource availability	Cores	 PBS: 1/2/4/6/8 Slurm: 1 ~ all cores 	→ 40 GB memory
	Memory	A portion, proportional to the number of requested cores	
Max duration		• 168 hours (7 days)	

1. Basic concepts

2. Preparing my job

3. Submitting my job

TRACTION

15

EXPRESS

4. Managing my jobs

- b) Available queues
 - iii. bigmem

Description		Your job needs large memory
Names		All clusters: bigmem
	Nodes	One or multiple
Resource availability	Cores	All cores on the node
	Memory	All memory on the node
Max duration		• 72 hours (3 days)

44

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

b) Available queues

iv. GPU

GPU			[SuperMike 3]
Description		Your job needs GPU	- Total: 64 cores & 4 GPUs
Names		 SMIC: v100 Deep Bayou (*): gpu, nvlink SuperMike 3 (*): gpu QB3: gpu 	→ 16 cores / GPU • Deep Bayou (* - Request: 3 GPUs → 48 cores • SuperMike 3 (*).
	Nodes	One or multiple	Portion of one node
Resource availability	Cores	All cores on the node	Portion of one node
	Memory	All memory on the node	Portion of one node
	GPU	All GPU devices on the node	 1 ~ all GPU devices
Max duration		• 72 hours (3 days)	

2. Preparing my job

3. Submitting my job

4. Managing my jobs

c) Queues by clusters (LSU HPC)

Cluster	Queue	Cores per node (ppn)	Max running jobs	Max nodes per user	
	workq	20			
	checkpt	20		86	
SuperMIC	single	1,2,4,6,8,16	45 (slaba))		
	v100	36	(giodai)	2	
	bigmem	28		3	
DeenBayou	gpu	24,48	4	4	
реервауои	DeepBayou nvlink		(global)	2	
	workq	64		96	
	checkpt	04			
SuperMike3	single	$1 \sim 64$ $(alobal)$			
	gpu	16,32,48,64	(grobar)	4	
	bigmem	64		4	
INFORMATION TECHNOLOGY SERVICES					

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

c) Queues by clusters (LONI)

Cluster	Queue	Cores per node (ppn)	Max running jobs	Max nodes per user	
	workq	20			
	checkpt	20	32	128	
QD-2	single	1,2,4,6,8	(global)		
	bigmem	48		1	
	workq	48		96	
	checkpt		20		
QB-3	single	1 ~ 48	32 (qlobal)		
	gpu	48		4	
	bigmem	48		2	

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

d) Choose your queue

Large enough	Small enough
 To successfully complete your job 	To ensure quick turnaroundNot to waste resources for other users

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

Choose your queue d)

d) Choose your queue

Test

My job …	Queue choice? (include number of nodes / cores)
 SMIC MPI code, needs 100 CPU cores Hint: SMIC has 20 cores / node 	workq / checkpt (5 nodes, 20 cores per node)
 SuperMike 3 Uses 3 GPUs to train a neural network Hint: SuperMike 3 has 64 cores / node, 4 GPUs / node → 16 cores / GPU 	gpu (1 node, 48 cores per node)
 QB-3 Single-core serial code Needs to store and process 30 GB data in RAM Hint: QB-3 has 192 GB RAM / node, 4 GB RAM / core 	single (1 node, 8 cores per node)
INFORMATION TECHNOLOGY SERVICES	

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

- e) Useful commands to check queues
 - i. qstat –q : All queue information

(base) [jasonli3 Queue	@mike2 ^ Memory	√]\$ qstat CPU Time	-q Walltime	Node	Run	Que Lm	State
admin					0	0	ΕR
single			168:00:00) 1	0	0	ΕR
checkpt			72:00:00		3	0	ER
workq			72:00:00		12	0	ER
bigmem			72:00:00		0	0	ER
gpu			72:00:00		Θ	0	ER
					15	5 0	

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

- e) Useful commands to check queues
 - ii. qfree : Free nodes in each queue

(bas	se) [jasonli3@mike2 ~]\$ qfree
PBS	total nodes: 183, free: 120, busy: 58, down: 2, use: 31%
PBS	workq nodes: 171, free: 108, busy: 54, queued: 0
PBS	single nodes: 171, free: 108, busy: 0, queued: 0
PBS	checkpt nodes: 171, free: 108, busy: 4, queued: 0
PBS	bigmem nodes: 4, free: 4, busy: 0, queued: 0
PBS	gpu nodes: 8, free: 8, busy: 0, queued: 0

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

e) Useful commands to check queues

iii. sinfo (Slurm only) : Detailed node health information of all queues

(base) [ja	asonli	3@mike2 ~]\$	sinfo		
PARTITION	AVAIL	TIMELIMIT	NODES	STATE	NODELIST
single*	up	7-00:00:00	2	inval	mike[035,138]
single*	up	7-00:00:00	1	comp	mike144
single*	up	7-00:00:00	58	alloc	mike[008-026,031-034,036-044,046-050,141-143,148-162,167-169]
single*	up	7-00:00:00	108	idle	mike[001-007,027-030,045,051-137,139,145-146,163-166,170-171]
single*	up	7-00:00:00	2	down	mike[140,147]
checkpt	up	3-00:00:00	2	inval	mike[035,138]
checkpt	up	3-00:00:00	1	comp	mike144
checkpt	up	3-00:00:00	58	alloc	mike[008-026,031-034,036-044,046-050,141-143,148-162,167-169]
checkpt	up	3-00:00:00	108	idle	mike[001-007,027-030,045,051-137,139,145-146,163-166,170-171]
checkpt	up	3-00:00:00	2	down	mike[140,147]
workq	up	3-00:00:00	2	inval	mike[035,138]
workq	up	3-00:00:00	1	comp	mike144
workq	up	3-00:00:00	58	alloc	mike[008-026,031-034,036-044,046-050,141-143,148-162,167-169]
workq	up	3-00:00:00	108	idle	mike[001-007,027-030,045,051-137,139,145-146,163-166,170-171]
workq	up	3-00:00:00	2	down	mike[140,147]
bigmem	up	3-00:00:00	4	idle	mike[172-175]
gpu	up	3-00:00:00	8	idle	mike[176-183]

1. Basic concepts

2. Preparing my job

3. Submitting my job

1. Basic conceptsa) How job works on clusters

Summary

b) Job scheduler and how it works

2. Preparing my job

- a) Basic principles
 - "large enough" and "small enough"
- b) Information you need to tell job scheduler:
 - Duration
 - Number of nodes & cores
 - Job queue

54

1. Basic concepts2. Preparing my job

3. Submitting my job

- 1) Have your terminal open and ready to connect to HPC
- 2) Download our testing code (π calculation) to your /home directory
 - <u>http://www.hpc.lsu.edu/training/weekly-materials/Downloads/pi_Jason.tar.gz</u>
 - Hint: use *wget* command

Outlines

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues

3. Submitting my job

- 1) Interactive job
- 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

• Two types of jobs:

2) Batch job

- Submit to server and runs by itself, until finished or error
- Cannot interact with the job while running

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

• Two types of jobs:

	1) Interactive job	2) Batch job
Pros	Can interact and monitor with job in real time	Submit and leave it
Cons	 Waiting for human intervention is the opposite of "high performance" 	 Cannot edit or interact with job while running
Ideal for	Debugging and testingLarge compilation	Production

INFORMATION TECHNOLOGY

2. Preparing my job

3. Submitting my job

4. Managing my jobs

Outlines

• HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Command

PBS	Slurm

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Command

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Command

PBS	Slurm
<pre>qsub -I \ -X \ -A <allocation name=""> \ -q <queue name=""> \ -1 walltime=<hh:mm:ss>,nodes=<# of nodes>:ppn=<# of cores PER NODE></hh:mm:ss></queue></allocation></pre>	<pre>srun \ x11 \ -A <allocation name=""> \ -p <queue name=""> \ -t <hh:mm:ss> \ -N <# of nodes> \ -n <# of TOTAL cores> \ pty bash</hh:mm:ss></queue></allocation></pre>

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Command

PBS	Slurm
qsubI \	Enable X11 forwarding
-X \	x11 \
-A <allocation name=""> $\$</allocation>	-A <allocation name=""> \</allocation>
-q <queue name=""> \</queue>	-p <queue name=""> \</queue>
-1 walltime= <hh:mm:ss>,nodes=<# of</hh:mm:ss>	-t <hh:mm:ss></hh:mm:ss>
nodes>:ppn=<# of cores PER NODE>	-N <# of nodes> \
	-n <# of TOTAL cores> \
	pty bash

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Command

PBS	Slurm
<pre>qsub -I \ -X \ -A <allocation name=""> \ -q <queue name=""> \ -1 walltime=<hh:mm:ss>,nodes=<# of nodes>:ppn=<# of cores PER NODE></hh:mm:ss></queue></allocation></pre>	<pre>srun \ Allocation name x11 \ -A <allocation name=""> \ -p <queue name=""> \ -t <hh:mm:ss> \ -N <# of nodes> \ -n <# of TOTAL cores> \ pty bash</hh:mm:ss></queue></allocation></pre>

1. Basic concepts

INFORMATION TECHNOLOGY SERVICES

LS

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Command

PBS	Slurm
<pre>qsub -I \ -X \ -A <allocation name=""> \ -q <queue name=""> \ -l walltime=<hh:mm:ss>,nodes=<# of nodes>:ppn=<# of cores PER NODE></hh:mm:ss></queue></allocation></pre>	<pre>srun \ x11 \ Queue name -A <allocation name=""> \ -p <queue name=""> \ -t <hh:mm:ss> \ -t <hh:mm:ss> \ -N <# of nodes> \ -n <# of TOTAL cores> \ pty bash</hh:mm:ss></hh:mm:ss></queue></allocation></pre>

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Command

PBS	Slurm
<pre>qsub -I \ -X \ -A <allocation name=""> \ -q <queue name=""> \ -1 walltime=<hh:mm:ss>,nodes=<# of nodes>:ppn=<# of cores PER NODE></hh:mm:ss></queue></allocation></pre>	<pre>srun \ x11 \ -A <allocation -p="" <queue="" cores="" name="" nodes,="" number="" of="" time,="" wall=""> \ -t <hh:mm:ss> \ -N <# of nodes> \ -n <# of TOTAL cores> \ pty bash</hh:mm:ss></allocation></pre>

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Command

a) Command

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

b) Starting an interactive job

PBS	Slurm
<pre>(base) [jasonl(3@smic1 p)]\$ qsub -I -A hpc_h n=20 qsub: waiting for job 911565.smic3 to start Interactive job 911565.smic3 waiting: qsub: job 911565.smic3 ready Concluding PBS prologue script - 31-Jan-2023 (base) [jasonli3@smic045 ~]\$</pre>	<pre>(base) [jasonl(3@mike1 pi]\$ srun -A hpc_h srun: Job is in held state, pending schec srun: job 38634 queued and waiting for re Interactive job 38634 waiting: srun: job 38634 has been allocated resour (base) [jasonli3@mike147 pi]\$</pre>

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

b) Starting an interactive job

b) Starting an interactive job

[■]1) Interactive job

c) One more thing about GPU jobs ...

SNI

72

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

d) Running an interactive job

- i. Serial (single-thread)
- ii. Parallel (MPI)

3. Submitting my job

Outlines

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues

3. Submitting my job

- 1) Interactive job
- 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

• What do you need?

- i. A **batch file** (containing job parameters and bash scripts)
- ii. Run a **submission command** to submit this batch file

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Batch file

PBS	Slurm

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

PBS	Slurm	
<pre>#!/bin/bash #PBS -A <allocation name=""> #PBS -q workq #PBS -l walltime=1:00:00 #PBS -l nodes=1:ppn=20</allocation></pre>	<pre>#!/bin/bash #SBATCH -A <allocation name=""> #SBATCH -p workc #SBATCH -t 1:00 Shell type ("shebang") #SBATCH -N 1 #SBATCH -n 64</allocation></pre>	
module load python cd \$PBS_0_WORKDIR ./pi_serial.out 100000000	module load python cd \$SLURM_SUBMIT_DIR ./pi_serial.out 100000000	

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

PBS	Slurm	
	Allocation name	
<pre>#!/bin/basn #PBS -A <allocation name=""> #PBS -q workq #PBS -l walltime=1:00:00 #PBS -l nodes=1:ppn=20</allocation></pre>	#SBATCH -A <allocation name=""> #SBATCH -p workq #SBATCH -t 1:00:00 #SBATCH -N 1 #SBATCH -n 64</allocation>	
module load python cd \$PBS_0_WORKDIR ./pi_serial.out 100000000	module load python cd \$SLURM_SUBMIT_DIR ./pi_serial.out 100000000	

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Batch file

PBS	Slurm	
<pre>#!/bin/bash #PBS -A <allocation name=""> #PBS -q workq #PBS -l walltume=1:00:00 #PBS -l nodes=1:ppn=20 module load python cd \$PBS_0_WORKDIR ./pi_serial.out 100000000</allocation></pre>	<pre>#!/bin/bash Queue name #SBATCH -A <allocation name=""> #SBATCH -p workq #SBATCH -t 1:00:00 #SBATCH -N 1 #SBATCH -n 64 module load python cd \$SLURM_SUBMIT_DIR ./pi_serial.out 100000000</allocation></pre>	

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Batch file

PBS	Slurm
<pre>#!/bin/bash #PBS -A <allocation name=""> #PBS -q workq #PBS -l walltime=1:00:00 #PBS -l nodes=1:ppn=20 module load python cd \$PBS_0_WORKDIR ./pi_serial.out 100000000</allocation></pre>	<pre>#!/bin/bash Wall time #SBATCH -A <all #sbatch="" \$slurm_submit_dir="" -n="" -p="" -t="" .="" 1="" 100000000<="" 1:00:00="" 64="" cd="" load="" module="" pi_serial.out="" pre="" python="" workg=""></all></pre>

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Batch file

PBS	Slurm
<pre>#!/bin/bash #PBS -A <allocation name=""> #PBS -q workq #PBS -l walltime=1:00:00 #PBS -l nodes=1:ppn=20</allocation></pre>	<pre>#!/bin/bash #SBATCH -A <all #sbatch="" &="" -n="" -t="" 1="" 1:00:00="" 64<="" cores="" nodes="" number="" of="" pre=""></all></pre>
module load python cd \$PBS_0_WORKDIR ./pi_serial.out 100000000	module load python cd \$SLURM_SUBMIT_DIR ./pi_serial.out 100000000

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

PBS [[]	1]	Slurm ^[2]		Description	
#PBS –A		#SBATCH -A		Allocation name	
#PBS −q		#SBATCH -p		Queue name	
		#SBATCH -t			Wall time
#DBC 1		#SBATCH -N		Pagauraa raguaat	Number of nodes
#PD3 -1		#SBATCH –n		Resource request	Number of tasks
		#SBATCH -c			Number of cores per task
#PBS −o		#SBATCH -o		Standard output file	
#PBS −e		#SBATCH -e		Standard error file	
	а		FAIL		Job aborts / fails
#PBS -m	b	#SBATCH –-mail-type	BEGIN	Send email when	Job begins
	е		END		Job ends
#PBS -M		#SBATCHmail-user		Email address	
#PBS −N		#SBATCH -J		Job name	

1. Basic concepts

INFORMATION TECHNOLOGY SERVICES

2. Preparing my job

3. Submitting my job

4. Managing my jobs

PBS	Slurm
<pre>#!/bin/bash #PBS -A <allocation name=""> #PBS -q workq #PBS -l walltime=1:00:00 #PBS -l nodes=1:ppn=20</allocation></pre>	<pre>#!/bin/bash #SBATCH -A <allocation name=""> #SBATCH -p workg #SBATCH -t [Body] #SBATCH -N #SBATCH -n Commands to run after job starts</allocation></pre>
module load python <pre>cd \$PBS_0_WORKDIR ./pi_serial.out 100000000</pre>	module load python cd \$SLURM_SUBMIT_DIR ./pi_serial.out 100000000

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

PBS Slurm	
<pre>#!/bin/bash #PBS -A <allocation name=""> #PBS -q workq #PBS -l walltime=1:00:00 #PBS -l nodes=1:ppn=20</allocation></pre>	<pre>#!/bin/bash #SBATCH -A #SBATCH -P #SBATCH -t #SBATCH -t #SBATCH -N #SBATCH -N #SBATCH -n 64</pre>
module load python	module load python
cd \$PBS_0_WORKDIR ./pi_serial.out 100000000	cd \$SLURM_SUBMIT_DIR ./pi_serial.out 100000000

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

PBS	Slurm
<pre>#!/bin/bash #PBS -A <allocation name=""> #PBS -q workq #PBS -l walltime=1:00:00 #PBS -l nodes=1:ppn=20 module load python</allocation></pre>	<pre>#!/bin/bash #SBATCH -A <allocation name=""> #SBATCH -p workq #SBATCH -t 1:00:00 #SBATCH -N ? #SBATCH -N ? Whatever commands you need to run your jobs module load python</allocation></pre>
cd \$PBS_0_WORKDIR ./pi_serial.out 100000000	cd \$SLURM_SUBMIT_DIR ./pi_serial.out 100000000

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

PBS	Slurm	
<pre>#!/bin/bash #PBS -A <allocation name=""> #PBS -q workq #PBS -l walltime=1:00:00 #PBS -l nodes=1:ppn=20</allocation></pre>	<pre>#!/bin/bash #SBATCH -A <allocation name=""> #SBATCH -p workq #SBATCH -t 1:00:00 #SBATCH -N 1 #SBATCH -n 64</allocation></pre>	
module load python	module load python	
cd \$PBS_0_WORKDIR ./pi_serial.out 100000000	cd \$SLURM_s An empty line (avoid error)	

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

b) Command

PBS	Slurm
<pre>qsub <batch file="" name=""></batch></pre>	<pre>sbatch <batch file="" name=""></batch></pre>

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

89

c) Useful environmental variables

Р	BS ^[1]	Slurm ^[2]	Description
\$PB	S_JOBID	<pre>\$SLURM_JOBID</pre>	Job ID
\$PBS_	O_WORKDIR	<pre>\$SLURM_SUBMIT_DIR</pre>	Job submit directory
\$PBS_	NODEFILE	<pre>\$SLURM_JOB_NODELIST</pre>	A temp file, contains a list of allocated nodes' names (for MPI)
\$PBS_I	NUM_NODES	\$SLURM_NNODES	Number of allocated nodes
\$F	PBS_NP	\$SLURM_NTASKS	Number of allocated cores (tasks)
INFORMATION TECHNOLOGY SERVICES	<pre>#!/bin/k #PBS -A #PBS -q #PBS -l #PBS -l module 1 cd \$PBS ./pi_set</pre>	<pre>oash <allocation name=""> workq walltime=1:00:00 nodes=1:ppn=20 Load python 0_WORKDIR Tal.out 100000000</allocation></pre>	[1] <u>http://www.hpc.lsu.edu/docs/pbs.php</u> [2] <u>http://www.hpc.lsu.edu/docs/slurm.php</u>
1. Basic conce	epts	2. Preparing my job	3. Submitting my job4. Managing my jobs

Outlines

• HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job

4. Managing my jobs

- 1) Useful commands
- 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

Running jobs on HPC ≠ "Submit and done"

- Monitoring and managing jobs are part of the work

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

Outlines

• HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

PBS ^[1]	Slurm ^[2]	Description
qstat	squeue	List all jobs

[1] <u>http://www.hpc.lsu.edu/docs/pbs.php</u>[2] <u>http://www.hpc.lsu.edu/docs/slurm.php</u>

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

PBS ^[1]		Slurm ^[2]		Description		
				List all jobs		
actat	<job id=""></job>	cquouo	-j <job id=""></job>	List the job of specific ID		
qstat	-u <username></username>	Squeue	-u <username></username>	List all jobs belong to a specific user		
	<queue name=""></queue>		-p <queue name=""></queue>	List all jobs in a particular queue		
qstat -n <job id=""></job>		<pre>scontrol show job <job id=""></job></pre>		Show job details		
		squeuestart		Estimated start time of queuing jobs		
qdel <job id=""></job>		<pre>scancel <job id=""></job></pre>		Cancel <job id=""></job>		

Alter jobs after submission? \rightarrow NOT allowed!

[1] <u>http://www.hpc.lsu.edu/docs/pbs.php</u>[2] <u>http://www.hpc.lsu.edu/docs/slurm.php</u>

94

2. Preparing my job

Outlines

• HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job

4. Managing my jobs

- 1) Useful commands
- 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

A job requesting n cores \neq A job utilizing n cores

- Goal
 - Use the allocated resources (CPU cores, RAM, time, ...) as fully and efficiently as possible
 - No serious underutilizing
 - No serious overutilizing
- Things to check
 - CPU / GPU load
 - Memory usage

97

- a) Method 1: qshow <Job ID>
 - Displays diagnostic information of a running job
 - Can be run on head node

98

1. Basic concepts

a) Method 1: qshow <Job ID>

(base) [jasonli3@mike4 ~]\$ qshow 38581 PBS job: 38581, nodes: 1 Hostname Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours) 278 64.12 6033 68 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:533M:107M:<u>13.5 yxan:lmp mik+:748M:128M:13.5</u> mike145 yxan:lmp mik+:738M:124M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:587M:109M:13.5 yxan:lmp mik+:743M:128M:13.5 yxan:lmp mik+:696M:118M:13.5 yxan:lmp_mik+:528M:101M:13.5_yxan:lmp_mik+:578M:108M:13.5_yxan:lmp_mik+:528M:105M:13.5_yxan:lmp_mik+:528M:106M:13.5_yxan:lmp_mik+:520M:105M:13.5_ yxan:lmp_mik+:561M:106M:13.5_yxan:lmp_mik+:583M:109M:13.5_yxan:lmp_mik+:520M:103M:13.5_yxan:lmp_mik+:524M:103M:13.5_yxan:lmp_mik+:738M:125M:13.5 yxan:lmp_mik+:709M:119M:13.5_yxan:lmp_mik+:524M:103M:13.5_yxan:lmp_mik+:574M:107M:13.5_yxan:lmp_mik+:697M:121M:13.5_yxan:lmp_mik+:658M:115M:13.5 yxan:lmp_mik+:528M:102M:13.5_yxan:lmp_mik+:557M:108M:13.5_yxan:lmp_mik+:524M:105M:13.5_yxan:lmp_mik+:524M:105M:13.5_yxan:lmp_mik+:515M:102M:13.5_ yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:567M:108M:13.5 yxan:lmp mik+:566M:108M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:536M:105M:13.5 yxan:lmp_mik+:519M:104M:13.5_yxan:lmp_mik+:528M:103M:13.5_yxan:lmp_mik+:519M:103M:13.5_yxan:lmp_mik+:524M:104M:13.5_yxan:lmp_mik+:524 yxan:lmp_mik+:528M:104M:13.5_yxan:lmp_mik+:516M:101M:13.5_yxan:lmp_mik+:515M:101M:13.5_yxan:lmp_mik+:515M:104M:13.5_yxan:lmp_mik+:520M:101M:13.5_ yxan:lmp_mik+:524M:103M:13.5_yxan:lmp_mik+:520M:101M:13.5_yxan:lmp_mik+:515M:103M:13.5_yxan:lmp_mik+:516M:102M:13.5_yxan:lmp_mik+:587M:110M:13.5_ yxan:lmp_mik+:558M:108M:13.5_yxan:lmp_mik+:524M:102M:13.5_yxan:lmp_mik+:537M:103M:13.5_yxan:lmp_mik+:572M:109M:13.5_yxan:lmp_mik+:549M:104M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:528M:104M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:520M:105M:13.5 yxan:lmp mik+:528M:105M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:515M:104M:13.5 yxan:lmp mik+:515M:104M:13.5 yxan:slurm s+:12M:3M yxan:srun:324M:8M yxan:srun:53M:1M PBS job=38581 user=yxan allocation=hpc lipidhpre queue=checkpt total load=64.12 cpu hours=866.08 wall hours=13.21 unused nodes=0 total nodes=1 pp n=64 avg load=64.12 avg cpu=6033% avg mem=6852mb avg vmem=36176mb top proc=yxan:lmp mik+:mike145:524M:104M:13.5hr:100% toppm=yxan:lmp mikeCpu:mik e145:730M:125M node processes=68

What to look at	Normal behavior	You should be concerned if

SNI

99

1. Basic concepts

2. Preparing my job

a) Method 1: qshow <Job ID>

(base) [jasonli3@mike4 ~]\$ qshow 38581 PBS job: 38581, nodes: 1 Hostname Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours) 278 64.12 6033 68 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:533M:107M:<u>13.5 yxan:lmp mik+:748M:128M:13.5</u> mike145 yxan:lmp mik+:738M:124M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:587M:109M:13.5 yxan:lmp mik+:743M:128M:13.5 yxan:lmp mik+:696M:118M:13.5 yxan:lmp_mik+:528M:101M:13.5_yxan:lmp_mik+:578M:108M:13.5_yxan:lmp_mik+:528M:105M:13.5_yxan:lmp_mik+:528M:106M:13.5_yxan:lmp_mik+:520M:105M:13.5_ yxan:lmp_mik+:561M:106M:13.5_yxan:lmp_mik+:583M:109M:13.5_yxan:lmp_mik+:520M:103M:13.5_yxan:lmp_mik+:524M:103M:13.5_yxan:lmp_mik+:738M:125M:13.5 yxan:lmp_mik+:709M:119M:13.5_yxan:lmp_mik+:524M:103M:13.5_yxan:lmp_mik+:574M:107M:13.5_yxan:lmp_mik+:697M:121M:13.5_yxan:lmp_mik+:658M:115M:13.5 yxan:lmp_mik+:528M:102M:13.5_yxan:lmp_mik+:557M:108M:13.5_yxan:lmp_mik+:524M:105M:13.5_yxan:lmp_mik+:524M:105M:13.5_yxan:lmp_mik+:515M:102M:13.5_ yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:567M:108M:13.5 yxan:lmp mik+:566M:108M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:536M:105M:13.5 yxan:lmp_mik+:519M:104M:13.5_yxan:lmp_mik+:528M:103M:13.5_yxan:lmp_mik+:519M:103M:13.5_yxan:lmp_mik+:524M:104M:13.5_yxan:lmp_mik+:524 yxan:lmp_mik+:528M:104M:13.5_yxan:lmp_mik+:516M:101M:13.5_yxan:lmp_mik+:515M:101M:13.5_yxan:lmp_mik+:515M:104M:13.5_yxan:lmp_mik+:520M:101M:13.5_ yxan:lmp_mik+:524M:103M:13.5_yxan:lmp_mik+:520M:101M:13.5_yxan:lmp_mik+:515M:103M:13.5_yxan:lmp_mik+:516M:102M:13.5_yxan:lmp_mik+:587M:110M:13.5_ yxan:lmp_mik+:558M:108M:13.5_yxan:lmp_mik+:524M:102M:13.5_yxan:lmp_mik+:537M:103M:13.5_yxan:lmp_mik+:572M:109M:13.5_yxan:lmp_mik+:549M:104M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:528M:104M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:520M:105M:13.5 yxan:lmp mik+:528M:105M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:515M:104M:13.5 yxan:lmp mik+:515M:104M:13.5 yxan:slurm s+:12M:3M yxan:srun:324M:8M yxan:srun:53M:1M PBS job=20561 user=yxan allocation=hpc lipidhpre queue=checkpt total load=64.12 cpu hours=866.08 wall hours=13.21 unused nodes=0 total nodes=1 pp n=64 avg load=64.12 avg cpu=6033% avg mem=6852mb avg vmem=36176mb top proc=yxan:lmp mik+:mike145:524M:104M:13.5hr:100% toppm=yxan:lmp mikeCpu:mik e145:730M·125M_pode_processes=68

What to look at …	Normal behavior	You should be concerned if		
avg_load	Close to allocated number of cores on the node	Consistently too low or too high		

100

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Method 1: qshow <Job ID>

(base) [jasonli3@mike4 ~]\$ qshow 38581 PBS job: 38581, nodes: 1 Hostname Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours) 278 64.12 6033 68 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:533M:107M:13.5 yxan:lmp mik+:748M:128M:13.5 mike145 yxan:lmp mik+:738M:124M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:587M:109M:13.5 yxan:lmp mik+:743M:128M:13.5 yxan:lmp mik+:696M:118M:13.5 yxan:lmp mik+:528M:101M:13.5 yxan:lmp mik+:578M:108M:13.5 yxan:lmp mik+:528M:105M:13.5 yxan:lmp mik+:528M:106M:13.5 yxan:lmp mik+:520M:105M:13.5 yxan:lmp_mik+:561M:106M:13.5_yxan:lmp_mik+:583M:109M:13.5_yxan:lmp_mik+:520M:103M:13.5_yxan:lmp_mik+:524M:103M:13.5_yxan:lmp_mik+:738M:125M:13.5 yxan:lmp_mik+:709M:119M:13.5_yxan:lmp_mik+:524M:103M:13.5_yxan:lmp_mik+:574M:107M:13.5_yxan:lmp_mik+:697M:121M:13.5_yxan:lmp_mik+:658M:115M:13.5 yxan:lmp_mik+:528M:102M:13.5_yxan:lmp_mik+:557M:108M:13.5_yxan:lmp_mik+:524M:105M:13.5_yxan:lmp_mik+:524M:105M:13.5_yxan:lmp_mik+:515M:102M:13.5_ yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:567M:108M:13.5 yxan:lmp mik+:566M:108M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:536M:105M:13.5 yxan:lmp_mik+:519M:104M:13.5_yxan:lmp_mik+:528M:103M:13.5_yxan:lmp_mik+:519M:103M:13.5_yxan:lmp_mik+:524M:104M:13.5_yxan:lmp_mik+:524 yxan:lmp_mik+:528M:104M:13.5_yxan:lmp_mik+:516M:101M:13.5_yxan:lmp_mik+:515M:101M:13.5_yxan:lmp_mik+:515M:104M:13.5_yxan:lmp_mik+:520M:101M:13.5_ yxan:lmp_mik+:524M:103M:13.5_yxan:lmp_mik+:520M:101M:13.5_yxan:lmp_mik+:515M:103M:13.5_yxan:lmp_mik+:516M:102M:13.5_yxan:lmp_mik+:587M:110M:13.5_ yxan:lmp_mik+:558M:108M:13.5_yxan:lmp_mik+:524M:102M:13.5_yxan:lmp_mik+:537M:103M:13.5_yxan:lmp_mik+:572M:109M:13.5_yxan:lmp_mik+:549M:104M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:528M:104M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp_mik+:520M:105M:13.5_yxan:lmp_mik+:528M:105M:13.5_yxan:lmp_mik+:515M:103M:13.5_yxan:lmp_mik+:515M:104M:13.5_yxan:lmp_mik+:515 yxan:slurm s+:12M:3M yxan:srun:324M:8M yxan:srun:53M:1M PBS_job=38581 user=yxan allocation=hpc_lipidhpre_queue=checkpt total_load=64.12 cpu_hours=866.08 wall_hours=13.21 unused_nodes=0 total_nodes=1 pp n=64 avg load=64.12 avg cpu=6036% avg mem=6852mb avg vmem=36176mb top proc=yxan:lmp_mik+:mike145:524M:104M:13.5hr:100% toppm=yxan:lmp_mikeCpu:mik e145:730M:125M node processes=68

What to look at	Normal behavior	You should be concerned if
avg_load	Close to allocated number of cores on the node	Consistently too low or too high
ave_mem	Does not exceed total allocated memory	Exceeds total allocated memory

101

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

- Displays dynamic real-time view of a computing node
- Must run on **computing nodes** !

* ssh to computing nodes while job running (cannot ssh if you do not have jobs on it)

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

		070		40.4-		-	1			4 4 7 40
top - 02:23:58 up 278 days, 19:17, 2 users, load average: 63.63, 39.81, 17.49										
Tasks: 9	Tasks: 981 total, 65 running, 916 sleeping, 0 <mark>stopped</mark> , 0 zombie									
%Cpu(s):	90.2 us,	9.	2 sy	, 0.0 r	ni, 0.0	id, 0.0) wa,	0.5 hi,	0.0 si,	0.0 st
MiB Mem	: 257004.	8 to	tal,	211261.	0 free,	41926.9	Jused,	3816	.9 buff/ca	ache
MiB Swap	: 16641.	0 to	tal.	16580.	7 free.	60.2	2 used.	212737	.8 avail I	Mem
ap	100.11		,	100000					io arace i	
PID	USER	PR	NT	VIRT	RES	SHR S	%CPU	%MEM	TIME+ (COMMAND
2701318	iasonli3	20	0	595668	582356	2568 R	100.0	0.2	4:08.94	TDSE np3 e0
2701342	jasonli3	20	0	595668	581944	2616 R	100.0	0.2	4:08.90	TDSE np3 e0
2701249	jasonli3	20	Θ	595668	581792	2464 R	99.7	0.2	4:08.97	TDSE_np3_e0
2701252	jasonli3	20	0	595668	514684	2520 R	99.7	0.2	4:09.00	TDSE_np3_e0
2701261	jasonli3	20	0	595668	393828	2616 R	99.7	0.1	4:08.97	TDSE_np3_e0
2701264	jasonli3	20	0	595668	581856	2532 R	99.7	0.2	4:08.92	TDSE_np3_e0
2701270	jasonli3	20	Θ	595668	582480	2432 R	99.7	0.2	4:08.95	TDSE_np3_e0
2701273	jasonli3	20	Θ	595668	581776	2448 R	99.7	0.2	4:08.81	TDSE_np3_e0
2701276	jasonli3	20	Θ	595668	582160	2568 R	99.7	0.2	4:08.98	TDSE np3 e0
2701270	inconlin	20	0	ENECCO	222064	2644 D	00 7	0 1	1.00 00 -	

What to look at …	Normal behavior	You should be concerned if

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

top - 02	top - 02:23:58 up 278 days, 19:17, 2 users, load average: 63.63, 39.81, 17.49								
Tasks: 9	081 total,	65	runi	ning, 91	l6 sleepi	ing, ⊍	scoppe	u, U	zombie
%Cpu(s):	90.2 us,	9.	2 sy	, 0.0 r	ni, 0.0	id, 0.0	wa,	0.5 hi,	0.0 si, 0.0 st
MiB Mem	: 257004.	8 to	tal,	211261.	0 free,	41926.9	used,	3816	.9 buff/cache
MiB Swap	b: 16641.	0 to	tal,	16580.	7 free,	60.2	used.	212737	.8 avail Mem
PID	USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+ COMMAND
2701318	jasonli3	20	0	595668	582356	2568 R	100.0	0.2	4:08.94 TDSE_np3_e0
2701342	jasonli3	20	0	595668	581944	2616 R	100.0	0.2	4:08.90 TDSE_np3_e0
2701249	jasonli3	20	Θ	595668	581792	2464 R	99.7	0.2	4:08.97 TDSE_np3_e0
2701252	jasonli3	20	0	595668	514684	2520 R	99.7	0.2	4:09.00 TDSE_np3_e0
2701261	jasonli3	20	0	595668	393828	2616 R	99.7	0.1	4:08.97 TDSE_np3_e0
2701264	jasonli3	20	0	595668	581856	2532 R	99.7	0.2	4:08.92 TDSE_np3_e0
2701270	jasonli3	20	0	595668	582480	2432 R	99.7	0.2	4:08.95 TDSE_np3_e0
2701273	jasonli3	20	Θ	595668	581776	2448 R	99.7	0.2	4:08.81 TDSE_np3_e0
2701276	jasonli3	20	0	595668	582160	2568 R	99.7	0.2	4:08.98 TDSE_np3_e0
2701270	1-2	20	0	FOFCCO	222064	0044 D	00 7	0 1	4.00 00 TOOF

What to look at	Normal behavior	You should be concerned if
Load average	Close to allocated number of cores on the node	Consistently too low or too high

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

top - 02:23:58 up 278 days, 19:17, 2 users, load average: 63.63, 39.81, 17.49										
Tasks: 9	Tasks: 981 total, 65 running, 916 sleeping, 0 stopped, 0 zombie									
%Cpu(s)	: 90.2 us,	9.	2 sy	. 0.0 :	i, 0.0	id, 0.0) wa,	0.5 hi,	0.0 si,	0.0 st
MiB Mem	: 257004.8	B to	tal,	211261	0 free,	41926.9) used,	3816	.9 buff/ca	ache
MiB Swap	b: 16641.0	9 to	tal,	16588	7 free,	60.2	2 used.	212737	.8 avail M	1 em
PID	USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+ (COMMAND
2701318	jasonli3	20	0	595668	582356	2568 R	100.0	0.2	4:08.94 1	TDSE_np3_e0
2701342	jasonli3	20	0	595668	581944	2616 R	100.0	0.2	4:08.90 1	TDSE_np3_e0
2701249	jasonli3	20	0	595668	581792	2464 R	99.7	0.2	4:08.97 1	TDSE_np3_e0
2701252	jasonli3	20	0	595668	514684	2520 R	99.7	0.2	4:09.00 1	TDSE_np3_e0
2701261	jasonli3	20	0	595668	393828	2616 R	99.7	0.1	4:08.97 1	TDSE_np3_e0
2701264	jasonli3	20	0	595668	581856	2532 R	99.7	0.2	4:08.92 1	TDSE_np3_e0
2701270	jasonli3	20	0	595668	582480	2432 R	99.7	0.2	4:08.95 1	TDSE_np3_e0
2701273	jasonli3	20	0	595668	581776	2448 R	99.7	0.2	4:08.81	TDSE_np3_e0
2701276	jasonli3	20	0	595668	582160	2568 R	99.7	0.2	4:08.98	TDSE_np3_e0
0704070	1 1 - 2	20	~	FOFCCO	000004	0044 D	00 7	0 1	4.00 00 7	

What to look at	Normal behavior	You should be concerned if		
Load average	Close to allocated number of cores on the node	Consistently too low or too high		
Memory usage (not virtual memory)	Does not exceed total allocated memory	Exceeds total allocated memory		

105

1. Basic concepts

INFORMATION TECHNOLOGY SERVICES

2. Preparing my job

c) Method 3: nvidia-smi (for GPU only)

(base) [jasonli3@qbc193 ~]\$ nvidia-smi Wed Feb 1 02:38:32 2023									
	IVID]	IA-SMI	510.4	7.03 Driv	er	Version: 510.4	47.03	CUDA Versio	n: 11.6
(GPU ⁼an	Name Temp	Perf	Persistence Pwr:Usage/C	-M ap	Bus-Id Memor	Disp.A ^y-Usage	Volatile GPU-Util 	Uncorr. ECC Compute M. MIG M.
	0 N/A	Tesla 36C	V100- P0	•PCIE On 54W / 250		00000000:3B:0 4155MiB / 3	00.0 Off 32768MiB	 72% 	Off Default N/A
	1 N/A	Tesla 36C	V100- P0	•PCIE On 52W / 250	 W 	00000000:AF:0 4155MiB / 3	00.0 Off 32768MiB	 78% 	Off Default N/A
÷									
 	Proce GPU	esses: GI ID	CI ID	PID	Тур	e Process na	ame		GPU Memory Usage
	0 1	N/A N/A	N/A N/A	259491 259491	(C che/Ter C che/Ter	^aChem/bi ^aChem/bi	n/terachem n/terachem	4147MiB 4147MiB 4147MiB

What to look at …	Normal behavior	You should be concerned if

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

c) Method 3: nvidia-smi (for GPU only)

(base) [jasonli3@qbc193 ~]\$ nvidia-smi Wed Feb 1 02:38:32 2023					
NVIDIA-SMI	510.47.03	Driver	Version: 510.47.03	CLDA Version	: 11.6
GPU Name Fan Temp 	Persist Perf Pwr:Usa	tence-M age/Cap 	Bus-Id Disp.A Memory-Usage	Volatile GPU-Util 	Incorr. ECC Compute M. MIG M.
0 Tesla N/A 36C 	V100-PCIE P0 54W ,	On / 250W 	00000000:3B:00.0 0f1 4155MiB / 32768MiE	 72% 	Off Default N/A
1 Tesla N/A 36C 	V100-PCIE P0 52W ,	On / 250W 	00000000:AF:00.0 Off 4155MiB / 32768MiB	78%	Off Default N/A
Processes: GPU GI ID	CI P] ID	ID Typ	e Process name		GPU Memory Usage
0 N/A 1 N/A	N/A 25949 N/A 25949)1)1	Cche/TeraChem/b Cche/TeraChem/b	in/terachem in/terachem	4147MiB 4147MiB

What to look at	Normal behavior	You should be concerned if
GPU usage	Close to 100%	Consistently too low

107

1. Basic concepts

2. Preparing my job

c) Method 3: nvidia-smi (for GPU only)

1. Basic concepts

(base) [jasonli3@qbc193 ~]\$ nvidia-smi Wed Feb 1 02:38:32 2023					
NVIDIA-SMI 510.47.03 Driver Version: 510.47.03 CUDA Ver	rsion: 11.6				
GPU Name Persistence-M Bus-Id Disp.A Volat Fan Temp Perf Pwr:Usage/Cap Memory-Usage GPU-Ut	ile Uncorr. ECC til Compute M. MIG M.				
0 Tesla V100-PCIE On 00000000:3B:00.0 Off N/A 36C P0 54W / 2507 4155MiB / 32768MiB 72	Off 2% Default N/A				
1 Tesla V100-PCIE On 00000000:AF:00.0 Off N/A 36C P0 52W / 250W 4155MiB / 32768MiB 78	Off 8% Default N/A				
+					
Processes: GPU GI CI PID Type Process name ID ID	GPU Memory Usage				
0 N/A N/A 259491 Cche/TeraChem/bin/terach 1 N/A N/A 259491 Cche/TeraChem/bin/terach	hem 4147MiB hem 4147MiB				

3. Submitting my job

	What to look at	Normal behavior …	You should be concerned if	
	GPU usage	Close to 100%	Consistently too low	
	Memory usage (not virtual memory)	Not used up	Used up	
LSI	INFORMATION TECHNOLOGY SERVICES			

2. Preparing my job

108

4. Managing my jobs

d) Common issues

Issue	What would happen
Exceeded memory allocation (e.g., using more memory than allocated w/ single queue)	Terminated. Receive email notice.
Exceeded ppn/core allocation (e.g., using more cores than allocated w/ single queue)	Terminated. Receive email notice.
Seriously underutilize node CPU cores / unused nodes (e.g., Requested multiple nodes but only runs on one node)	Receive email warning. (* Killed if <i>completely idle</i> for a long time)
Submitting to bigmem but only using little memory	Receive email warning.
Running intensive calculation on head nodes	Terminated. Receive email notice.
Submitting too many (i.e., hundreds of) single-thread jobs	Poor parallelization and bad for server. We may reach out to you to help. (Better yet, reach out to us first)

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs
Summary

• A typical workflow --

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

110

Outlines

HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers \rightarrow All calculation must be submitted as jobs
- 2. Preparing my job
 - 1) Basic principles

- \rightarrow Large enough & small enough
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

- \rightarrow Good for testing and debugging
- \rightarrow Good for production
- \rightarrow How to monitor jobs health, and how to create health jobs

Basic Shell Scripting

Contact us

Contact user services

- Email Help Ticket: <u>sys-help@loni.org</u>
- Telephone Help Desk: +1 (225) 578-0900

