INFORMATION
IT'ECHNOLOGY
SERVICES

Parallelizing Massively
Independent Tasks

GNU Parallel & Job Arrays

Siva Prasad Kasetti
HPC User Services
LSU HPC & LONI

29 October 2025

sys-help@loni.or
y p@ 9 http://www.hpc.lsu.edu/training/archive/tutorials.php

Louisiana State University
Baton Rouge

http://www.hpc.lsu.edu/training/archive/tutorials.php
http://www.hpc.lsu.edu/training/archive/tutorials.php

INFORMATION
IT'ECHNOLOGY
SERVICES

> Problem

GNU Parallel & Job arrays 2

INFORMATION
IT'ECHNOLOGY
SERVICES

% NI

> Problem

» Running thousands of small, independent jobs individually is inefficient
and time-consuming, creating a major bottleneck in effectively utilizing
HPC resources.

GNU Parallel & Job arrays 3

INFORMATION
ITECHNOLOGY
SER\ | f\

% NI

> Problem

» Running thousands of small, independent jobs individually is inefficient
and time-consuming, creating a major bottleneck in effectively utilizing
HPC resources.

» Managing, monitoring, and submitting each job manually becomes
impractical and leads to underutilization of available compute power.

GNU Parallel & Job arrays 4

LS

% NI

> Problem

» Running thousands of small, independent jobs individually is inefficient
and time-consuming, creating a major bottleneck in effectively utilizing
HPC resources.

» Managing, monitoring, and submitting each job manually becomes
impractical and leads to underutilization of available compute power.

» In bioinformatics, molecular dynamics and similar domains, workflows
often involve massive batches of short, independent analyses (e.g.,
genome assemblies, sequence alignments, or quality checks) that need
to be executed repetitively.

GNU Parallel & Job arrays 5

INFORMATION
TECHNOLOGY
SERVICES

% NI

> Problem

» Running thousands of small, independent jobs individually is inefficient
and time-consuming, creating a major bottleneck in effectively utilizing
HPC resources.

» Managing, monitoring, and submitting each job manually becomes
impractical and leads to underutilization of available compute power.

» In bioinformatics, running thousands of short, independent analyses,
e.g., genome assemblies or sequence alignment.

> Solution

GNU Parallel & Job arrays 6

INFORMATION
ITECHNOLOGY
SER\ | ;x

% NI

> Problem

» Running thousands of small, independent jobs individually is inefficient
and time-consuming, creating a major bottleneck in effectively utilizing
HPC resources.

» Managing, monitoring, and submitting each job manually becomes
impractical and leads to underutilization of available compute power.

» In bioinformatics, running thousands of short, independent analyses,
e.g., genome assemblies or sequence alignment.

» Solution
> GNU Parallel

GNU Parallel & Job arrays 7

INFORMATION
ITECHNOLOGY
SER\ | f\

% NI

> Problem

» Running thousands of small, independent jobs individually is inefficient
and time-consuming, creating a major bottleneck in effectively utilizing
HPC resources.

» Managing, monitoring, and submitting each job manually becomes
impractical and leads to underutilization of available compute power.

» In bioinformatics, running thousands of short, independent analyses,
e.g., genome assemblies or sequence alignment.

» Solution
» GNU Parallel or Job arrays

GNU Parallel & Job arrays 8

LS % NI

Outline

> Introduction
» What is GNU Parallel and SLURM Job arrays? (Previous Slide)
» When and Why to use GNU Parallel and SLURM Job arrays
» Examples: 1 million small MD simulations, 10k protein analysis
» Basic Usage
» GNU Parallel Syntax and Options

» Running jobs with GNU Parallel:

» Serial Tasks & Multi-Threaded Tasks - Run each LAMMPS task in serial
mode as well as using multiple threads

» Running jobs with Job arrays
» Submit and manage large sets of similar jobs using array indexing (--array)
»> Proper usage
» Memory consideration (GNU Parallel)
» Task granularity (GNU Parallel)
» Best practices with Job arrays

GNU Parallel & Job arrays 9

L su 'J\ﬁ" RMATION g}NI
What Is GNU Parallel and Job Arrays?

GNU Parallel & Job arrays 11

LS % N1
What is GNU Parallel and Job Arrays?

Parallelizing Massive Individual Tasks

GNU Parallel & Job arrays 12

What iIs GNU Parallel and Job Arrays’?

Parallelizing

+» Parallelize

% This refers to the process of dividing a workload into multiple smaller tasks and
executing them simultaneously. It allows for better utilization of computational
resources, such as multi-core CPUs or multiple nodes in a cluster.

GNU Parallel & Job arrays (K]

What iIs GNU Parallel and Job Arrays?

Massive

+» Parallelize

% This refers to the process of dividing a workload into multiple smaller tasks and
executing them simultaneously. It allows for better utilization of computational
resources, such as multi-core CPUs or multiple nodes in a cluster.

/

< Massive

* Indicates the scale or volume of tasks being handled. It often refers to workloads
that consist of hundreds, thousands, or even millions of tasks, which would take
a long time to process sequentially.

GNU Parallel & Job arrays 14

What iIs GNU Parallel and Job Arrays?

Individual

+» Parallelize

% This refers to the process of dividing a workload into multiple smaller tasks and
executing them simultaneously. It allows for better utilization of computational
resources, such as multi-core CPUs or multiple nodes in a cluster.

/

< Massive

* Indicates the scale or volume of tasks being handled. It often refers to workloads
that consist of hundreds, thousands, or even millions of tasks, which would take
a long time to process sequentially.

* Individual (Independent)

s Each task operates independently of the others. This means there’s no
dependency between tasks, allowing them to be executed in parallel without
waiting for one another.

GNU Parallel & Job arrays 15

What is GNU Parallel and Job Arrays?

Tasks

00

Parallelize

% This refers to the process of dividing a workload into multiple smaller tasks and
executing them simultaneously. It allows for better utilization of computational
resources, such as multi-core CPUs or multiple nodes in a cluster.

< Massive

* Indicates the scale or volume of tasks being handled. It often refers to workloads
that consist of hundreds, thousands, or even millions of tasks, which would take
a long time to process sequentially.

00

Individual (Independent)

s Each task operates independently of the others. This means there’s no
dependency between tasks, allowing them to be executed in parallel without
waiting for one another.

» Tasks

s These are the units of work or commands you want to execute. Each task could
be a program, script, or function that processes a specific set of inputs.

GNU Parallel & Job arrays 16

LSl
What do we want to accomplish?

> Parallize lots of small independent tasks on a multi-core platform
(compute nodes)

Core

001
N
/
Ul

Task O

Task 1

1
-)I 7 ; < <

Task 2 A)I :> Cgre Cc1>re C;re Cgre
Task 3 ‘)I ! !

Task 0 Task 1 Task 2 Task 3

GNU Parallel & Job arrays 17

L5SL)

INFORMATION
TECHNOLOGY
SERVICES

Node O

/ \ / N
Core Core Core Core Core Core Core Core
0 1 2 3 0 1 2 3
Task Task Task Task Task Task Task Task
0 1 2 3 4 5 6 7

GNU Parallel & Job arrays

18

LS
The von Neumann Architecture

Central
Processing Unit

Control Unit

NI

Arithmetic

. cache

. | ;> ;> Output
Device =

Main Memory
(code/data)

GNU Parallel & Job arrays 19

INFORMATION
TECHNOLOGY
SERVICES

% NI

Changing Times

» From 1986 - 2002, microprocessors were speeding like a rocket,
increasing in performance an average of 50% per year.

» Since then, it’s dropped to about 20% increase per year.

History of Processor Performance

v
e SR S Moore's Law states that
e p’ﬁq‘ﬁlﬁpie;"’é’é.f;"“z’;ww& transistor counts on chips
AMD Athlon, 1.6 GHz
intel Poribum 1.0 GHz %2584 double roughly every two
Alpha 21284A. 0.7 GHz " 1779
o Alpha 21264, 0.6 GHz o 1267 yearS.
Alpha 21184, 0.6 GHzg .~ 993
" . Alpha 21164, 0.5 GHz --""',.-’549
g Alpha 21164, 0.3 GH?.-/p';(; i
0 Alpha 21064A, 0.3 GHz ¢/ 2+" s imi i .
: omirt o0t bucue .20% Limitation:
g 1 £
= Alpha 21064, 0.2 GHz o7,
= HP PA-RISC, 0.05 Cn//';'(w
é |mmqﬁnonmn/ ' 52%uyear 2 GHZ Consumer
& MIPS M2000
wpbw.f,;‘"g 4 GHz Server
10 = _hw,
VAX<11.-7$10'_,_,-;:"‘- Sou rce. .
|/ P a5 VAX-11785 http://www.cs.columbia.edu/~sed
0'9'78 1980 1982 1984 1986 1988 1990 1992 1994 1996 19895 2000 2002 2004 2006 WardS/ClaSSGS/ZO']2/3827-Spring/

GNU Parallel & Job arrays 20

INFORMATION
IT'ECHNOLOGY
SERVICES

% NI

A Little Physics Problem

Smaller transistors = faster processors.

Faster processors = increased power consumption.
Increased power consumption = increased heat.
Increased heat = unreliable processors.

YV VYV V

A\

Solution:
— Move away from single-core systems to multicore processors.
— ‘“core” = central processing unit (CPU)

— Introducing parallelism
» What if your problem is also not CPU dominant?

GNU Parallel & Job arrays

LSl
The von Neumann Architecture

CPU
Around year

2005

CC-interconnect
L]

I/0 :> :> I/O

Main Memory
(code/data)

GNU Parallel & Job arrays 22

LS % NI

GNU Parallel

» GNU parallel is a shell tool for executing “embarrassingly parallel”
tasks using one or more computers (compute nodes).

» Terminology:

— Task: Each small, independent piece of computation work to be
finished, e.g., a single genome computation, a single MD simulation

— Job: The list of tasks to be completed on a set of nodes (cores)

> A task can be a single command or a small script that must be run for
each of the lines in the input.

> The typical input is a list of files, a list of hosts, a list of users, a list of
URLs, or a list of tables.

» See more at: https://www.gnu.org/software/parallel/

GNU Parallel & Job arrays 23

https://www.gnu.org/software/parallel/

INFORMATION
TECHNOLOGY
SERVICES

GNU Parallel Syntax

INFORMATION
ITECHNOLOGY
SERVICES

% NI

Adding GNU Parallel to Environment

» On SuperMike3:
[fchen1l4@mikel39 ~]$ module av parallel
---- /usr/local/packages/Modules/default/modulefiles/linux-rhel8-icelake ----

parallel-netcdf/1.12.2/intel-2021.5.0
parallel/20210922/intel-2021.5.0

parallel-netcdf/1.12.2/intel-2021.5.0-intel-mpi-2021.5.1

load the module to environment
[fchen1l4@mikel139 ~]$ module load parallel/20210922/intel-2021.5.0

[fchen1l4@mikel139 ~]$ which parallel
/usr/local/packages/parallel/20210922/hrsviur/bin/parallel

[fchenl4@mikel39 ~]$ parallel -version # check GNU parallel version

GNU parallel 20210922

Copyright (C) 2007-2021 Ole Tange, http://ole.tange.dk and Free Software
Foundation, Inc.

GNU Parallel & Job arrays 25

INFORMATION
ITECHNOLOGY
SER\ CES

GNU Parallel Syntax

» Reading commands to be run in parallel from an input file:
parallel [OPTIONS] < CMDFILE

» Reading command arguments on the command line:
parallel [OPTIONS] COMMAND [ARGUMENTS] ::: ARGLIST

» Reading command arguments from an input file:
parallel [OPTIONS] COMMAND [ARGUMENTS] :::: ARGFILE

GNU Parallel & Job arrays 26

INFORMATION
IT'ECHNOLOGY
SERVICES

ARGLIST from command line

> parallel [OPTIONS] COMMAND [ARGUMENTS] ::: ARGLIST

» Examples:
[fchenl4@mikel39
A
B
C
[fchenl4@mikel39
1
2
3
[fchenl4@mikel39
A
B

Z
[fchenl4@mikel39
2013-06-18.tgz
backups. sh
bigmem test.pbs

~]$ parallel echo ::: ABC
~]$ parallel echo ::: “seq 1 3°
~]$ parallel echo ::: {A..Z}
test]$ 1ls -1 | parallel echo

GNU Parallel & Job arrays

% NI

27

INFORMATION
TECHNOLOGY
SERVICES

% NI

ARGLIST from file

» parallel [OPTIONS] COMMAND [ARGUMENTS] :::: ARGFILE
[fchen14@mikel139 GNU PARALLEL]$ pwd
/project/fchenl4/GNU_PARALLEL
[fchen14@mike139 GNU_PARALLEL]$ cat input.lst | head
01.17
02.17
03.17j

[fchen14@mike139 GNU_PARALLEL]$ head input.lst -n 5 | parallel echo
01.17

02.17

03.17

04.17

05.17

[fchen14@mikel139 GNU PARALLEL]$ parallel echo :::: input.lst

01.17

02.17

GNU Parallel & Job arrays 28

Replacement Strings

» ‘{}’ returns a full line read from the input source.

% NI

[fchenl4@mikel139 GNU_PARALLEL]$ parallel echo {} :::|data/in.1j
data/in.1j

» “{/}’ removes everything up to and including the last forward slash:
[fchenl4@mikel139 GNU_PARALLEL]$ parallel echo {/} ::: datafin.1j
in.1j

» “{//}’ returns the directory name of input line.
[fchenl4@mikel139 GNU_PARALLEL]$ parallel echo {//} ::: datakin.lj
data

» “{.}’ removes any filename extension:
[fchenl4@mikel139 GNU_PARALLEL]$ parallel echo {.} :::| data/in}1j
data/in

» “{/.}’ returns the basename of the input line without extension. It is a

combination of {/} and {. }:
[fchen1l4@mikel139 GNU_PARALLEL]$ parallel echo {/.} ::: data
in

> See “man parallel” for more detailed explanation.

GNU Parallel & Job arrays

in

|17

29

LS
Replacement String Example

% NI

> Print the full path of the input file, and then print the desired output file
name, e.g.:

— Input file: data/1j.1in
— Output file name: output/1j.out

Process data/lj.in and send result to output/lj.out
$ parallel echo {} output/{/.}.out ::: data/lj.in
data/lj.in output/lj.out

GNU Parallel & Job arrays 30

INFORMATION
IT'ECHNOLOGY
SERVICES

% NI

Parallelize Job Script

» GNU parallel is often called as this:
cat input_file | parallel command
parallel command ::: foo bar

> |If command is a script, parallel can be combined into a single file so
this will run the script in parallel:

parallel [OPTIONS] script [ARGUMENTS] ::: ARGLIST

— or

parallel [OPTIONS] script [ARGUMENTS] :::: ARGFILE
» See next slide for example...

GNU Parallel & Job arrays 31

INFORMATION
TECHNOLOGY
SERVICES

% NI

Parallize Script Example

» This is the script we want to parallize "cmd _ex.sh":
#!/bin/bash
print the input, on which host, which working directory
echo "This script uses input: $1 on $HOSTNAME :$PWD"

> Parallize the script using ARGLIST from command line:
[fchen1l4@mikel39 GNU_ PARALLEL]$ parallel --wd $PWD ./cmd ex.sh ::: A B C
This script uses input: A on mikel39:/project/fchenl4/GNU PARALLEL

This script uses input: B on mikel39:/project/fchenl4/GNU_PARALLEL

This script uses input: C on mikel39:/project/fchenl4/GNU PARALLEL

»> Parallize the script using ARGFILE:

[fchen14@mikel39 GNU_PARALLEL]$ cat argfile

A

B

C

[fchen14@mikel39 GNU_ PARALLEL]$ parallel --wd $PWD ./cmd ex.sh :::: argfile
This script uses input: A on mikel39:/project/fchenl4/GNU_PARALLEL

This script uses input: B on mikel39:/project/fchenl4/GNU PARALLEL

This script uses input: C on mikel39:/project/fchenl4/GNU_PARALLEL

» Can parallize Python/Perl scripts, see “man parallel” for details

GNU Parallel & Job arrays 32

LS
Common OPTIONS --jobs (-3)

» --jobs N (-j N)

— Number of jobslots on each machine (node). Run up to N jobs in
parallel. 0 means as many as possible. Default is 100% which will run
one job per CPU core on each machine.

— On HPC/LONI clusters, N is number of jobslots per node.

— Make sure you use GNU Parallel version »=20161022 to avoid a “Max
jobs to run” bug

[fchen14@mikel139 test]$ parallel --version
GNU parallel 20210922

% NI

> -j +N

— Add N to the number of CPU cores. Run this many jobs in parallel.
> -j -N

— Subtract N from the number of CPU cores. Run this many jobs in
parallel. If the evaluated number is less than 1 then 1 will be used.

GNU Parallel & Job arrays 33

LS
Common OPTIONS --s1f (Slurm)

» --slf filename (--sshloginfile filename)
— To get the sshloginfile on Slurm job session _use the helow command:
scontrol show hostname $SLURM NODELIST > nodefile

— A'typical example on HPC/LONT clusters while running batch jobs:
--slf nodefile

— Look at $SLURM_NODELIST and nodefile

start an interactive job requesting 2 nodes (64x2=128 cores)
[kasetti@miked4 ~]$ srun -N2 -nl128 -p workq --cpu-bind none --pty bash
srun: Job is in held state, pending scheduler release

srun: job 39474 queued and waiting for resources

Interactive job 39474 waiting:

% NI

srun: job 39474 has been allocated resources # we got mikel57 and mikel58
[kasetti@mikel57 ~]$ echo $SLURM_NODELIST

mike[157-158]

[kasetti@mikel57 ~]$ scontrol show hostname $SLURM NODELIST > nodefile
[kasetti@mikel57 ~]$ cat nodefile

mikel57
mikel58

GNU Parallel & Job arrays 35

LSl X NI
Common OPTIONS --sshdelay

> |f many tasks are started on the same compute node, sshd can be
overloaded. On SuperMike3/QB3, some of the tasks might fail to start,
e.g., starting all 64/48 tasks at the same time.
» GNU parallel can insert a delay between each task run on the same
server:
[fchen1l4@mikel39 GNU PARALLEL]$ parallel --sshdelay 0.1 echo ::: ABC
A
B

C

GNU Parallel & Job arrays 36

INFORMATION
IT'ECHNOLOGY
SERVICES

% NI

Common OPTIONS - -wd

» --wd mydir (--workdir mydir)
— Designate the working directory of your commands.

— A typical value can be:
e $PBS_O_WORDIR (PBS)
e $SLURM_SUMBIT_DIR (Slurm)

GNU Parallel & Job arrays 37

INFORMATION
TECHNOLOGY
SERVICES

% NI

Common OPTIONS --env

> --env ENV_VAR

— --env to tell GNU parallel to transfer an environment variable to the
remote system.

— A typical usage:
export OMP_NUM THREADS=5
parallel --env OMP_NUM THREADS cmd ::: ARGLIST

GNU Parallel & Job arrays 38

Common OPTIONS --progress

% NI

» ~--progress
— Show progress of computations. (Not recommended for batch jobs)

— List the computers involved in the task with number of CPU cores
detected and the max number of jobs to run.

— After that show progress for each node: number of running jobs, number
of completed jobs, and percentage of all jobs done by this computer.

— Example:
[fchenl4@mikel39 ~]$% parallel --progress echo ::: A B C

Computers / CPU cores / Max jobs to run
l:1ocal / 64 / 3

Computer:jobs running/jobs completed/%of started jobs/Average seconds to complete
local:3/0/100%/0.0s A

local:2/1/100%/1.0s B

local:1/2/100%/0.5s C

local:0/3/100%/0.3s

> See also --bar

GNU Parallel & Job arrays 39

LS.
Common OPTIONS --joblog

» --joblog logfile
— Creates a record for each completed subjob (task) to be written to
LOGFILE, with info on how long they took, their exit status, etc.

— Can be used to identify failed jobs, e.g.:

% NI

[fchenl4@mikel39 misc]$ parallel --joblog logfile exit ::: 1 2 0 ©

[fchenl4@mikel39 misc]$ cat logfile

Seq Host Starttime JobRuntime Send Receive| Exitval |Signal Command
1 : 1477514132 .358 0.019 (%] 0 1 exit 1
2 : 1477514132.375 0.003 0 0 2 exit 2
3 : 1477514132.376 0.002 0 0 0 exit o
4 1477514132 .377 0.003 (%] %] (%] exit ©

GNU Parallel & Job arrays 40

LSl
Common OPTIONS --timeout

» --timeout secs
— Time out for command. If the command runs for longer than secs
(seconds) it will get killed.

— If secs is followed by a % then the timeout will dynamically be computed
as a percentage of the median average runtime. Only values > 100%
will make sense.

% NI

s Useful if you know the command has failed if it runs longer than a
threshold.

GNU Parallel & Job arrays 41

INFORMATION
TECHNOLOGY
SERVICES

» Download the material for this training at:

> wget http://www.hpc.Isu.edu/training/weekly-
materials/Downloads/gnu_parallel tut-main-fall2025.tar.gz

GNU Parallel & Job arrays 42

INFORMATION
TECHNOLOGY
SERVICES

Serial Jobs Example

INFORMATION
TECHNOLOGY
SERVICES

% NI

LAMMPS Introduction

» LAMMPS is a classical molecular dynamics code with a focus on
materials modeling. https://www.lammps.org/

> You don’t need any background in molecular dynamics/LAMMPS to
understand today’s example.

» Typical LAMMPS Syntax

— Serial run
Imp_serial -in in.script
— Multi-Threaded run

env OMP_NUM_THREADS=4 1lmp omp -sf omp -in in.script # use OMP_NUM_THREADS
Imp omp -sf omp -pk omp 5 -in in.script # use -pk omp to specify threads

— MPI run
srun --overlap -n 4 lmp mpi -in in.script # Slurm version, --overlap only
needed for interactive job
mpirun -n 4 1mp mpi -in in.script # PBS version

— Custom command:
Imp_serial -var nsteps 200 -in in.script # we defined a custom variable in
the input file to let nsteps control total steps to run,

The above command will run our input for 200 steps

GNU Parallel & Job arrays 44

https://www.lammps.org/

LSl
LAMMPS Input File Used Today

3d Lennard-Jones melt
variable x index 1
variable y index 1
variable z index 1
variable xx equal 80*
variable yy equal 80*
variable zz equal 80*

% NI

units 15

atom_style atomic

lattice fcc 0.8442

region box block @ ${xx} 0 ${yy} 0 ${zz}
create_box 1 box

create_atoms 1 box

mass 11.0

velocity all create 1.44 87287 loop geom

pair_style 1j/cut 2.5

pair_coeff 111.01.0 2.5

neighbor ©.3 bin

neigh modify delay © every 20 check no

fix 1 all nve

${nsteps} is the parameter passing from LAMMPS command line "-var nsteps 200"
run ${nsteps}

GNU Parallel & Job arrays 45

LS NI
Distribute Serial Jobs LAMMPS (Slurm)

#!/bin/bash

#SBATCH -N 2 # request two nodes

#SBATCH -n 128 # specify 128 process

#SBATCH -t 2:00:00 [fchenl4@mike2 GNU PARALLEL]$ head input.lst
#SBATCH -p checkpt data/01.1j.1in

#SBATCH -A hpc_hpcadmin8 data/@2.1j.1in

#SBATCH -0 gp-serial.out data/@3.1j.1in

data/e4.1j.1in
data/05.1j.1in
TASKS PER _NODE=16

SECONDS=0
scontrol show hostname > nodefile
parallel --joblog 1lmp.serial.log \
-] \
--slf nodefile \
--workdir \
--sshdelay 0.1 \
"which 1Imp serial” -in {} -var nsteps 200 :::: input.lst

echo "took $SECONDS sec"

GNU Parallel & Job arrays 46

LSl -
In case the task command is too long

% NI
(complex)

» Use a script for each task to be distributed, example here (call_lmp.sh)
» GNU Parallel will distribute each task script

TASKS_PER_NODE=16

scontrol show hostname > nodefile
parallel --joblog lmp.serial.log \

-] \

--s1lf nodefile \

--workdir \

--sshdelay 0.1 \

./call Imp.sh|{} 200 :::: input.lst

content of call 1lmyg.
#!/bin/bash

echo "\$1=$1,\$2=£2" / $2 is the input parameter 200

lmp_serial -in wteps

$1 is the input from input.1st,
e.g. data/01.1j.1in

GNU Parallel & Job arrays 47

INFORMATION
TECHNOLOGY
SERVICES

Multi-Threaded Example

Introduction to GNU Parallel

LS NI
Distribute Multi-Threaded Jobs

» Distribute Multi-Threaded jobs is very similar to the pure serial job
example, the only difference is TASKS PER_NODE:

— TASKS_PER_NODE=CPU_CORES_PER_NODE / NUM_THREADS_PER_TASK

> If each job uses 4 threads, each node on SuperMike3 has 64 cores,
then

— TASKS_PER_NODE=64/4=16
» Slurm script (#SBATCH comments omitted):

TASKS_PER_NODE=16 Put 64/4=16 tasks per node
export OMP_NUM_THREADS=4

SECONDS=0
scontrol show hostname
parallel -j
--s1lf nodefile \
--workdir \
--sshdelayv 0.1 \
(}-env OMP NUM THREADS/ \

Pass the environmental variable
OMP_NUM_ THREADS to each
task

“which lmp_omp™ (=sf_omp)-in {} -var nsteps 200 :::: input.lst
echo "took $SECONDS sec"

OpenMP switch in lammps

GNU Parallel & Job arrays 49

LSl
Multi-Threaded LAMMPS (Slurm)

#!/bin/bash

#SBATCH -N 2 # request two nodes
#SBATCH -n 128 # specify 128 process
#SBATCH -t 2:00:00

#SBATCH -p checkpt

#SBATCH -A hpc_hpcadmin8

#SBATCH -0 gp-omp.out This script is on SuperMike3, 64 cores per node, so
TASKS_PER _NODE=64/4=16

TASKS_PE R_NODE

export OMP_NUM_THR EADS@« Use 4 OMP threads per task
SECONDS=0
scontrol show hostname > nodefile

parallel --joblog 1lmp.omp.log \
-] \
--s1f nodefile \
--workdir \
--sshdelay 0.1 \

OpenMP switch in lammps
--env OMP_NUM_THREADS \
“which lImp omp™ (-sf omp)-in {} -var nsteps 200 :::: input.lst

echo "took $SECONDS sec"

GNU Parallel & Job arrays 50

INFORMATION
TECHNOLOGY
SERVICES

Multi-Process (MPIl) Example

Distribute MPI Jobs - LAMMPS

» This section describes how to distribute small MPI jobs.

» Example problem - LAMMPS MPI
— Using the same input file, but with multiple MPI process for each task.
— For simplicity, each MPI process will use only one thread

% NI

Introduction to GNU Parallel 52

INFORMATION
ITECHNOLOGY
SERVICES

Rt NI

Distributing MPI Jobs (Slurm)

#!/bin/bash

#SBATCH -N 2 # request two nodes
. [fchenl4@mike4 GNU_PARALLEL]$ head input.lst
#SBATCH -n 128 # specify 128 process data/@1.15.in
#SBATCH -t 2:00:00 data/02.1j.in
_ data/@03.1j.in
#SBATCH -p checkpt data/@4.15.1in
#SBATCH -A hpc_hpcadmin8 data/@5.1j.1in

#SBATCH -0 gp-mpi.out

This script is on SuperMike3, 64 cores per node, so
TASKS_PE R_NODE@‘__ TASKS PER_NODE=64/4=16
PROC_PER_TASK
SECONDS=6

scontrol show hostname

> nodefile

Use 4 MPI processes per task

parallel --joblog lmp.mpi.log \
-] \
--s1lf nodefile \
--workdir
--sshdelay 0.1 \
srun --overlap -n()‘which Imp™ -in {} -var nsteps 200 ::::

input.lst
echo "took $SECONDS sec"

Introduction to GNU Parallel 53

INFORMATION
TECHNOLOGY
SERVICES

Running Jobs With
SLURM Job Arrays

GNU Parallel & Job Arrays

Running Jobs with SLURM Job Arrays

» Definition: A SLURM Job Array allows you to submit and manage a large
number of similar, independent jobs efficiently using a single batch script
and one submission command.

» Purpose: Designed for large-scale workloads (e.g., parameter sweeps,
simulations, bioinformatics pipelines) where each task runs independently
but under the same resource settings.

» Job Type: Job arrays are supported only for batch jobs (not interactive
jobs).

» Efficiency: SLURM launches and schedules many jobs within seconds,
minimizing submission overhead.

» Configuration & Resource Specification:

» All array tasks share the same batch script and requested resources
(CPUs, memory, time), ensuring consistency across jobs.

» Each task receives its own independent allocation within those
resources — allowing SLURM to schedule and manage them efficiently.

GNU Parallel & Job arrays 57

Running Jobs with SLURM Job Arrays

» Every task is automatically assigned a unique index, available as
$SLURM_ARRAY_TASK ID, which is commonly used to pick
input/output files dynamically.

» For serial or multi-threaded workloads, SLURM handles CPU and
memory distribution automatically.

» For MPI or multi-node workloads, explicitly specify --nodes, --ntasks, or
--cpus-per-task as needed.

» Advantages

» Simplifies and automates submission of large parameter sweeps or
ensemble simulations.

» Reduces scheduler load — one submission command for thousands of
jobs.

» Easy monitoring and management using squeue, scontrol.

» Fault-tolerant: Failed tasks can be re-run individually using their array
index.

GNU Parallel & Job arrays 58

LSl X NI
Running Jobs with SLURM Job Arrays

» Syntax
» #SBATCH --array=<index_list> or #SBATCH -a=<index_ list>

» where “index_ list”

a. Range: a range of index values - #SBATCH --array=n-m, where n is the
starting index, m is the ending index

b. Step size: an optional step size - #SBATCH --array=n-m:step_length
Specific Values: specific array index values - #SBATCH --array=1,3,5,7

Concurrency Limit: You can limit how many tasks run at the same time
using the “%” modifier, for example, --array=0-15%4 runs only 4 tasks
concurrently.

GNU Parallel & Job arrays 59

Job Arrays Environment Variables

% NI

» Job arrays will have additional environment variables set.
» SLURM_ARRAY_JOB _ID - the first job ID of the array.
» SLURM_ARRAY_TASK_ID - the job array index value.
» SLURM_ARRAY_TASK_COUNT - the number of tasks in the job array.
» SLURM_ARRAY_TASK_MAX - the highest job array index value.
» SLURM_ARRAY_TASK_MIN - the lowest job array index value.
» File Names:
> %A will be replaced by the value of SLURM_ARRAY JOB _ID
> %a will be replaced by the value of SLURM_ARRAY_TASK ID.
» Example: slurm_%A_%a.out, slurm_%A_%a.err

GNU Parallel & Job arrays 60

LSl ol
Running Jobs with SLURM Job Arrays

#!/bin/bash

#SBATCH --job-name=demo_jobarray
#SBATCH EEIEEN-1-32 #or -a 1-32
#SBATCH -o output_%A_%a.out
#SBATCH -e error_%A_%a.err
#SBATCH --time=00:02:00

#SBATCH --cpus-per-task=1

module load parallel/20210922/intel-2021.5.0
module load lammps/23Jun2022/intel-2021.5.0-intel-mp1-2021.5.1

Read the nth 1ine from the input list file (matching array index)
INPUT_FILE=$(sed -n "${SLURM_ARRAY_TASK_ID}p" input.lst)

echo "Running job array task $SLURM_ARRAY_TASK_ID on $Chostname)"
echo "Input file: $INPUT_FILE"

Run LAMMPS serial mode
“which 1mp_serial™ -in "$INPUT_FILE" -var nsteps 100

GNU Parallel & Job arrays 61

LS % N1
Running Jobs with SLURM Job Arrays

#!/bin/bash

#SBATCH [EEIIEN-1-32 #or -a 1-3
-0 Output_»A_%a.out
#SBATCH -e error_%A_%a.err
#SBATCH --time=00:02:00

#SBATCH --cpus-per-task=1

Defines Job array with —array or -a
with <index_ list>

module load parallel/20210922/intel-2021.5.0
module load lammps/23Jun2022/intel-2021.5.0-intel-mp1-2021.5.1

Read the nth 1ine from the input list file (matching array index)
INPUT_FILE=$(sed -n "${SLURM_ARRAY_TASK_ID}p" input.lst)

echo "Running job array task $SLURM_ARRAY_TASK_ID on $Chostname)"
echo "Input file: $INPUT_FILE"

Run LAMMPS serial mode
“which 1mp_serial™ -in "$INPUT_FILE" -var nsteps 100

GNU Parallel & Job arrays 62

LS % N1
Running Jobs with SLURM Job Arrays

#!/bin/bash
#SBATCH --job-name=demo_jobarray

#SBATCH =1-32 #or -a 1-32 Defines output files with
#SBATCH -0 output_%A_%a.out I $SLURM ARRAY JOB ID
#SBATCH -e error_%A_%a.err $SLURM_ ARRAY_ TAS_K ID
#SBATCH --time=00:02:00 - - -

#SBATCH --cpus-per-task=1

module load parallel/20210922/intel-2021.5.0
module load lammps/23Jun2022/intel-2021.5.0-intel-mp1-2021.5.1

Read the nth 1ine from the input list file (matching array index)
INPUT_FILE=$(sed -n "${SLURM_ARRAY_TASK_ID}p" input.lst)

echo "Running job array task $SLURM_ARRAY_TASK_ID on $Chostname)"
echo "Input file: $INPUT_FILE"

Run LAMMPS serial mode
“which 1mp_serial™ -in "$INPUT_FILE" -var nsteps 100

GNU Parallel & Job arrays (X

LS % N1
Running Jobs with SLURM Job Arrays

#!/bin/bash
#SBATCH --job-name=demo_jobarray

#SBATCH [SRMRN-1-32 #or -a 1-32 Defines output files with

#SBATCH -0 output_%A_%a.out $SLURM ARRAY JOB ID

[#SBATCH -e grror_%A_%a .err | $SLURM_ARRAY_TASK_ID
#SBATCH --time=00:02:00

#SBATCH --cpus-per-task=1

module load parallel/20210922/intel-2021.5.0
module load lammps/23Jun2022/intel-2021.5.0-intel-mp1-2021.5.1

Read the nth 1ine from the input list file (matching array index)
INPUT_FILE=$(sed -n "${SLURM_ARRAY_TASK_ID}p" input.lst)

echo "Running job array task $SLURM_ARRAY_TASK_ID on $Chostname)"
echo "Input file: $INPUT_FILE"

Run LAMMPS serial mode
“which 1mp_serial™ -in "$INPUT_FILE" -var nsteps 100

GNU Parallel & Job arrays 64

LS % N1
Running Jobs with SLURM Job Arrays

#!/bin/bash

#SBATCH --job-name=demo_jobarray
#SBATCH EEIEEN-1-32 #or -a 1-32
#SBATCH -o output_%A_%a.out
#SBATCH -e error_%A_%a.err
#SBATCH --time=00:02:00

#SBATCH --cpus-per-task=1

module load parallel/20210922/intel-2021.5.0
module load lammps/23Jun2022/intel-2021.5.0-intel-mp1-2021.5.1

Read the nth 1ine from the input list file (matching array index)
NPUT_FILE=$(sed -n "${SLURM_ARRAY_TASK_ID}p" input.lst)

echo "Running job array task $SLURM_AF Inputfiles indexed with
echo "Input file: $INPUT_FILE" $SLURM_ARRAY_TASK_ID

Run LAMMPS serial mode
“which 1mp_serial™ -in "$INPUT_FILE" -var nsteps 100

GNU Parallel & Job arrays 65

INFORMATION
TECHNOLOGY
SERVICES

GNU Parallel
VS
SLURM Job Arrays

GNU Parallel & Job Arrays

LSl
GNU Parallel vs. Job Arrays

GNU Parallel Job arrays

% NI

Introduction to GNU Parallel 69

INFORMATION
TECHNOLOGY
SERVICES

% NI

GNU Parallel vs. Job Arrays

GNU Parallel Job arrays

Runs commands locally within an . Each array element is submitted to
[existing allocation] Execution Scope [the scheduler as a separate job]

Introduction to GNU Parallel 70

INFORMATION
ITECHNOLOGY
SERVICES

% NI

GNU Parallel vs. Job Arrays

GNU Parallel Job arrays
(R ds locally within an | [Each lement is submitted to |
uns commands locally within an . ach array element is submitted to
existing allocation Execution Scope the scheduler as a separate job
4 ™
(User manuallv sets concurrenc) Scheduler allocates resources
Y 5€t y Resource control (CPUs, GPUs, memory) per task
using --jobs .
Q y L automatically)

Introduction to GNU Parallel 71

INFORMATION
TECHNOLOGY
SERVICES

GNU Parallel vs. Job Arrays

GNU Parallel

Runs commands locally within an
existing allocation

User manually sets concurrency
using --jobs

Appears as one job to the
scheduler

Execution Scope

Resource control

Visibility

Introduction to GNU Parallel

Job arrays

% NI

7

\\

Each array element is submitted to
the scheduler as a separate job

N

.

Scheduler allocates resources
(CPUs, GPUs, memory) per task
automatically

~\

7

Every task has its own job ID and
status

\

72

LS % NI

GNU Parallel vs. Job Arrays

GNU Parallel Job arrays
(hinan | [Each lement is submitted to |
Runs commands locally within an . ach array element is submitted to
existing allocation Execution Scope the scheduler as a separate job
4 ™
(User manually sets concurrenc) Scheduler allocates resources
usir}: ~iobs y Resource control (CPUs, GPUs, memory) per task
Q 9 y L automatically
[he | [E kh bIDand |
Appears as one job to the -y aps very task has its own jo an
scheduler Visibility status
f If the main job stops, all subtasks) . . f Failed tasks can be retried without
end Failure handling affecting others
\\ J \ J

Introduction to GNU Parallel 73

LSL): g)NI

GNU Parallel vs. Job Arrays

GNU Parallel Job arrays

(N ()

Runs commands locally within an . Each array element is submitted to
existing allocation Execution Scope the scheduler as a separate job

~ ™
[User manuallv sets concurrenc h Scheduler allocates resources
usir{g iobs y Resource control (CPUs, GPUs, memory) per task
Q y L automatically
[A b to th) [E kh biDand |
ppears as one job to the T very task has its own jo an
scheduler VISIbIIIty status

If the main job stops, all subtasks Failed tasks can be retried without

Failure handling

end affecting others
\ J \ J
4 N 4 N
Basic progress output from GNU . . Full integration with cluster tools
Parallel Momtormg tools like squeue, gstat
\ J \ J

Introduction to GNU Parallel 74

LSL): g)NI

GNU Parallel vs. Job Arrays

GNU Parallel Job arrays

(N ()

Runs commands locally within an . Each array element is submitted to
existing allocation Execution Scope the scheduler as a separate job

~ ™
[User manuallv sets concurrenc h Scheduler allocates resources
usir{g iobs y Resource control (CPUs, GPUs, memory) per task
Q y L automatically
[A b to th) [E kh biDand |
ppears as one job to the T very task has its own jo an
scheduler VISIbIIIty status

If the main job stops, all subtasks Failed tasks can be retried without

Failure handling

end affecting others
\ J \ J
4 N 4 N
Basic progress output from GNU . . Full integration with cluster tools
Parallel Momtormg tools like squeue, gstat
\ J \ J
4 N 4 N

File conversions, preprocessing,
small parameter sweeps

Genome analyses, simulations,

Typical use cases large-scale sweeps

Introduction to GNU Parallel 75

INFORMATION
TECHNOLOGY
SERVICES

Proper Usage of GNU Parallel

LS % NI

Common Rules

» Don’t use more than one node when you are debugging/testing your
code

Know the performance of single task
Start with only a few tasks in your input.lst

After you are comfortable with one node job, start with two node job
first before jumping to more than three nodes

» Typically use no more than 5 nodes.

V YV VY

Introduction to GNU Parallel 77

LSl ‘@N I
Memory Consideration

> Relationship between node memory and cores
— Rule of Thumb: cannot exceed the available memory on a node

Available node Available node Available node
memory 256 GB memory 256 GB memory 256 GB
A A A
4 N\ N\ 4 A\
|
N\ J 1\) N\ J
Y Y Y
4 GB mem per task, 8 GB mem per task, Avoid this situation, hard to
How many tasks per node? How many tasks per node? calculate/predict memory usage

Introduction to GNU Parallel 78

LS
Load Balancing in GNU Parallel

» GNU Parallel spawns the next job when one finishes - keeping the
CPUs active and thus saving time.

Without Load Balancing With Load Balancing

Cpu@ Cpul Cpu2 Cpu@ Cpul Cpu2

Job 1

Job 1

Job 8

Job 10

Execution Time

Waste

Introduction to GNU Parallel £

% NI

> |In parallel computing, granularity (or grain size) of a task is a measure
of the amount of work (or computation) which is performed by that
task.

» Impact of granularity on performance

— Using fine grains or small tasks results in more parallelism and hence
iIncreases the speedup. However, synchronization overhead, scheduling
strategies etc. can negatively impact the performance of fine-grained
tasks.

— Simply increasing parallelism alone cannot give the best performance.

— In order to reduce the communication overhead, granularity can be
increased. Coarse grained tasks have less communication overhead but
they often cause load imbalance. Hence optimal performance is
achieved between the two extremes of fine-grained and coarse-grained
parallelism.

Task Granularity

Ref: https://en.wikipedia.org/wiki/Granularity (parallel_computing)

Introduction to GNU Parallel 80

https://en.wikipedia.org/wiki/Granularity_(parallel_computing)

LS~
Components of a Task (Process)

NI

Load program)
instructions
Allocate memory Process start
SPACE Overhead
Load program
data
Perform Real |
Computation on computation
CPU cores work
Release memory,
data, other Process end
resources overhead

Introduction to GNU Parallel 81

INFORMATION
TECHNOLOGY
SERVICES

% NI

Typical Misuse -
Tiny grain size case

» Tiny grain size
— E.g., each task takes little time (e.g., less than a second)
— Most time will be spent on overhead

An extreme case - Cores are just idling

corey Coreq core, corey Coreq core,

U WYY

single task {

Introduction to GNU Parallel 82

INFORMATION
ITECHNOLOGY
SER\ | f\

% NI

Typical Misuse -
Large grain size case

» Large grain size
— Some tasks are much longer than the rest
— Load balancing can never be achieved

An extreme case - Load imbalancing

corey Coreq core, corey Coreq core,

U WYY

single task {

Introduction to GNU Parallel 83

INFORMATION
TECHNOLOGY
SERVICES

% NI

Proper Usage of Job Arrays

> Best Practices:

>

>

Use for many similar, independent tasks (e.g., simulations, parameter
sweeps).

Use $SLURM_ARRAY_TASK ID to assign unique inputs/outputs per
task.

Limit concurrency with % (e.g., --array=1-1000%350) to control system
load.

Avoid tiny jobs — combine short tasks to reduce overhead.
Organize output files with %A and %a in names.

Re-run failed tasks by specifying their indices (e.g., --array=5,9,13).

Introduction to GNU Parallel 84

INFORMATION
TECHNOLOGY
SERVICES

Summary

> In today’s training, we have covered
» Why need GNU Parallel or SLURM Job arrays?
» Basic syntax of GNU Parallel and examples
» How to run jobs with Job arrays?
» How to use these tools wisely.

» For more information about GNU Parallel and SLURM Job Arrays, refer
to:

— https://www.gnu.org/software/parallel/parallel_tutorial.html
— https://slurm.schedmd.com/job_array.html

Introduction to GNU Parallel

85

https://www.gnu.org/software/parallel/parallel_tutorial.html
https://www.gnu.org/software/parallel/parallel_tutorial.html
https://slurm.schedmd.com/job_array.html
https://slurm.schedmd.com/job_array.html
https://slurm.schedmd.com/job_array.html
https://slurm.schedmd.com/job_array.html
https://slurm.schedmd.com/job_array.html

INFORMATION
ITECHNOLOGY
SERVICES

Appendix

Introduction to GNU Parallel 86

INFORMATION
TECHNOLOGY
SERVICES

Multi-Process (MPIl) Example

Distribute MPI Jobs - LAMMPS

» This section describes how to distribute small MPI jobs.

» Example problem - LAMMPS MPI
— Using the same input file, but with multiple MPI process for each task.
— For simplicity, each MPI process will use only one thread

% NI

Introduction to GNU Parallel 88

INFORMATION
ITECHNOLOGY
SERVICES

Rt NI

Distributing MPI Jobs (Slurm)

#!/bin/bash

#SBATCH -N 2 # request two nodes
. [fchenl4@mike4 GNU_PARALLEL]$ head input.lst
#SBATCH -n 128 # specify 128 process data/@1.15.in
#SBATCH -t 2:00:00 data/02.1j.in
_ data/@03.1j.in
#SBATCH -p checkpt data/@4.15.1in
#SBATCH -A hpc_hpcadmin8 data/@5.1j.1in

#SBATCH -0 gp-mpi.out

This script is on SuperMike3, 64 cores per node, so
TASKS_PE R_NODE@‘__ TASKS PER_NODE=64/4=16
PROC_PER_TASK
SECONDS=6

scontrol show hostname

> nodefile

Use 4 MPI processes per task

parallel --joblog lmp.mpi.log \
-] \
--s1lf nodefile \
--workdir
--sshdelay 0.1 \
srun --overlap -n()‘which Imp™ -in {} -var nsteps 200 ::::

input.lst
echo "took $SECONDS sec"

Introduction to GNU Parallel 89

INFORMATION
ITECHNOLOGY
SERVICES

Rt NI

| Distributing MPI Jobs (PBS)

#PBS -1 nodes=2:ppn=20

#PBS -1 walltime=1:00:00 [fchenl4@mike4 GNU_PARALLEL]$ head input.lst
data/01.1j.in

#PBS -q checkpt data/02.13.in

#PBS -A hpc_hpcadmin8 data/@3.1j.in

#PBS -j oe data/@4.1j.in

data/05.1j.in
#PBS -0 gp-omp-pbs.out

module purge
module load parallel
module load lammps

TASKS PER NODEe:)E This script is on SuperMIC, 20 cores per node, so
ep TASKS_PER_NODE=20/5=4

SECONDS=0
cd
parallel --joblog lmp.mpi.pbs.log \
-] \
--slf \
--workdir \ Use 5 MPI processes per task

--sshdelay 0.1 \

mpirun -np which Imp~ -in {} -var nsteps 200 :::: input.lst
echo "took $SECONDS sec”

Introduction to GNU Parallel 920

	IntroAndOverview
	Slide 1: Parallelizing Massively Independent Tasks
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Outline

	what is parallel & job array
	Slide 11: What is GNU Parallel and Job Arrays?
	Slide 12: What is GNU Parallel and Job Arrays?
	Slide 13: What is GNU Parallel and Job Arrays?
	Slide 14: What is GNU Parallel and Job Arrays?
	Slide 15: What is GNU Parallel and Job Arrays?
	Slide 16: What is GNU Parallel and Job Arrays?

	background
	Slide 17: What do we want to accomplish?
	Slide 18: Background and Distribute
	Slide 19: The von Neumann Architecture
	Slide 20: Changing Times
	Slide 21: A Little Physics Problem
	Slide 22: The von Neumann Architecture

	parallel
	Slide 23: GNU Parallel

	parallel syntax
	Slide 24: GNU Parallel Syntax
	Slide 25: Adding GNU Parallel to Environment
	Slide 26: GNU Parallel Syntax
	Slide 27: ARGLIST from command line
	Slide 28: ARGLIST from file
	Slide 29: Replacement Strings
	Slide 30: Replacement String Example
	Slide 31: Parallelize Job Script
	Slide 32: Parallize Script Example

	parallel options
	Slide 33: Common OPTIONS --jobs (-j)
	Slide 35: Common OPTIONS --slf (Slurm)
	Slide 36: Common OPTIONS --sshdelay
	Slide 37: Common OPTIONS --wd
	Slide 38: Common OPTIONS --env
	Slide 39: Common OPTIONS --progress
	Slide 40: Common OPTIONS --joblog
	Slide 41: Common OPTIONS --timeout
	Slide 42

	serial
	Slide 43: Serial Jobs Example
	Slide 44: LAMMPS Introduction
	Slide 45: LAMMPS Input File Used Today
	Slide 46: Distribute Serial Jobs LAMMPS (Slurm)
	Slide 47: In case the task command is too long (complex)

	multithread
	Slide 48: Multi-Threaded Example
	Slide 49: Distribute Multi-Threaded Jobs
	Slide 50: Multi-Threaded LAMMPS (Slurm)

	mpi
	Slide 51: Multi-Process (MPI) Example
	Slide 52: Distribute MPI Jobs - LAMMPS
	Slide 53: Distributing MPI Jobs (Slurm)

	job array
	Slide 54: Running Jobs With SLURM Job Arrays
	Slide 57: Running Jobs with SLURM Job Arrays
	Slide 58: Running Jobs with SLURM Job Arrays
	Slide 59: Running Jobs with SLURM Job Arrays
	Slide 60: Job Arrays Environment Variables
	Slide 61: Running Jobs with SLURM Job Arrays
	Slide 62: Running Jobs with SLURM Job Arrays
	Slide 63: Running Jobs with SLURM Job Arrays
	Slide 64: Running Jobs with SLURM Job Arrays
	Slide 65: Running Jobs with SLURM Job Arrays

	parallel vs job array
	Slide 68: GNU Parallel vs SLURM Job Arrays
	Slide 69: GNU Parallel vs. Job Arrays
	Slide 70: GNU Parallel vs. Job Arrays
	Slide 71: GNU Parallel vs. Job Arrays
	Slide 72: GNU Parallel vs. Job Arrays
	Slide 73: GNU Parallel vs. Job Arrays
	Slide 74: GNU Parallel vs. Job Arrays
	Slide 75: GNU Parallel vs. Job Arrays

	proper usage
	Slide 76: Proper Usage of GNU Parallel
	Slide 77: Common Rules
	Slide 78: Memory Consideration
	Slide 79: Load Balancing in GNU Parallel
	Slide 80: Task Granularity
	Slide 81: Components of a Task (Process)
	Slide 82: Typical Misuse - Tiny grain size case
	Slide 83: Typical Misuse - Large grain size case
	Slide 84: Proper Usage of Job Arrays
	Slide 85: Summary
	Slide 86
	Slide 87: Multi-Process (MPI) Example
	Slide 88: Distribute MPI Jobs - LAMMPS
	Slide 89: Distributing MPI Jobs (Slurm)
	Slide 90: Distributing MPI Jobs (PBS)

