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➢ Problem

➢ Running thousands of small, independent jobs individually is inefficient 

and time-consuming, creating a major bottleneck in effectively utilizing 

HPC resources. 

➢ Managing, monitoring, and submitting each job manually becomes 

impractical and leads to underutilization of available compute power.

➢ In bioinformatics, molecular dynamics and similar domains, workflows 

often involve massive batches of short, independent analyses (e.g., 

genome assemblies, sequence alignments, or quality checks) that need 

to be executed repetitively.
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and time-consuming, creating a major bottleneck in effectively utilizing 

HPC resources. 

➢ Managing, monitoring, and submitting each job manually becomes 

impractical and leads to underutilization of available compute power.
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e.g., genome assemblies or sequence alignment.
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Outline

➢ Introduction

➢ What is GNU Parallel and SLURM Job arrays?

➢ When and Why to use GNU Parallel and SLURM  Job arrays

➢ Examples: 1 million small MD simulations, 10k protein analysis

➢ Basic Usage

➢ GNU Parallel Syntax and Options

➢ Running jobs with GNU Parallel:

➢ Serial Tasks & Multi-Threaded Tasks - Run each LAMMPS task in serial 

mode as well as using multiple threads

➢ Running jobs with Job arrays 

➢ Submit and manage large sets of similar jobs using array indexing (--array)

➢ Proper usage

➢ Memory consideration (GNU Parallel)

➢ Task granularity (GNU Parallel)

➢ Best practices with Job arrays
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What is GNU Parallel and Job Arrays?
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❖ Parallelize

❖ This refers to the process of dividing a workload into multiple smaller tasks and 

executing them simultaneously. It allows for better utilization of computational 

resources, such as multi-core CPUs or multiple nodes in a cluster.
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❖ Parallelize

❖ This refers to the process of dividing a workload into multiple smaller tasks and 

executing them simultaneously. It allows for better utilization of computational 

resources, such as multi-core CPUs or multiple nodes in a cluster.

❖ Massive

❖ Indicates the scale or volume of tasks being handled. It often refers to workloads 

that consist of hundreds, thousands, or even millions of tasks, which would take 

a long time to process sequentially.

❖ Individual (Independent)

❖ Each task operates independently of the others. This means there’s no 

dependency between tasks, allowing them to be executed in parallel without 

waiting for one another.

❖ Tasks

❖ These are the units of work or commands you want to execute. Each task could 

be a program, script, or function that processes a specific set of inputs.
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What do we want to accomplish?

➢ Parallize lots of small independent tasks on a multi-core platform 

(compute nodes)
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Background and Distribute
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The von Neumann Architecture
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Changing Times

➢ From 1986 - 2002, microprocessors were speeding like a rocket, 

increasing in performance an average of 50% per year.

➢ Since then, it’s dropped to about 20% increase per year.

20

Source: 
http://www.cs.columbia.edu/~sed
wards/classes/2012/3827-spring/  

Limitation:

2 GHz Consumer

4 GHz Server

Moore's Law states that 
transistor counts on chips 
double roughly every two 
years.
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A Little Physics Problem

➢ Smaller transistors = faster processors.

➢ Faster processors = increased power consumption.

➢ Increased power consumption = increased heat.

➢ Increased heat = unreliable processors.

➢ Solution:

– Move away from single-core systems to multicore processors.

– “core” = central processing unit (CPU)

– Introducing parallelism

• What if your problem is also not CPU dominant?
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The von Neumann Architecture

22

Main Memory

(code/data)

CPU

I/O I/O

Cache

core core

cachecache

CC-interconnect

Around year 

2005

GNU Parallel & Job arrays



GNU Parallel

➢ GNU parallel is a shell tool for executing “embarrassingly parallel” 

tasks using one or more computers (compute nodes). 

➢ Terminology:

– Task: Each small, independent piece of computation work to be 

finished, e.g., a single genome computation, a single MD simulation

– Job: The list of tasks to be completed on a set of nodes (cores)

➢ A task can be a single command or a small script that must be run for 

each of the lines in the input. 

➢ The typical input is a list of files, a list of hosts, a list of users, a list of 
URLs, or a list of tables. 

➢ See more at: https://www.gnu.org/software/parallel/
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Adding GNU Parallel to Environment

➢ On SuperMike3:
[fchen14@mike139 ~]$ module av parallel

---- /usr/local/packages/Modules/default/modulefiles/linux-rhel8-icelake ----

parallel-netcdf/1.12.2/intel-2021.5.0                     
parallel/20210922/intel-2021.5.0

parallel-netcdf/1.12.2/intel-2021.5.0-intel-mpi-2021.5.1

# load the module to environment

[fchen14@mike139 ~]$ module load parallel/20210922/intel-2021.5.0

[fchen14@mike139 ~]$ which parallel

/usr/local/packages/parallel/20210922/hrsviur/bin/parallel

[fchen14@mike139 ~]$ parallel –version # check GNU parallel version

GNU parallel 20210922

Copyright (C) 2007-2021 Ole Tange, http://ole.tange.dk and Free Software

Foundation, Inc.

...
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GNU Parallel Syntax

➢ Reading commands to be run in parallel from an input file:

parallel [OPTIONS] < CMDFILE

➢ Reading command arguments on the command line:

parallel [OPTIONS] COMMAND [ARGUMENTS] ::: ARGLIST

➢ Reading command arguments from an input file:

parallel [OPTIONS] COMMAND [ARGUMENTS] :::: ARGFILE
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ARGLIST from command line

➢ parallel [OPTIONS] COMMAND [ARGUMENTS] ::: ARGLIST

➢ Examples:
[fchen14@mike139 ~]$ parallel echo ::: A B C

A

B

C

[fchen14@mike139 ~]$ parallel echo ::: `seq 1 3`

1

2

3

[fchen14@mike139 ~]$ parallel echo ::: {A..Z}

A

B

...

Z

[fchen14@mike139 test]$ ls -1 | parallel echo

2013-06-18.tgz

backups.sh

bigmem_test.pbs

...
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ARGLIST from file

➢ parallel [OPTIONS] COMMAND [ARGUMENTS] :::: ARGFILE

[fchen14@mike139 GNU_PARALLEL]$ pwd

/project/fchen14/GNU_PARALLEL

[fchen14@mike139 GNU_PARALLEL]$ cat input.lst | head

01.lj

02.lj

03.lj

...

[fchen14@mike139 GNU_PARALLEL]$ head input.lst -n 5 | parallel echo

01.lj

02.lj

03.lj

04.lj

05.lj

[fchen14@mike139 GNU_PARALLEL]$ parallel echo :::: input.lst

01.lj

02.lj

...
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Replacement Strings

➢ ‘{}’ returns a full line read from the input source.
[fchen14@mike139 GNU_PARALLEL]$ parallel echo {} ::: data/in.lj

data/in.lj

➢ ‘{/}’ removes everything up to and including the last forward slash:
[fchen14@mike139 GNU_PARALLEL]$ parallel echo {/} ::: data/in.lj

in.lj

➢ ‘{//}’ returns the directory name of input line. 

[fchen14@mike139 GNU_PARALLEL]$ parallel echo {//} ::: data/in.lj

data

➢ ‘{.}’ removes any filename extension:
[fchen14@mike139 GNU_PARALLEL]$ parallel echo {.} ::: data/in.lj

data/in

➢ ‘{/.}’ returns the basename of the input line without extension. It is a 

combination of {/} and {.}:
[fchen14@mike139 GNU_PARALLEL]$ parallel echo {/.} ::: data/in.lj

in

➢ See “man parallel” for more detailed explanation.
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Replacement String Example

➢ Print the full path of the input file, and then print the desired output file 

name, e.g.: 

– Input file: data/lj.in

– Output file name: output/lj.out

# Process data/lj.in and send result to output/lj.out

$ parallel echo {} output/{/.}.out ::: data/lj.in

data/lj.in output/lj.out
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Parallelize Job Script

➢ GNU parallel is often called as this:

cat input_file | parallel command

parallel command ::: foo bar

➢ If command is a script, parallel can be combined into a single file so 

this will run the script in parallel:

parallel [OPTIONS] script [ARGUMENTS] ::: ARGLIST

– or

parallel [OPTIONS] script [ARGUMENTS] :::: ARGFILE

➢ See next slide for example...
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Parallize Script Example

➢ This is the script we want to parallize "cmd_ex.sh":

#!/bin/bash

# print the input, on which host, which working directory

echo "This script uses input: $1 on $HOSTNAME:$PWD"

➢ Parallize the script using ARGLIST from command line:

[fchen14@mike139 GNU_PARALLEL]$ parallel --wd $PWD ./cmd_ex.sh ::: A B C

This script uses input: A on mike139:/project/fchen14/GNU_PARALLEL

This script uses input: B on mike139:/project/fchen14/GNU_PARALLEL

This script uses input: C on mike139:/project/fchen14/GNU_PARALLEL

➢ Parallize the script using ARGFILE:
[fchen14@mike139 GNU_PARALLEL]$ cat argfile

A

B

C

[fchen14@mike139 GNU_PARALLEL]$ parallel --wd $PWD ./cmd_ex.sh :::: argfile

This script uses input: A on mike139:/project/fchen14/GNU_PARALLEL

This script uses input: B on mike139:/project/fchen14/GNU_PARALLEL

This script uses input: C on mike139:/project/fchen14/GNU_PARALLEL

➢ Can parallize Python/Perl scripts, see “man parallel” for details
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Common OPTIONS --jobs (-j)

➢ --jobs N (-j N) 

– Number of jobslots on each machine (node). Run up to N jobs in 

parallel.  0 means as many as possible. Default is 100% which will run 
one job per CPU core on each machine.

– On HPC/LONI clusters, N is number of jobslots per node.

– Make sure you use GNU Parallel version >=20161022 to avoid a “Max 
jobs to run” bug

[fchen14@mike139 test]$ parallel --version

GNU parallel 20210922

...

➢ -j +N

– Add N to the number of CPU cores.  Run this many jobs in parallel. 

➢ -j -N 

– Subtract N from the number of CPU cores.  Run this many jobs in 

parallel.  If the evaluated number is less than 1 then 1 will be used.  
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Common OPTIONS --slf (Slurm)

➢ --slf filename (--sshloginfile filename)

– To get the sshloginfile on Slurm job session, use the below command:

scontrol show hostname $SLURM_NODELIST > nodefile

– A typical example on HPC/LONI clusters while running batch jobs:

--slf nodefile

– Look at $SLURM_NODELIST and nodefile
# start an interactive job requesting 2 nodes (64x2=128 cores)

[kasetti@mike4 ~]$ srun -N2 -n128 -p workq --cpu-bind none --pty bash

srun: Job is in held state, pending scheduler release

srun: job 39474 queued and waiting for resources

Interactive job 39474 waiting:

srun: job 39474 has been allocated resources # we got mike157 and mike158

[kasetti@mike157 ~]$ echo $SLURM_NODELIST

mike[157-158]

[kasetti@mike157 ~]$ scontrol show hostname $SLURM_NODELIST > nodefile

[kasetti@mike157 ~]$ cat nodefile

mike157

mike158
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Common OPTIONS --sshdelay

➢ If many tasks are started on the same compute node, sshd can be 

overloaded. On SuperMike3/QB3, some of the tasks might fail to start, 

e.g., starting all 64/48 tasks at the same time.

➢ GNU parallel can insert a delay between each task run on the same 

server:

[fchen14@mike139 GNU_PARALLEL]$ parallel --sshdelay 0.1 echo ::: A B C

A

B

C
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Common OPTIONS --wd

➢ --wd mydir (--workdir mydir)

– Designate the working directory of your commands.

– A typical value can be:

• $PBS_O_WORDIR (PBS)

• $SLURM_SUMBIT_DIR (Slurm)
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Common OPTIONS --env

➢ --env ENV_VAR

– --env to tell GNU parallel to transfer an environment variable to the 

remote system.

– A typical usage:

export OMP_NUM_THREADS=5

parallel --env OMP_NUM_THREADS cmd ::: ARGLIST
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Common OPTIONS --progress

➢ --progress

– Show progress of computations. (Not recommended for batch jobs)

– List the computers involved in the task with number of CPU cores 

detected and the max number of jobs to run. 

– After that show progress for each node: number of running jobs, number 

of completed jobs, and percentage of all jobs done by this computer. 

– Example:
[fchen14@mike139 ~]$ parallel --progress echo ::: A B C

Computers / CPU cores / Max jobs to run

1:local / 64 / 3

Computer:jobs running/jobs completed/%of started jobs/Average seconds to complete

local:3/0/100%/0.0s A

local:2/1/100%/1.0s B

local:1/2/100%/0.5s C

local:0/3/100%/0.3s

➢ See also --bar
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Common OPTIONS --joblog

➢ --joblog logfile

– Creates a record for each completed subjob (task) to be written to 

LOGFILE, with info on how long they took, their exit status, etc.

– Can be used to identify failed jobs, e.g.:

[fchen14@mike139 misc]$ parallel --joblog logfile exit ::: 1 2 0 0

[fchen14@mike139 misc]$ cat logfile

Seq Host    Starttime JobRuntime Send    Receive Exitval Signal  Command

1       :       1477514132.358       0.019      0       0       1       0       exit 1

2       :       1477514132.375       0.003      0       0       2       0       exit 2

3       :       1477514132.376       0.002      0       0       0       0       exit 0

4       :       1477514132.377       0.003      0       0       0       0       exit 0
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Common OPTIONS --timeout

➢ --timeout secs

– Time out for command. If the command runs for longer than secs 

(seconds) it will get killed.

– If secs is followed by a % then the timeout will dynamically be computed 

as a percentage of the median average runtime. Only values > 100% 

will make sense.

❖ Useful if you know the command has failed if it runs longer than a 

threshold.
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➢ Download the material for this training at:

➢ wget http://www.hpc.lsu.edu/training/weekly-

materials/Downloads/gnu_parallel_tut-main-fall2025.tar.gz
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Serial Jobs Example

Introduction to GNU Parallel



LAMMPS Introduction

➢ LAMMPS is a classical molecular dynamics code with a focus on 

materials modeling. https://www.lammps.org/

➢ You don’t need any background in molecular dynamics/LAMMPS to 
understand today’s example.

➢ Typical LAMMPS Syntax

– Serial run

lmp_serial -in in.script

– Multi-Threaded run
env OMP_NUM_THREADS=4 lmp_omp -sf omp -in in.script # use OMP_NUM_THREADS

lmp_omp -sf omp -pk omp 5 -in in.script # use -pk omp to specify threads

– MPI run
srun --overlap -n 4 lmp_mpi -in in.script # Slurm version, --overlap only 
needed for interactive job

mpirun -n 4 lmp_mpi -in in.script # PBS version

– Custom command:
lmp_serial -var nsteps 200 –in in.script # we defined a custom variable in 
the input file to let nsteps control total steps to run,

The above command will run our input for 200 steps
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LAMMPS Input File Used Today
# 3d Lennard-Jones melt

variable x index 1

variable y index 1

variable z index 1

variable xx equal 80*$x

variable yy equal 80*$y

variable zz equal 80*$z

units lj

atom_style atomic

lattice fcc 0.8442

region box block 0 ${xx} 0 ${yy} 0 ${zz}

create_box 1 box

create_atoms 1 box

mass 1 1.0

velocity all create 1.44 87287 loop geom

pair_style lj/cut 2.5

pair_coeff 1 1 1.0 1.0 2.5

neighbor 0.3 bin

neigh_modify delay 0 every 20 check no

fix 1 all nve

# ${nsteps} is the parameter passing from LAMMPS command line "-var nsteps 200"

run ${nsteps}
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Distribute Serial Jobs LAMMPS (Slurm)
#!/bin/bash

#SBATCH -N 2                # request two nodes

#SBATCH -n 128 # specify 128 process

#SBATCH -t 2:00:00

#SBATCH -p checkpt

#SBATCH -A hpc_hpcadmin8

#SBATCH -o gp-serial.out

TASKS_PER_NODE=16

SECONDS=0

scontrol show hostname $SLURM_NODELIST > nodefile

parallel --joblog lmp.serial.log \

-j $TASKS_PER_NODE \

--slf nodefile \

--workdir $SLURM_SUBMIT_DIR \

--sshdelay 0.1 \

`which lmp_serial` -in {} -var nsteps 200 :::: input.lst

echo "took $SECONDS sec"

46

[fchen14@mike2 GNU_PARALLEL]$ head input.lst
data/01.lj.in
data/02.lj.in
data/03.lj.in
data/04.lj.in
data/05.lj.in
...
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In case the task command is too long 

(complex)
➢ Use a script for each task to be distributed, example here (call_lmp.sh)

➢ GNU Parallel will distribute each task script

TASKS_PER_NODE=16

scontrol show hostname $SLURM_NODELIST > nodefile

parallel --joblog lmp.serial.log \

-j $TASKS_PER_NODE \

--slf nodefile \

--workdir $SLURM_SUBMIT_DIR \

--sshdelay 0.1 \

./call_lmp.sh {} 200 :::: input.lst

# content of call_lmp.sh

#!/bin/bash

echo "\$1=$1,\$2=$2"

lmp_serial -in $1 -var nsteps $2

47

$1 is the input from input.lst, 

e.g. data/01.lj.in

$2 is the input parameter 200
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Multi-Threaded Example

Introduction to GNU Parallel
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Distribute Multi-Threaded Jobs

➢ Distribute Multi-Threaded jobs is very similar to the pure serial job 

example, the only difference is TASKS_PER_NODE:

– TASKS_PER_NODE=CPU_CORES_PER_NODE / NUM_THREADS_PER_TASK

➢ If each job uses 4 threads, each node on SuperMike3 has 64 cores, 

then

– TASKS_PER_NODE=64/4=16

➢ Slurm script (#SBATCH comments omitted):
TASKS_PER_NODE=16

export OMP_NUM_THREADS=4

SECONDS=0

scontrol show hostname $SLURM_NODELIST > nodefile

parallel -j $TASKS_PER_NODE \

--slf nodefile \

--workdir $WDIR \

--sshdelay 0.1 \

--env OMP_NUM_THREADS \

`which lmp_omp` -sf omp -in {} -var nsteps 200 :::: input.lst

echo "took $SECONDS sec"

Put 64/4=16 tasks per node

49

Pass the environmental variable 

OMP_NUM_THREADS to each 
task

OpenMP switch in lammps
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Multi-Threaded LAMMPS (Slurm)
#!/bin/bash

#SBATCH -N 2                # request two nodes

#SBATCH -n 128 # specify 128 process

#SBATCH -t 2:00:00

#SBATCH -p checkpt

#SBATCH -A hpc_hpcadmin8

#SBATCH -o gp-omp.out

TASKS_PER_NODE=16

export OMP_NUM_THREADS=4

SECONDS=0

scontrol show hostname $SLURM_NODELIST > nodefile

parallel --joblog lmp.omp.log \

-j $TASKS_PER_NODE \

--slf nodefile \

--workdir $SLURM_SUBMIT_DIR \

--sshdelay 0.1 \

--env OMP_NUM_THREADS \

`which lmp_omp` -sf omp -in {} -var nsteps 200 :::: input.lst

echo "took $SECONDS sec"

50

Use 4 OMP threads per task

This script is on SuperMike3, 64 cores per node, so 

TASKS_PER_NODE=64/4=16

OpenMP switch in lammps
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Multi-Process (MPI) Example
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Distribute MPI Jobs - LAMMPS

➢ This section describes how to distribute small MPI jobs.

➢ Example problem - LAMMPS MPI

– Using the same input file, but with multiple MPI process for each task.

– For simplicity, each MPI process will use only one thread

Introduction to GNU Parallel 52



Distributing MPI Jobs (Slurm)
#!/bin/bash

#SBATCH -N 2        # request two nodes

#SBATCH -n 128 # specify 128 process

#SBATCH -t 2:00:00

#SBATCH -p checkpt

#SBATCH -A hpc_hpcadmin8

#SBATCH -o gp-mpi.out

TASKS_PER_NODE=16

PROC_PER_TASK=4

SECONDS=0

scontrol show hostname $SLURM_NODELIST > nodefile

parallel --joblog lmp.mpi.log \

-j $TASKS_PER_NODE \

--slf nodefile \

--workdir $SLURM_SUBMIT_DIR \

--sshdelay 0.1 \

srun --overlap -n $PROC_PER_TASK `which lmp` -in {} -var nsteps 200 ::::
input.lst

echo "took $SECONDS sec"

Introduction to GNU Parallel

[fchen14@mike4 GNU_PARALLEL]$ head input.lst
data/01.lj.in
data/02.lj.in
data/03.lj.in
data/04.lj.in
data/05.lj.in
...
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Use 4 MPI processes per task

This script is on SuperMike3, 64 cores per node, so 

TASKS_PER_NODE=64/4=16



Running Jobs With 

SLURM Job Arrays
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Running Jobs with SLURM Job Arrays

➢ Definition: A SLURM Job Array allows you to submit and manage a large 

number of similar, independent jobs efficiently using a single batch script 

and one submission command.

➢ Purpose: Designed for large-scale workloads (e.g., parameter sweeps, 

simulations, bioinformatics pipelines) where each task runs independently 

but under the same resource settings.

➢ Job Type: Job arrays are supported only for batch jobs (not interactive 

jobs).

➢ Efficiency: SLURM launches and schedules many jobs within seconds, 

minimizing submission overhead.

➢ Configuration & Resource Specification:

➢ All array tasks share the same batch script and requested resources 

(CPUs, memory, time), ensuring consistency across jobs.

➢ Each task receives its own independent allocation within those 

resources — allowing SLURM to schedule and manage them efficiently.
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Running Jobs with SLURM Job Arrays

➢ Every task is automatically assigned a unique index, available as 

$SLURM_ARRAY_TASK_ID, which is commonly used to pick 

input/output files dynamically.

➢ For serial or multi-threaded workloads, SLURM handles CPU and 

memory distribution automatically.

➢ For MPI or multi-node workloads, explicitly specify --nodes, --ntasks, or 

--cpus-per-task as needed.

➢ Advantages

➢ Simplifies and automates submission of large parameter sweeps or 

ensemble simulations.

➢ Reduces scheduler load — one submission command for thousands of 

jobs.

➢ Easy monitoring and management using squeue, scontrol.

➢ Fault-tolerant: Failed tasks can be re-run individually using their array 

index.
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Running Jobs with SLURM Job Arrays

➢ Syntax

➢ #SBATCH --array=<index_list> or #SBATCH -a=<index_list> 

➢ where “index_list”

a. Range: a range of index values  - #SBATCH --array=n-m, where n is the 

starting index, m is the ending index 

b. Step size: an optional step size  - #SBATCH  --array=n-m:step_length

c. Specific Values: specific array index values - #SBATCH --array=1,3,5,7

d. Concurrency Limit: You can limit how many tasks run at the same time 

using the “%” modifier,  for example, --array=0-15%4 runs only 4 tasks 

concurrently.
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Job Arrays Environment Variables

➢ Job arrays will have additional environment variables set.

➢ SLURM_ARRAY_JOB_ID  - the first job ID of the array.

➢ SLURM_ARRAY_TASK_ID - the job array index value.

➢ SLURM_ARRAY_TASK_COUNT - the number of tasks in the job array.

➢ SLURM_ARRAY_TASK_MAX - the highest job array index value.

➢ SLURM_ARRAY_TASK_MIN - the lowest job array index value.

➢ File Names: 

➢ %A will be replaced by the value of SLURM_ARRAY_JOB_ID

➢ %a will be replaced by the value of SLURM_ARRAY_TASK_ID.

➢ Example: slurm_%A_%a.out, slurm_%A_%a.err
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Running Jobs with SLURM Job Arrays
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Running Jobs with SLURM Job Arrays

62GNU Parallel & Job arrays

Defines Job array with –array or -a 

with <index_list>



Running Jobs with SLURM Job Arrays
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Defines output files with

$SLURM_ARRAY_JOB_ID

$SLURM_ARRAY_TASK_ID



Running Jobs with SLURM Job Arrays
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Defines output files with

$SLURM_ARRAY_JOB_ID

$SLURM_ARRAY_TASK_ID



Running Jobs with SLURM Job Arrays
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Input files indexed with

$SLURM_ARRAY_TASK_ID
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Common Rules

➢ Don’t use more than one node when you are debugging/testing your 

code

➢ Know the performance of single task

➢ Start with only a few tasks in your input.lst

➢ After you are comfortable with one node job, start with two node job 

first before jumping to more than three nodes

➢ Typically use no more than 5 nodes.

Introduction to GNU Parallel 77



Memory Consideration

➢ Relationship between node memory and cores

– Rule of Thumb: cannot exceed the available memory on a node

Introduction to GNU Parallel

Available node 

memory 256 GB 

Available node 

memory 256 GB 

4 GB mem per task,

How many tasks per node?
8 GB mem per task,

How many tasks per node?
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Available node 

memory 256 GB 

Avoid this situation, hard to 

calculate/predict memory usage



Waste

Load Balancing in GNU Parallel

➢ GNU Parallel spawns the next job when one finishes - keeping the 

CPUs active and thus saving time.
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Task Granularity

➢ In parallel computing, granularity (or grain size) of a task is a measure 

of the amount of work (or computation) which is performed by that 

task. 

➢ Impact of granularity on performance

– Using fine grains or small tasks results in more parallelism and hence 

increases the speedup. However, synchronization overhead, scheduling 

strategies etc. can negatively impact the performance of fine-grained 
tasks. 

– Simply increasing parallelism alone cannot give the best performance.

– In order to reduce the communication overhead, granularity can be 
increased. Coarse grained tasks have less communication overhead but 

they often cause load imbalance. Hence optimal performance is 

achieved between the two extremes of fine-grained and coarse-grained 

parallelism.
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Components of a Task (Process)

Load program 

instructions

Allocate memory 

space

Load program 

data

Perform 

Computation on 

CPU cores

Release memory, 

data, other 

resources
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Process start 

Overhead

Process end 

overhead

Real 

computation 

work
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Typical Misuse -

Tiny grain size case
➢ Tiny grain size

– E.g., each task takes little time (e.g., less than a second)

– Most time will be spent on overhead
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single task

core0 core1 core2

An extreme case - Cores are just idling

core0 core1 core2



Typical Misuse -

Large grain size case
➢ Large grain size

– Some tasks are much longer than the rest

– Load balancing can never be achieved
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single task

core0 core1 core2

An extreme case - Load imbalancing

core0 core1 core2



Proper Usage of Job Arrays

➢ Best Practices:

➢ Use for many similar, independent tasks (e.g., simulations, parameter 

sweeps).

➢ Use $SLURM_ARRAY_TASK_ID to assign unique inputs/outputs per 

task.

➢ Limit concurrency with % (e.g., --array=1-1000%50) to control system 

load.

➢ Avoid tiny jobs — combine short tasks to reduce overhead.

➢ Organize output files with %A and %a in names.

➢ Re-run failed tasks by specifying their indices (e.g., --array=5,9,13).
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Summary

➢ In today’s training, we have covered

➢ Why need GNU Parallel or SLURM Job arrays?

➢ Basic syntax of GNU Parallel and examples

➢ How to run jobs with Job arrays?

➢ How to use these tools wisely.

➢ For more information about GNU Parallel and SLURM Job Arrays, refer 

to:

– https://www.gnu.org/software/parallel/parallel_tutorial.html

– https://slurm.schedmd.com/job_array.html
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Multi-Process (MPI) Example
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Distribute MPI Jobs - LAMMPS

➢ This section describes how to distribute small MPI jobs.

➢ Example problem - LAMMPS MPI

– Using the same input file, but with multiple MPI process for each task.

– For simplicity, each MPI process will use only one thread
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Distributing MPI Jobs (Slurm)
#!/bin/bash

#SBATCH -N 2        # request two nodes

#SBATCH -n 128 # specify 128 process

#SBATCH -t 2:00:00

#SBATCH -p checkpt

#SBATCH -A hpc_hpcadmin8

#SBATCH -o gp-mpi.out

TASKS_PER_NODE=16

PROC_PER_TASK=4

SECONDS=0

scontrol show hostname $SLURM_NODELIST > nodefile

parallel --joblog lmp.mpi.log \

-j $TASKS_PER_NODE \

--slf nodefile \

--workdir $SLURM_SUBMIT_DIR \

--sshdelay 0.1 \

srun --overlap -n $PROC_PER_TASK `which lmp` -in {} -var nsteps 200 ::::
input.lst

echo "took $SECONDS sec"

Introduction to GNU Parallel

[fchen14@mike4 GNU_PARALLEL]$ head input.lst
data/01.lj.in
data/02.lj.in
data/03.lj.in
data/04.lj.in
data/05.lj.in
...
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Use 4 MPI processes per task

This script is on SuperMike3, 64 cores per node, so 

TASKS_PER_NODE=64/4=16



Distributing MPI Jobs (PBS)
#!/bin/bash

#PBS -l nodes=2:ppn=20

#PBS -l walltime=1:00:00

#PBS -q checkpt

#PBS -A hpc_hpcadmin8

#PBS -j oe

#PBS -o gp-omp-pbs.out

module purge

module load parallel

module load lammps

TASKS_PER_NODE=4

SECONDS=0

cd $PBS_O_WORKDIR

parallel --joblog lmp.mpi.pbs.log \

-j $TASKS_PER_NODE \

--slf $PBS_NODEFILE \

--workdir $PBS_O_WORKDIR \

--sshdelay 0.1 \

mpirun -np 5 `which lmp` -in {} -var nsteps 200 :::: input.lst

echo "took $SECONDS sec"

Introduction to GNU Parallel

[fchen14@mike4 GNU_PARALLEL]$ head input.lst
data/01.lj.in
data/02.lj.in
data/03.lj.in
data/04.lj.in
data/05.lj.in
...
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Use 5 MPI processes per task

This script is on SuperMIC, 20 cores per node, so 

TASKS_PER_NODE=20/5=4
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