
Parallelizing Massively

Independent Tasks

Siva Prasad Kasetti

HPC User Services

LSU HPC & LONI

sys-help@loni.org

Louisiana State University

Baton Rouge

29 October 2025

http://www.hpc.lsu.edu/training/archive/tutorials.php

GNU Parallel & Job Arrays

http://www.hpc.lsu.edu/training/archive/tutorials.php
http://www.hpc.lsu.edu/training/archive/tutorials.php

➢ Problem

2GNU Parallel & Job arrays

➢ Problem

➢ Running thousands of small, independent jobs individually is inefficient

and time-consuming, creating a major bottleneck in effectively utilizing

HPC resources.

3GNU Parallel & Job arrays

➢ Problem

➢ Running thousands of small, independent jobs individually is inefficient

and time-consuming, creating a major bottleneck in effectively utilizing

HPC resources.

➢ Managing, monitoring, and submitting each job manually becomes

impractical and leads to underutilization of available compute power.

4GNU Parallel & Job arrays

➢ Problem

➢ Running thousands of small, independent jobs individually is inefficient

and time-consuming, creating a major bottleneck in effectively utilizing

HPC resources.

➢ Managing, monitoring, and submitting each job manually becomes

impractical and leads to underutilization of available compute power.

➢ In bioinformatics, molecular dynamics and similar domains, workflows

often involve massive batches of short, independent analyses (e.g.,

genome assemblies, sequence alignments, or quality checks) that need

to be executed repetitively.

5GNU Parallel & Job arrays

➢ Problem

➢ Running thousands of small, independent jobs individually is inefficient

and time-consuming, creating a major bottleneck in effectively utilizing

HPC resources.

➢ Managing, monitoring, and submitting each job manually becomes

impractical and leads to underutilization of available compute power.

➢ In bioinformatics, running thousands of short, independent analyses,

e.g., genome assemblies or sequence alignment.

➢ Solution

6GNU Parallel & Job arrays

➢ Problem

➢ Running thousands of small, independent jobs individually is inefficient

and time-consuming, creating a major bottleneck in effectively utilizing

HPC resources.

➢ Managing, monitoring, and submitting each job manually becomes

impractical and leads to underutilization of available compute power.

➢ In bioinformatics, running thousands of short, independent analyses,

e.g., genome assemblies or sequence alignment.

➢ Solution

➢ GNU Parallel

GNU Parallel & Job arrays 7

➢ Problem

➢ Running thousands of small, independent jobs individually is inefficient

and time-consuming, creating a major bottleneck in effectively utilizing

HPC resources.

➢ Managing, monitoring, and submitting each job manually becomes

impractical and leads to underutilization of available compute power.

➢ In bioinformatics, running thousands of short, independent analyses,

e.g., genome assemblies or sequence alignment.

➢ Solution

➢ GNU Parallel or Job arrays

GNU Parallel & Job arrays 8

Outline

➢ Introduction

➢ What is GNU Parallel and SLURM Job arrays?

➢ When and Why to use GNU Parallel and SLURM Job arrays

➢ Examples: 1 million small MD simulations, 10k protein analysis

➢ Basic Usage

➢ GNU Parallel Syntax and Options

➢ Running jobs with GNU Parallel:

➢ Serial Tasks & Multi-Threaded Tasks - Run each LAMMPS task in serial

mode as well as using multiple threads

➢ Running jobs with Job arrays

➢ Submit and manage large sets of similar jobs using array indexing (--array)

➢ Proper usage

➢ Memory consideration (GNU Parallel)

➢ Task granularity (GNU Parallel)

➢ Best practices with Job arrays

9

(Previous Slide)

GNU Parallel & Job arrays

What is GNU Parallel and Job Arrays?

11GNU Parallel & Job arrays

12

Parallelizing Massive Individual Tasks

What is GNU Parallel and Job Arrays?

GNU Parallel & Job arrays

❖ Parallelize

❖ This refers to the process of dividing a workload into multiple smaller tasks and

executing them simultaneously. It allows for better utilization of computational

resources, such as multi-core CPUs or multiple nodes in a cluster.

13

Parallelizing Massive Individual Tasks

What is GNU Parallel and Job Arrays?

GNU Parallel & Job arrays

❖ Parallelize

❖ This refers to the process of dividing a workload into multiple smaller tasks and

executing them simultaneously. It allows for better utilization of computational

resources, such as multi-core CPUs or multiple nodes in a cluster.

❖ Massive

❖ Indicates the scale or volume of tasks being handled. It often refers to workloads

that consist of hundreds, thousands, or even millions of tasks, which would take

a long time to process sequentially.

14

Parallelizing Massive Individual Tasks

What is GNU Parallel and Job Arrays?

GNU Parallel & Job arrays

❖ Parallelize

❖ This refers to the process of dividing a workload into multiple smaller tasks and

executing them simultaneously. It allows for better utilization of computational

resources, such as multi-core CPUs or multiple nodes in a cluster.

❖ Massive

❖ Indicates the scale or volume of tasks being handled. It often refers to workloads

that consist of hundreds, thousands, or even millions of tasks, which would take

a long time to process sequentially.

❖ Individual (Independent)

❖ Each task operates independently of the others. This means there’s no

dependency between tasks, allowing them to be executed in parallel without

waiting for one another.

15

Parallelizing Massive Individual Tasks

What is GNU Parallel and Job Arrays?

GNU Parallel & Job arrays

❖ Parallelize

❖ This refers to the process of dividing a workload into multiple smaller tasks and

executing them simultaneously. It allows for better utilization of computational

resources, such as multi-core CPUs or multiple nodes in a cluster.

❖ Massive

❖ Indicates the scale or volume of tasks being handled. It often refers to workloads

that consist of hundreds, thousands, or even millions of tasks, which would take

a long time to process sequentially.

❖ Individual (Independent)

❖ Each task operates independently of the others. This means there’s no

dependency between tasks, allowing them to be executed in parallel without

waiting for one another.

❖ Tasks

❖ These are the units of work or commands you want to execute. Each task could

be a program, script, or function that processes a specific set of inputs.

16

Parallelizing Massive Individual Tasks

What is GNU Parallel and Job Arrays?

GNU Parallel & Job arrays

What do we want to accomplish?

➢ Parallize lots of small independent tasks on a multi-core platform

(compute nodes)

17

Core

Task 0

Task 1

Task 2

Task 3

Core

0

Task 0

Core

1

Task 1

Core

2

Task 2

Core

3

Task 3

GNU Parallel & Job arrays

Background and Distribute

18

Core

0

Task

0

Core

1

Task

1

Core

2

Task

2

Core

3

Task

3

Node 0

Core

0

Task

4

Core

1

Task

5

Core

2

Task

6

Core

3

Task

7

Node 1

GNU Parallel & Job arrays

The von Neumann Architecture

19

Main Memory

(code/data)

Central

Processing Unit

Input
Device

Cache

Output
Device

Control Unit

Arithmetic

Logic Unit

Core

GNU Parallel & Job arrays

Changing Times

➢ From 1986 - 2002, microprocessors were speeding like a rocket,

increasing in performance an average of 50% per year.

➢ Since then, it’s dropped to about 20% increase per year.

20

Source:
http://www.cs.columbia.edu/~sed
wards/classes/2012/3827-spring/

Limitation:

2 GHz Consumer

4 GHz Server

Moore's Law states that
transistor counts on chips
double roughly every two
years.

GNU Parallel & Job arrays

A Little Physics Problem

➢ Smaller transistors = faster processors.

➢ Faster processors = increased power consumption.

➢ Increased power consumption = increased heat.

➢ Increased heat = unreliable processors.

➢ Solution:

– Move away from single-core systems to multicore processors.

– “core” = central processing unit (CPU)

– Introducing parallelism

• What if your problem is also not CPU dominant?

21GNU Parallel & Job arrays

The von Neumann Architecture

22

Main Memory

(code/data)

CPU

I/O I/O

Cache

core core

cachecache

CC-interconnect

Around year

2005

GNU Parallel & Job arrays

GNU Parallel

➢ GNU parallel is a shell tool for executing “embarrassingly parallel”

tasks using one or more computers (compute nodes).

➢ Terminology:

– Task: Each small, independent piece of computation work to be

finished, e.g., a single genome computation, a single MD simulation

– Job: The list of tasks to be completed on a set of nodes (cores)

➢ A task can be a single command or a small script that must be run for

each of the lines in the input.

➢ The typical input is a list of files, a list of hosts, a list of users, a list of
URLs, or a list of tables.

➢ See more at: https://www.gnu.org/software/parallel/

23GNU Parallel & Job arrays

https://www.gnu.org/software/parallel/

GNU Parallel Syntax

Introduction to GNU Parallel

Adding GNU Parallel to Environment

➢ On SuperMike3:
[fchen14@mike139 ~]$ module av parallel

---- /usr/local/packages/Modules/default/modulefiles/linux-rhel8-icelake ----

parallel-netcdf/1.12.2/intel-2021.5.0
parallel/20210922/intel-2021.5.0

parallel-netcdf/1.12.2/intel-2021.5.0-intel-mpi-2021.5.1

load the module to environment

[fchen14@mike139 ~]$ module load parallel/20210922/intel-2021.5.0

[fchen14@mike139 ~]$ which parallel

/usr/local/packages/parallel/20210922/hrsviur/bin/parallel

[fchen14@mike139 ~]$ parallel –version # check GNU parallel version

GNU parallel 20210922

Copyright (C) 2007-2021 Ole Tange, http://ole.tange.dk and Free Software

Foundation, Inc.

...

25GNU Parallel & Job arrays

GNU Parallel Syntax

➢ Reading commands to be run in parallel from an input file:

parallel [OPTIONS] < CMDFILE

➢ Reading command arguments on the command line:

parallel [OPTIONS] COMMAND [ARGUMENTS] ::: ARGLIST

➢ Reading command arguments from an input file:

parallel [OPTIONS] COMMAND [ARGUMENTS] :::: ARGFILE

26GNU Parallel & Job arrays

ARGLIST from command line

➢ parallel [OPTIONS] COMMAND [ARGUMENTS] ::: ARGLIST

➢ Examples:
[fchen14@mike139 ~]$ parallel echo ::: A B C

A

B

C

[fchen14@mike139 ~]$ parallel echo ::: `seq 1 3`

1

2

3

[fchen14@mike139 ~]$ parallel echo ::: {A..Z}

A

B

...

Z

[fchen14@mike139 test]$ ls -1 | parallel echo

2013-06-18.tgz

backups.sh

bigmem_test.pbs

...

27GNU Parallel & Job arrays

ARGLIST from file

➢ parallel [OPTIONS] COMMAND [ARGUMENTS] :::: ARGFILE

[fchen14@mike139 GNU_PARALLEL]$ pwd

/project/fchen14/GNU_PARALLEL

[fchen14@mike139 GNU_PARALLEL]$ cat input.lst | head

01.lj

02.lj

03.lj

...

[fchen14@mike139 GNU_PARALLEL]$ head input.lst -n 5 | parallel echo

01.lj

02.lj

03.lj

04.lj

05.lj

[fchen14@mike139 GNU_PARALLEL]$ parallel echo :::: input.lst

01.lj

02.lj

...

28GNU Parallel & Job arrays

Replacement Strings

➢ ‘{}’ returns a full line read from the input source.
[fchen14@mike139 GNU_PARALLEL]$ parallel echo {} ::: data/in.lj

data/in.lj

➢ ‘{/}’ removes everything up to and including the last forward slash:
[fchen14@mike139 GNU_PARALLEL]$ parallel echo {/} ::: data/in.lj

in.lj

➢ ‘{//}’ returns the directory name of input line.

[fchen14@mike139 GNU_PARALLEL]$ parallel echo {//} ::: data/in.lj

data

➢ ‘{.}’ removes any filename extension:
[fchen14@mike139 GNU_PARALLEL]$ parallel echo {.} ::: data/in.lj

data/in

➢ ‘{/.}’ returns the basename of the input line without extension. It is a

combination of {/} and {.}:
[fchen14@mike139 GNU_PARALLEL]$ parallel echo {/.} ::: data/in.lj

in

➢ See “man parallel” for more detailed explanation.

29GNU Parallel & Job arrays

Replacement String Example

➢ Print the full path of the input file, and then print the desired output file

name, e.g.:

– Input file: data/lj.in

– Output file name: output/lj.out

Process data/lj.in and send result to output/lj.out

$ parallel echo {} output/{/.}.out ::: data/lj.in

data/lj.in output/lj.out

30GNU Parallel & Job arrays

Parallelize Job Script

➢ GNU parallel is often called as this:

cat input_file | parallel command

parallel command ::: foo bar

➢ If command is a script, parallel can be combined into a single file so

this will run the script in parallel:

parallel [OPTIONS] script [ARGUMENTS] ::: ARGLIST

– or

parallel [OPTIONS] script [ARGUMENTS] :::: ARGFILE

➢ See next slide for example...

31GNU Parallel & Job arrays

Parallize Script Example

➢ This is the script we want to parallize "cmd_ex.sh":

#!/bin/bash

print the input, on which host, which working directory

echo "This script uses input: $1 on $HOSTNAME:$PWD"

➢ Parallize the script using ARGLIST from command line:

[fchen14@mike139 GNU_PARALLEL]$ parallel --wd $PWD ./cmd_ex.sh ::: A B C

This script uses input: A on mike139:/project/fchen14/GNU_PARALLEL

This script uses input: B on mike139:/project/fchen14/GNU_PARALLEL

This script uses input: C on mike139:/project/fchen14/GNU_PARALLEL

➢ Parallize the script using ARGFILE:
[fchen14@mike139 GNU_PARALLEL]$ cat argfile

A

B

C

[fchen14@mike139 GNU_PARALLEL]$ parallel --wd $PWD ./cmd_ex.sh :::: argfile

This script uses input: A on mike139:/project/fchen14/GNU_PARALLEL

This script uses input: B on mike139:/project/fchen14/GNU_PARALLEL

This script uses input: C on mike139:/project/fchen14/GNU_PARALLEL

➢ Can parallize Python/Perl scripts, see “man parallel” for details

32GNU Parallel & Job arrays

Common OPTIONS --jobs (-j)

➢ --jobs N (-j N)

– Number of jobslots on each machine (node). Run up to N jobs in

parallel. 0 means as many as possible. Default is 100% which will run
one job per CPU core on each machine.

– On HPC/LONI clusters, N is number of jobslots per node.

– Make sure you use GNU Parallel version >=20161022 to avoid a “Max
jobs to run” bug

[fchen14@mike139 test]$ parallel --version

GNU parallel 20210922

...

➢ -j +N

– Add N to the number of CPU cores. Run this many jobs in parallel.

➢ -j -N

– Subtract N from the number of CPU cores. Run this many jobs in

parallel. If the evaluated number is less than 1 then 1 will be used.

33GNU Parallel & Job arrays

Common OPTIONS --slf (Slurm)

➢ --slf filename (--sshloginfile filename)

– To get the sshloginfile on Slurm job session, use the below command:

scontrol show hostname $SLURM_NODELIST > nodefile

– A typical example on HPC/LONI clusters while running batch jobs:

--slf nodefile

– Look at $SLURM_NODELIST and nodefile
start an interactive job requesting 2 nodes (64x2=128 cores)

[kasetti@mike4 ~]$ srun -N2 -n128 -p workq --cpu-bind none --pty bash

srun: Job is in held state, pending scheduler release

srun: job 39474 queued and waiting for resources

Interactive job 39474 waiting:

srun: job 39474 has been allocated resources # we got mike157 and mike158

[kasetti@mike157 ~]$ echo $SLURM_NODELIST

mike[157-158]

[kasetti@mike157 ~]$ scontrol show hostname $SLURM_NODELIST > nodefile

[kasetti@mike157 ~]$ cat nodefile

mike157

mike158

35GNU Parallel & Job arrays

Common OPTIONS --sshdelay

➢ If many tasks are started on the same compute node, sshd can be

overloaded. On SuperMike3/QB3, some of the tasks might fail to start,

e.g., starting all 64/48 tasks at the same time.

➢ GNU parallel can insert a delay between each task run on the same

server:

[fchen14@mike139 GNU_PARALLEL]$ parallel --sshdelay 0.1 echo ::: A B C

A

B

C

36GNU Parallel & Job arrays

Common OPTIONS --wd

➢ --wd mydir (--workdir mydir)

– Designate the working directory of your commands.

– A typical value can be:

• $PBS_O_WORDIR (PBS)

• $SLURM_SUMBIT_DIR (Slurm)

37GNU Parallel & Job arrays

Common OPTIONS --env

➢ --env ENV_VAR

– --env to tell GNU parallel to transfer an environment variable to the

remote system.

– A typical usage:

export OMP_NUM_THREADS=5

parallel --env OMP_NUM_THREADS cmd ::: ARGLIST

38GNU Parallel & Job arrays

Common OPTIONS --progress

➢ --progress

– Show progress of computations. (Not recommended for batch jobs)

– List the computers involved in the task with number of CPU cores

detected and the max number of jobs to run.

– After that show progress for each node: number of running jobs, number

of completed jobs, and percentage of all jobs done by this computer.

– Example:
[fchen14@mike139 ~]$ parallel --progress echo ::: A B C

Computers / CPU cores / Max jobs to run

1:local / 64 / 3

Computer:jobs running/jobs completed/%of started jobs/Average seconds to complete

local:3/0/100%/0.0s A

local:2/1/100%/1.0s B

local:1/2/100%/0.5s C

local:0/3/100%/0.3s

➢ See also --bar

39GNU Parallel & Job arrays

Common OPTIONS --joblog

➢ --joblog logfile

– Creates a record for each completed subjob (task) to be written to

LOGFILE, with info on how long they took, their exit status, etc.

– Can be used to identify failed jobs, e.g.:

[fchen14@mike139 misc]$ parallel --joblog logfile exit ::: 1 2 0 0

[fchen14@mike139 misc]$ cat logfile

Seq Host Starttime JobRuntime Send Receive Exitval Signal Command

1 : 1477514132.358 0.019 0 0 1 0 exit 1

2 : 1477514132.375 0.003 0 0 2 0 exit 2

3 : 1477514132.376 0.002 0 0 0 0 exit 0

4 : 1477514132.377 0.003 0 0 0 0 exit 0

40GNU Parallel & Job arrays

Common OPTIONS --timeout

➢ --timeout secs

– Time out for command. If the command runs for longer than secs

(seconds) it will get killed.

– If secs is followed by a % then the timeout will dynamically be computed

as a percentage of the median average runtime. Only values > 100%

will make sense.

❖ Useful if you know the command has failed if it runs longer than a

threshold.

41GNU Parallel & Job arrays

➢ Download the material for this training at:

➢ wget http://www.hpc.lsu.edu/training/weekly-

materials/Downloads/gnu_parallel_tut-main-fall2025.tar.gz

42GNU Parallel & Job arrays

Serial Jobs Example

Introduction to GNU Parallel

LAMMPS Introduction

➢ LAMMPS is a classical molecular dynamics code with a focus on

materials modeling. https://www.lammps.org/

➢ You don’t need any background in molecular dynamics/LAMMPS to
understand today’s example.

➢ Typical LAMMPS Syntax

– Serial run

lmp_serial -in in.script

– Multi-Threaded run
env OMP_NUM_THREADS=4 lmp_omp -sf omp -in in.script # use OMP_NUM_THREADS

lmp_omp -sf omp -pk omp 5 -in in.script # use -pk omp to specify threads

– MPI run
srun --overlap -n 4 lmp_mpi -in in.script # Slurm version, --overlap only
needed for interactive job

mpirun -n 4 lmp_mpi -in in.script # PBS version

– Custom command:
lmp_serial -var nsteps 200 –in in.script # we defined a custom variable in
the input file to let nsteps control total steps to run,

The above command will run our input for 200 steps

GNU Parallel & Job arrays 44

https://www.lammps.org/

LAMMPS Input File Used Today
3d Lennard-Jones melt

variable x index 1

variable y index 1

variable z index 1

variable xx equal 80*$x

variable yy equal 80*$y

variable zz equal 80*$z

units lj

atom_style atomic

lattice fcc 0.8442

region box block 0 ${xx} 0 ${yy} 0 ${zz}

create_box 1 box

create_atoms 1 box

mass 1 1.0

velocity all create 1.44 87287 loop geom

pair_style lj/cut 2.5

pair_coeff 1 1 1.0 1.0 2.5

neighbor 0.3 bin

neigh_modify delay 0 every 20 check no

fix 1 all nve

${nsteps} is the parameter passing from LAMMPS command line "-var nsteps 200"

run ${nsteps}

45GNU Parallel & Job arrays

Distribute Serial Jobs LAMMPS (Slurm)
#!/bin/bash

#SBATCH -N 2 # request two nodes

#SBATCH -n 128 # specify 128 process

#SBATCH -t 2:00:00

#SBATCH -p checkpt

#SBATCH -A hpc_hpcadmin8

#SBATCH -o gp-serial.out

TASKS_PER_NODE=16

SECONDS=0

scontrol show hostname $SLURM_NODELIST > nodefile

parallel --joblog lmp.serial.log \

-j $TASKS_PER_NODE \

--slf nodefile \

--workdir $SLURM_SUBMIT_DIR \

--sshdelay 0.1 \

`which lmp_serial` -in {} -var nsteps 200 :::: input.lst

echo "took $SECONDS sec"

46

[fchen14@mike2 GNU_PARALLEL]$ head input.lst
data/01.lj.in
data/02.lj.in
data/03.lj.in
data/04.lj.in
data/05.lj.in
...

GNU Parallel & Job arrays

In case the task command is too long

(complex)
➢ Use a script for each task to be distributed, example here (call_lmp.sh)

➢ GNU Parallel will distribute each task script

TASKS_PER_NODE=16

scontrol show hostname $SLURM_NODELIST > nodefile

parallel --joblog lmp.serial.log \

-j $TASKS_PER_NODE \

--slf nodefile \

--workdir $SLURM_SUBMIT_DIR \

--sshdelay 0.1 \

./call_lmp.sh {} 200 :::: input.lst

content of call_lmp.sh

#!/bin/bash

echo "\$1=$1,\$2=$2"

lmp_serial -in $1 -var nsteps $2

47

$1 is the input from input.lst,

e.g. data/01.lj.in

$2 is the input parameter 200

GNU Parallel & Job arrays

Multi-Threaded Example

Introduction to GNU Parallel

Introduction to GNU Parallel

Distribute Multi-Threaded Jobs

➢ Distribute Multi-Threaded jobs is very similar to the pure serial job

example, the only difference is TASKS_PER_NODE:

– TASKS_PER_NODE=CPU_CORES_PER_NODE / NUM_THREADS_PER_TASK

➢ If each job uses 4 threads, each node on SuperMike3 has 64 cores,

then

– TASKS_PER_NODE=64/4=16

➢ Slurm script (#SBATCH comments omitted):
TASKS_PER_NODE=16

export OMP_NUM_THREADS=4

SECONDS=0

scontrol show hostname $SLURM_NODELIST > nodefile

parallel -j $TASKS_PER_NODE \

--slf nodefile \

--workdir $WDIR \

--sshdelay 0.1 \

--env OMP_NUM_THREADS \

`which lmp_omp` -sf omp -in {} -var nsteps 200 :::: input.lst

echo "took $SECONDS sec"

Put 64/4=16 tasks per node

49

Pass the environmental variable

OMP_NUM_THREADS to each
task

OpenMP switch in lammps

GNU Parallel & Job arrays

Multi-Threaded LAMMPS (Slurm)
#!/bin/bash

#SBATCH -N 2 # request two nodes

#SBATCH -n 128 # specify 128 process

#SBATCH -t 2:00:00

#SBATCH -p checkpt

#SBATCH -A hpc_hpcadmin8

#SBATCH -o gp-omp.out

TASKS_PER_NODE=16

export OMP_NUM_THREADS=4

SECONDS=0

scontrol show hostname $SLURM_NODELIST > nodefile

parallel --joblog lmp.omp.log \

-j $TASKS_PER_NODE \

--slf nodefile \

--workdir $SLURM_SUBMIT_DIR \

--sshdelay 0.1 \

--env OMP_NUM_THREADS \

`which lmp_omp` -sf omp -in {} -var nsteps 200 :::: input.lst

echo "took $SECONDS sec"

50

Use 4 OMP threads per task

This script is on SuperMike3, 64 cores per node, so

TASKS_PER_NODE=64/4=16

OpenMP switch in lammps

GNU Parallel & Job arrays

Multi-Process (MPI) Example

Introduction to GNU Parallel

Distribute MPI Jobs - LAMMPS

➢ This section describes how to distribute small MPI jobs.

➢ Example problem - LAMMPS MPI

– Using the same input file, but with multiple MPI process for each task.

– For simplicity, each MPI process will use only one thread

Introduction to GNU Parallel 52

Distributing MPI Jobs (Slurm)
#!/bin/bash

#SBATCH -N 2 # request two nodes

#SBATCH -n 128 # specify 128 process

#SBATCH -t 2:00:00

#SBATCH -p checkpt

#SBATCH -A hpc_hpcadmin8

#SBATCH -o gp-mpi.out

TASKS_PER_NODE=16

PROC_PER_TASK=4

SECONDS=0

scontrol show hostname $SLURM_NODELIST > nodefile

parallel --joblog lmp.mpi.log \

-j $TASKS_PER_NODE \

--slf nodefile \

--workdir $SLURM_SUBMIT_DIR \

--sshdelay 0.1 \

srun --overlap -n $PROC_PER_TASK `which lmp` -in {} -var nsteps 200 ::::
input.lst

echo "took $SECONDS sec"

Introduction to GNU Parallel

[fchen14@mike4 GNU_PARALLEL]$ head input.lst
data/01.lj.in
data/02.lj.in
data/03.lj.in
data/04.lj.in
data/05.lj.in
...

53

Use 4 MPI processes per task

This script is on SuperMike3, 64 cores per node, so

TASKS_PER_NODE=64/4=16

Running Jobs With

SLURM Job Arrays

GNU Parallel & Job Arrays

Running Jobs with SLURM Job Arrays

➢ Definition: A SLURM Job Array allows you to submit and manage a large

number of similar, independent jobs efficiently using a single batch script

and one submission command.

➢ Purpose: Designed for large-scale workloads (e.g., parameter sweeps,

simulations, bioinformatics pipelines) where each task runs independently

but under the same resource settings.

➢ Job Type: Job arrays are supported only for batch jobs (not interactive

jobs).

➢ Efficiency: SLURM launches and schedules many jobs within seconds,

minimizing submission overhead.

➢ Configuration & Resource Specification:

➢ All array tasks share the same batch script and requested resources

(CPUs, memory, time), ensuring consistency across jobs.

➢ Each task receives its own independent allocation within those

resources — allowing SLURM to schedule and manage them efficiently.

57GNU Parallel & Job arrays

Running Jobs with SLURM Job Arrays

➢ Every task is automatically assigned a unique index, available as

$SLURM_ARRAY_TASK_ID, which is commonly used to pick

input/output files dynamically.

➢ For serial or multi-threaded workloads, SLURM handles CPU and

memory distribution automatically.

➢ For MPI or multi-node workloads, explicitly specify --nodes, --ntasks, or

--cpus-per-task as needed.

➢ Advantages

➢ Simplifies and automates submission of large parameter sweeps or

ensemble simulations.

➢ Reduces scheduler load — one submission command for thousands of

jobs.

➢ Easy monitoring and management using squeue, scontrol.

➢ Fault-tolerant: Failed tasks can be re-run individually using their array

index.

58GNU Parallel & Job arrays

Running Jobs with SLURM Job Arrays

➢ Syntax

➢ #SBATCH --array=<index_list> or #SBATCH -a=<index_list>

➢ where “index_list”

a. Range: a range of index values - #SBATCH --array=n-m, where n is the

starting index, m is the ending index

b. Step size: an optional step size - #SBATCH --array=n-m:step_length

c. Specific Values: specific array index values - #SBATCH --array=1,3,5,7

d. Concurrency Limit: You can limit how many tasks run at the same time

using the “%” modifier, for example, --array=0-15%4 runs only 4 tasks

concurrently.

59GNU Parallel & Job arrays

Job Arrays Environment Variables

➢ Job arrays will have additional environment variables set.

➢ SLURM_ARRAY_JOB_ID - the first job ID of the array.

➢ SLURM_ARRAY_TASK_ID - the job array index value.

➢ SLURM_ARRAY_TASK_COUNT - the number of tasks in the job array.

➢ SLURM_ARRAY_TASK_MAX - the highest job array index value.

➢ SLURM_ARRAY_TASK_MIN - the lowest job array index value.

➢ File Names:

➢ %A will be replaced by the value of SLURM_ARRAY_JOB_ID

➢ %a will be replaced by the value of SLURM_ARRAY_TASK_ID.

➢ Example: slurm_%A_%a.out, slurm_%A_%a.err

60GNU Parallel & Job arrays

Running Jobs with SLURM Job Arrays

61GNU Parallel & Job arrays

Running Jobs with SLURM Job Arrays

62GNU Parallel & Job arrays

Defines Job array with –array or -a

with <index_list>

Running Jobs with SLURM Job Arrays

63GNU Parallel & Job arrays

Defines output files with

$SLURM_ARRAY_JOB_ID

$SLURM_ARRAY_TASK_ID

Running Jobs with SLURM Job Arrays

64GNU Parallel & Job arrays

Defines output files with

$SLURM_ARRAY_JOB_ID

$SLURM_ARRAY_TASK_ID

Running Jobs with SLURM Job Arrays

65GNU Parallel & Job arrays

Input files indexed with

$SLURM_ARRAY_TASK_ID

GNU Parallel

vs

SLURM Job Arrays

GNU Parallel & Job Arrays

GNU Parallel vs. Job Arrays

GNU Parallel Job arrays

Introduction to GNU Parallel 69

GNU Parallel Job arrays

Introduction to GNU Parallel 70

Runs commands locally within an
existing allocation

Each array element is submitted to
the scheduler as a separate job

Execution Scope

GNU Parallel vs. Job Arrays

GNU Parallel vs. Job Arrays

GNU Parallel Job arrays

Introduction to GNU Parallel 71

Runs commands locally within an
existing allocation

Each array element is submitted to
the scheduler as a separate job

Execution Scope

User manually sets concurrency
using --jobs

Scheduler allocates resources

(CPUs, GPUs, memory) per task
automatically

Resource control

GNU Parallel vs. Job Arrays

GNU Parallel Job arrays

Introduction to GNU Parallel 72

Runs commands locally within an
existing allocation

Each array element is submitted to
the scheduler as a separate job

Execution Scope

User manually sets concurrency
using --jobs

Scheduler allocates resources

(CPUs, GPUs, memory) per task
automatically

Resource control

Appears as one job to the
scheduler

Every task has its own job ID and
status

Visibility

GNU Parallel vs. Job Arrays

GNU Parallel Job arrays

Introduction to GNU Parallel 73

Runs commands locally within an
existing allocation

Each array element is submitted to
the scheduler as a separate job

Execution Scope

User manually sets concurrency
using --jobs

Scheduler allocates resources

(CPUs, GPUs, memory) per task
automatically

Resource control

Appears as one job to the
scheduler

Every task has its own job ID and
status

Visibility

If the main job stops, all subtasks
end

Failed tasks can be retried without
affecting others

Failure handling

GNU Parallel vs. Job Arrays

GNU Parallel Job arrays

Introduction to GNU Parallel 74

Runs commands locally within an
existing allocation

Each array element is submitted to
the scheduler as a separate job

Execution Scope

User manually sets concurrency
using --jobs

Scheduler allocates resources

(CPUs, GPUs, memory) per task
automatically

Resource control

Appears as one job to the
scheduler

Every task has its own job ID and
status

Visibility

If the main job stops, all subtasks
end

Failed tasks can be retried without
affecting others

Failure handling

Basic progress output from GNU
Parallel

Full integration with cluster tools
like squeue, qstat

Monitoring tools

GNU Parallel vs. Job Arrays

GNU Parallel Job arrays

Introduction to GNU Parallel 75

Runs commands locally within an
existing allocation

Each array element is submitted to
the scheduler as a separate job

User manually sets concurrency
using --jobs

Scheduler allocates resources

(CPUs, GPUs, memory) per task
automatically

Appears as one job to the
scheduler

Every task has its own job ID and
status

If the main job stops, all subtasks
end

Failed tasks can be retried without
affecting others

Basic progress output from GNU
Parallel

Full integration with cluster tools
like squeue, qstat

File conversions, preprocessing,
small parameter sweeps

Genome analyses, simulations,
large-scale sweeps

Execution Scope

Resource control

Visibility

Failure handling

Monitoring tools

Typical use cases

Proper Usage of GNU Parallel

Introduction to GNU Parallel

Common Rules

➢ Don’t use more than one node when you are debugging/testing your

code

➢ Know the performance of single task

➢ Start with only a few tasks in your input.lst

➢ After you are comfortable with one node job, start with two node job

first before jumping to more than three nodes

➢ Typically use no more than 5 nodes.

Introduction to GNU Parallel 77

Memory Consideration

➢ Relationship between node memory and cores

– Rule of Thumb: cannot exceed the available memory on a node

Introduction to GNU Parallel

Available node

memory 256 GB

Available node

memory 256 GB

4 GB mem per task,

How many tasks per node?
8 GB mem per task,

How many tasks per node?

78

Available node

memory 256 GB

Avoid this situation, hard to

calculate/predict memory usage

Waste

Load Balancing in GNU Parallel

➢ GNU Parallel spawns the next job when one finishes - keeping the

CPUs active and thus saving time.

Introduction to GNU Parallel

Job 1

Job 2

Job 3

Job 4

Job 5

Job 6

Job 7

Job 8

Job 9

Waste Waste

Job 1
Job 2 Job 3

Job 4

Job 5Job 6

Job 7

Job 8

Job 9

Job 10

WasteJob 10

Without Load Balancing With Load Balancing

Cpu0 Cpu1 Cpu2 Cpu0 Cpu1 Cpu2

E
x
e
c
u
t
i
o
n

T
i
m
e

79

Task Granularity

➢ In parallel computing, granularity (or grain size) of a task is a measure

of the amount of work (or computation) which is performed by that

task.

➢ Impact of granularity on performance

– Using fine grains or small tasks results in more parallelism and hence

increases the speedup. However, synchronization overhead, scheduling

strategies etc. can negatively impact the performance of fine-grained
tasks.

– Simply increasing parallelism alone cannot give the best performance.

– In order to reduce the communication overhead, granularity can be
increased. Coarse grained tasks have less communication overhead but

they often cause load imbalance. Hence optimal performance is

achieved between the two extremes of fine-grained and coarse-grained

parallelism.

Introduction to GNU Parallel 80

Ref: https://en.wikipedia.org/wiki/Granularity_(parallel_computing)

https://en.wikipedia.org/wiki/Granularity_(parallel_computing)

Components of a Task (Process)

Load program

instructions

Allocate memory

space

Load program

data

Perform

Computation on

CPU cores

Release memory,

data, other

resources

Introduction to GNU Parallel

Process start

Overhead

Process end

overhead

Real

computation

work

81

Typical Misuse -

Tiny grain size case
➢ Tiny grain size

– E.g., each task takes little time (e.g., less than a second)

– Most time will be spent on overhead

Introduction to GNU Parallel 82

single task

core0 core1 core2

An extreme case - Cores are just idling

core0 core1 core2

Typical Misuse -

Large grain size case
➢ Large grain size

– Some tasks are much longer than the rest

– Load balancing can never be achieved

Introduction to GNU Parallel 83

single task

core0 core1 core2

An extreme case - Load imbalancing

core0 core1 core2

Proper Usage of Job Arrays

➢ Best Practices:

➢ Use for many similar, independent tasks (e.g., simulations, parameter

sweeps).

➢ Use $SLURM_ARRAY_TASK_ID to assign unique inputs/outputs per

task.

➢ Limit concurrency with % (e.g., --array=1-1000%50) to control system

load.

➢ Avoid tiny jobs — combine short tasks to reduce overhead.

➢ Organize output files with %A and %a in names.

➢ Re-run failed tasks by specifying their indices (e.g., --array=5,9,13).

Introduction to GNU Parallel 84

Summary

➢ In today’s training, we have covered

➢ Why need GNU Parallel or SLURM Job arrays?

➢ Basic syntax of GNU Parallel and examples

➢ How to run jobs with Job arrays?

➢ How to use these tools wisely.

➢ For more information about GNU Parallel and SLURM Job Arrays, refer

to:

– https://www.gnu.org/software/parallel/parallel_tutorial.html

– https://slurm.schedmd.com/job_array.html

Introduction to GNU Parallel 85

https://www.gnu.org/software/parallel/parallel_tutorial.html
https://www.gnu.org/software/parallel/parallel_tutorial.html
https://slurm.schedmd.com/job_array.html
https://slurm.schedmd.com/job_array.html
https://slurm.schedmd.com/job_array.html
https://slurm.schedmd.com/job_array.html
https://slurm.schedmd.com/job_array.html

Introduction to GNU Parallel 86

Appendix

Multi-Process (MPI) Example

Introduction to GNU Parallel

Distribute MPI Jobs - LAMMPS

➢ This section describes how to distribute small MPI jobs.

➢ Example problem - LAMMPS MPI

– Using the same input file, but with multiple MPI process for each task.

– For simplicity, each MPI process will use only one thread

Introduction to GNU Parallel 88

Distributing MPI Jobs (Slurm)
#!/bin/bash

#SBATCH -N 2 # request two nodes

#SBATCH -n 128 # specify 128 process

#SBATCH -t 2:00:00

#SBATCH -p checkpt

#SBATCH -A hpc_hpcadmin8

#SBATCH -o gp-mpi.out

TASKS_PER_NODE=16

PROC_PER_TASK=4

SECONDS=0

scontrol show hostname $SLURM_NODELIST > nodefile

parallel --joblog lmp.mpi.log \

-j $TASKS_PER_NODE \

--slf nodefile \

--workdir $SLURM_SUBMIT_DIR \

--sshdelay 0.1 \

srun --overlap -n $PROC_PER_TASK `which lmp` -in {} -var nsteps 200 ::::
input.lst

echo "took $SECONDS sec"

Introduction to GNU Parallel

[fchen14@mike4 GNU_PARALLEL]$ head input.lst
data/01.lj.in
data/02.lj.in
data/03.lj.in
data/04.lj.in
data/05.lj.in
...

89

Use 4 MPI processes per task

This script is on SuperMike3, 64 cores per node, so

TASKS_PER_NODE=64/4=16

Distributing MPI Jobs (PBS)
#!/bin/bash

#PBS -l nodes=2:ppn=20

#PBS -l walltime=1:00:00

#PBS -q checkpt

#PBS -A hpc_hpcadmin8

#PBS -j oe

#PBS -o gp-omp-pbs.out

module purge

module load parallel

module load lammps

TASKS_PER_NODE=4

SECONDS=0

cd $PBS_O_WORKDIR

parallel --joblog lmp.mpi.pbs.log \

-j $TASKS_PER_NODE \

--slf $PBS_NODEFILE \

--workdir $PBS_O_WORKDIR \

--sshdelay 0.1 \

mpirun -np 5 `which lmp` -in {} -var nsteps 200 :::: input.lst

echo "took $SECONDS sec"

Introduction to GNU Parallel

[fchen14@mike4 GNU_PARALLEL]$ head input.lst
data/01.lj.in
data/02.lj.in
data/03.lj.in
data/04.lj.in
data/05.lj.in
...

90

Use 5 MPI processes per task

This script is on SuperMIC, 20 cores per node, so

TASKS_PER_NODE=20/5=4

	IntroAndOverview
	Slide 1: Parallelizing Massively Independent Tasks
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Outline

	what is parallel & job array
	Slide 11: What is GNU Parallel and Job Arrays?
	Slide 12: What is GNU Parallel and Job Arrays?
	Slide 13: What is GNU Parallel and Job Arrays?
	Slide 14: What is GNU Parallel and Job Arrays?
	Slide 15: What is GNU Parallel and Job Arrays?
	Slide 16: What is GNU Parallel and Job Arrays?

	background
	Slide 17: What do we want to accomplish?
	Slide 18: Background and Distribute
	Slide 19: The von Neumann Architecture
	Slide 20: Changing Times
	Slide 21: A Little Physics Problem
	Slide 22: The von Neumann Architecture

	parallel
	Slide 23: GNU Parallel

	parallel syntax
	Slide 24: GNU Parallel Syntax
	Slide 25: Adding GNU Parallel to Environment
	Slide 26: GNU Parallel Syntax
	Slide 27: ARGLIST from command line
	Slide 28: ARGLIST from file
	Slide 29: Replacement Strings
	Slide 30: Replacement String Example
	Slide 31: Parallelize Job Script
	Slide 32: Parallize Script Example

	parallel options
	Slide 33: Common OPTIONS --jobs (-j)
	Slide 35: Common OPTIONS --slf (Slurm)
	Slide 36: Common OPTIONS --sshdelay
	Slide 37: Common OPTIONS --wd
	Slide 38: Common OPTIONS --env
	Slide 39: Common OPTIONS --progress
	Slide 40: Common OPTIONS --joblog
	Slide 41: Common OPTIONS --timeout
	Slide 42

	serial
	Slide 43: Serial Jobs Example
	Slide 44: LAMMPS Introduction
	Slide 45: LAMMPS Input File Used Today
	Slide 46: Distribute Serial Jobs LAMMPS (Slurm)
	Slide 47: In case the task command is too long (complex)

	multithread
	Slide 48: Multi-Threaded Example
	Slide 49: Distribute Multi-Threaded Jobs
	Slide 50: Multi-Threaded LAMMPS (Slurm)

	mpi
	Slide 51: Multi-Process (MPI) Example
	Slide 52: Distribute MPI Jobs - LAMMPS
	Slide 53: Distributing MPI Jobs (Slurm)

	job array
	Slide 54: Running Jobs With SLURM Job Arrays
	Slide 57: Running Jobs with SLURM Job Arrays
	Slide 58: Running Jobs with SLURM Job Arrays
	Slide 59: Running Jobs with SLURM Job Arrays
	Slide 60: Job Arrays Environment Variables
	Slide 61: Running Jobs with SLURM Job Arrays
	Slide 62: Running Jobs with SLURM Job Arrays
	Slide 63: Running Jobs with SLURM Job Arrays
	Slide 64: Running Jobs with SLURM Job Arrays
	Slide 65: Running Jobs with SLURM Job Arrays

	parallel vs job array
	Slide 68: GNU Parallel vs SLURM Job Arrays
	Slide 69: GNU Parallel vs. Job Arrays
	Slide 70: GNU Parallel vs. Job Arrays
	Slide 71: GNU Parallel vs. Job Arrays
	Slide 72: GNU Parallel vs. Job Arrays
	Slide 73: GNU Parallel vs. Job Arrays
	Slide 74: GNU Parallel vs. Job Arrays
	Slide 75: GNU Parallel vs. Job Arrays

	proper usage
	Slide 76: Proper Usage of GNU Parallel
	Slide 77: Common Rules
	Slide 78: Memory Consideration
	Slide 79: Load Balancing in GNU Parallel
	Slide 80: Task Granularity
	Slide 81: Components of a Task (Process)
	Slide 82: Typical Misuse - Tiny grain size case
	Slide 83: Typical Misuse - Large grain size case
	Slide 84: Proper Usage of Job Arrays
	Slide 85: Summary
	Slide 86
	Slide 87: Multi-Process (MPI) Example
	Slide 88: Distribute MPI Jobs - LAMMPS
	Slide 89: Distributing MPI Jobs (Slurm)
	Slide 90: Distributing MPI Jobs (PBS)

