

Magic Tools to Install & Manage Software

Jason Li

HPC User Services
LSU HPC / LONI
sys-help@loni.org

Louisiana State University, Baton Rouge Oct 15, 2025

Magic Tools to Install & Manage Software

- 1. Why Container?
- 2. Run an Existing Container Image
- 3. Get More Container Images
- 4. Build Your Own Container Image

1. Why Container?

- 1) Problems
- 2) Container & Singularity

2. Run an Existing Container Image

- 1) Basic commands
- 2) Running jobs with Singularity

3. Get More Container Images

- 1) Where to get
- 2) Basic commands

- 1) What you need
- 2) Typical workflow
- 3) Make it easier Recipe

1. Why Container?

- 1) Problems
- 2) Container & Singularity

2. Run an Existing Container Image

- 1) Basic commands
- 2) Running jobs with Singularity

3. Get More Container Images

- 1) Where to get
- 2) Basic commands

- 1) What you need
- 2) Typical workflow
- 3) Make it easier Recipe

1. Why Container?

- 1) Problems
- 2) Container & Singularity

2. Run an Existing Container Image

- 1) Basic commands
- 2) Running jobs with Singularity

3. Get More Container Images

- 1) Where to get
- 2) Basic commands

- 1) What you need
- 2) Typical workflow
- 3) Make it easier Recipe

Core problem:

Installing software on an HPC system

Traditional Linux solution:

Compiling from source code

a) Dependencies (Welcome to Linux!)

from QC to gene prediction and phylogenomics

BUSCO v5.4.7 is the current stable version!

Gitlab ☑, a Conda package ☑ and Docker container ☑ are also available.

Based on evolutionarily-informed expectations of gene content of near-universal single-copy orthologs, BUSCO metric is complementary to technical metrics like N50.

a) Dependencies (Welcome to Linux!)

Third-party components

A full installation of BUSCO requires *Python 3.3*+ (2.7 is not supported from v4 onwards), *BioPython*, *pandas*, *BBMap*, *tBLASTn 2.2*+, *Augustus 3.2*+, *Prodigal*, *Metaeuk*, *HMMER3.1*+, *SEPP*, and *R* + *ggplot2* for the plotting companion script. Some of these tools are necessary only for analysing certain type of organisms and input data, or for specific run modes.

- https://biopython.org/ ☐
- https://pandas.pydata.org/ ☐
- https://jgi.doe.gov/data-and-tools/software-tools/bbtools/ ☐
- https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST ☐
- http://bioinf.uni-greifswald.de/augustus/
- https://github.com/soedinglab/metaeuk ☐
- https://github.com/hyattpd/Prodigal
- http://hmmer.org/ □
- https://github.com/smirarab/sepp/□
- https://www.r-project.org/□

Please make sure that each software package listed above works INDEPENDENTLY of BUSCO before attempting to run any BUSCO assessments.

a) Dependencies (Welcome to Linux!)

Third-party components

A full installation of BUSCO requires *Python 3.3*+ (2.7 is not supported from v4 onwards), *BioPython*, pandas, *BBMap*, *tBLASTn 2.2*+, *Augustus 3.2*+, *Prodigal*, *Metaeuk*, *HMMER3.1*+, *SEPP*, and *R* + *ggplot2* for the plotting companion script. Some of these tools are necessary only for analysing certain type of organisms and input data, or for specific run modes.

- https://biopython.org/☐
- https://pandas.pydata.org/□
- https://jgi.doe.gov/data-and-tools/software-tools/bbtools/
- https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST ☐
- http://bioinf.uni-greifswald.de/augustus/
- https://github.com/soedingiab/metaeuk@
- https://github.com/hyattpd/Prodigal ☐
- http://hmmer.org/ □
- https://github.com/smirarab/sepp/□
- https://www.r-project.org/□

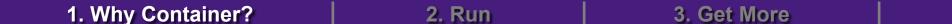
Please make sure that each software package listed above works INDEPENDENTLY of BUSCO before attempting to run any BUSCO assessments.

a) Dependencies (Welcome to Linux!)

Third-party components

A full installation of BUSCO requires *Python 3.3*+ (2.7 is not supported from v4 onwards), *BioPytho pandas*, *BBMap*, *tBLASTn 2.2*+, *Augustus 3.2*+, *Prodigal*, *Metaeuk*, *HMMER3.1*+, *SEPP*, and *R* + *ggplo* the plotting companion script. Some of these tools are necessary only for analysing certain type o organisms and input data, or for specific run modes.

- https://biopython.org/☐
- https://pandas.pydata.org/□
- https://jgi.doe.gov/data-and-tools/software-tools/bbtools/
- https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST
- http://bioinf.uni-greifswald.de/augustus/
- https://github.com/soedingiab/metaeukl
- https://github.com/hyattpd/Prodigal ☐
- http://hmmer.org/ ☐
- https://github.com/smirarab/sepp/□
- https://www.r-project.org/□


Please make sure that each software package listed above works INDEPENDENTLY of SUSCO before attempting to run any BUSCO assessments.

The following dependencies are required for AUGUSTUS:

- for gzip compressed input: (set ZIPINPUT = false in common.mk if available)
 - libboost-iostreams-dev
 - zlib1g-dev
- for comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative AUGUSTUS (multi-species, CGP): (set COMPGENEPRED = false in comparative A
 - libgsl-dev
 - libboost-all-dev
 - libsuitesparse-dev
 - liblpsolve55-dev
 - libsqlite3-dev (add SQLITE = false to common.mk if this feature is not required or the required library is not available)
- libmysql++-dev (add MYSQL = false to common.mk if this feature is not required or the required library is not available)
- o for compiling utilities bam2hints and filterBam:
 - libbamtools-dev zlib1g-dev
- for compiling utility utrrnaseq:
 - libboost-all-dev (version must be >Boost_1_49_0)
- for compiling utility bam2wig:
 - Follow these instructions. Note that it shouldn't be a problem to compile AUGUSTUS without bam2wig. In practice, you can simply use bamTokig.py to accomplish the same task.
- For compiling homgenemapping (set BOOST = FALSE in auxprogs/homgenemapping/src/Makefile if the option --printHomologs is not required or the required libraries are not available)
 - libboost-all-dev
- o for scripts:
 - Perl
 - Python3
- o for the python3 script bamToWig.py:
 - twoBitInfo and faToTwoBit from http://hgdownload.soe.ucsc.edu/admin/exe.bamToWig.py will automatically download these tools to the working directory during execution if they are not in your \$PATH.
- SAMtools (available e.g. via package managers or here see notes below)

b) Permission denied (Welcome to HPC!)

```
[jasonli3@mike4 ~]$ module load python
[jasonli3@mike4 ~]$ pip install gdal
```


b) Permission denied (Welcome to HPC!)

```
running egg_info
writing gdal-utils/GDAL.egg-info/PKG-INFO
writing dependency_links to gdal-utils/GDAL.egg-info/dependency_links.txt
writing entry points to gdal-utils/GDAL.egg-info/entry_points.txt
writing requirements to gdal-utils/GDAL.egg-info/requires.txt
writing top-level names to gdal-utils/GDAL.egg-info/top_level.txt
Traceback (most recent call last):
    File "<string>", line 91, in fetch_config
    File "/usr/local/packages/python/3.9.7-anaconda/lib/python3.9/subprocess.p
    self._execute_child(args, executable, preexec_fn, close_fds,
    File "/usr/local/packages/python/3.9.7-anaconda/lib/python3.9/subprocess.p
    raise child_exception_type(errno_num, err_msg, err_filename)
FileNotFoundError: [Errno 2] No such file or directory: 'gdal-config'
```


b) Permission denied (Welcome to HPC!)

```
running egg_info
writing gdal-utils/GDAL.egg-info/PKG-INFO
writing dependency_links to gdal-utils/GDAL.egg-info/dependency_links.txt
writing entry points to gdal-utils/GDAL.egg-info/entry_points.txt
writing requirements to gdal-utils/GDAL.egg-info/requires.txt
writing top-level names to gdal-utils/GDAL.egg-info/top_level.txt
Traceback (most recent call last):
    File "<string>", line 91, in fetch_config
    File "/usr/local/packages/python/3.9.7-anaconda/lib/python3.9/subprocess.pr
    self._execute_child(args, executable, preexec_fn, close_fds,
    File "/usr/local/packages/python/3.9.7-anaconda/lib/python3.9/subprocess
    raise child_exception_type(errno_num, err_msg, err_filename)
FileNotFoundError: [Errno 2] No such file or directory: 'gdal-call'albedall'
    11bBdall
```


b) Permission denied (Welcome to HPC!)

If you ask Google / Al...

```
$ sudo yum install libgdal-devel # On Red Hat
$ sudo apt-get install libgdal-dev # On Ubuntu
```


b) Permission denied (Welcome to HPC!)

If you ask Google / Al...

```
$ sudo yum install libgdal-devel # On Red Hat
$ sudo apt-get install libgdal-dev # On Ubuntu
```

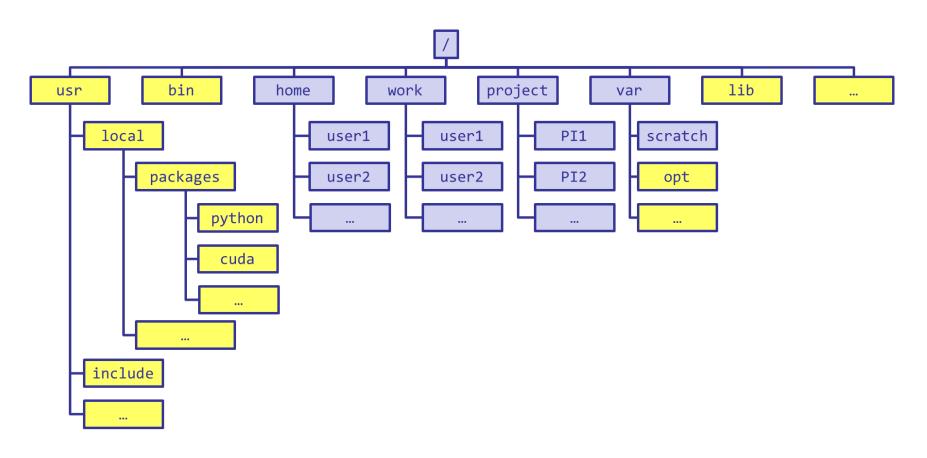

b) Permission denied (Welcome to HPC!)

If you ask Google / Al...

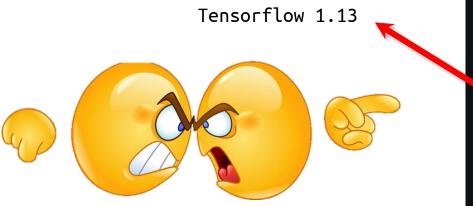
```
$ sudo yum install libgdal-devel # On Red Hat
$ sudo apt-get install libgdal-dev # On Ubuntu
```

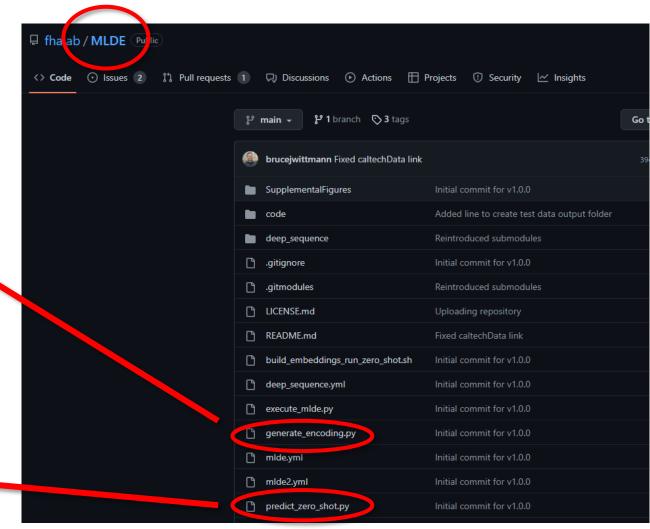

b) Permission denied (Welcome to HPC!)

If you ask Google / Al...



b) Permission denied (Welcome to HPC!)





c) Conflicted packages

 What if I need two packages w/ conflicted dependencies?

PyTorch > 1.5

d) Sharing / Migrating your software

Huge effort & large disk quota to install

- What if my colleagues want to use?
- What if I want to migrate a different cluster?

Any of those apply to you?

Magic Tools to Install / Manage Software

1. Why Container?

- 1) Problems
- 2) Container & Singularity

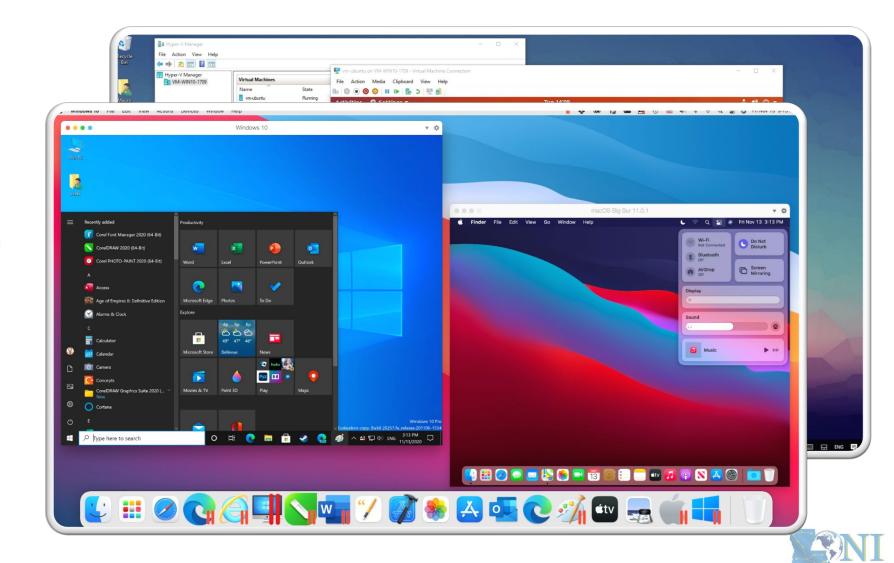
2. Run an Existing Container Image

- 1) Basic commands
- 2) Running jobs with Singularity

3. Get More Container Images

- 1) Where to get
- 2) Basic commands

- 1) What you need
- 2) Typical workflow
- 3) Make it easier Recipe



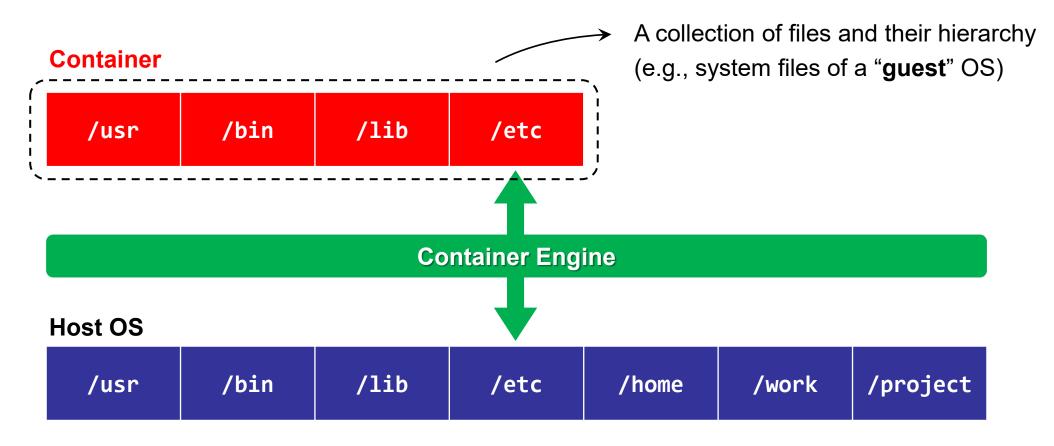
26

a) What is a container?

Virtual machine

- "Virtualize" / "mimic" an entire computer on another computer
- Virtualize both hardware and software

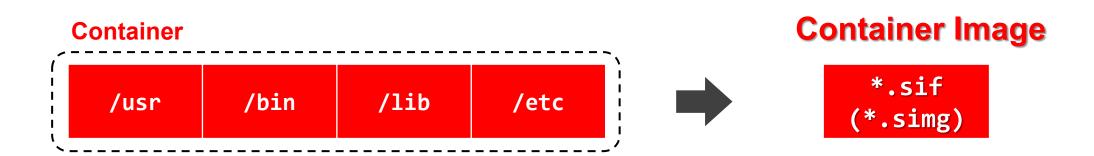
a) What is a container?


- Container:
 - A lightweight and fast virtual machine
 - Only virtualize the Operation System (meaning, does not virtualize hardware)
 - Only virtualize **Linux** on **Linux**

a) What is a container?

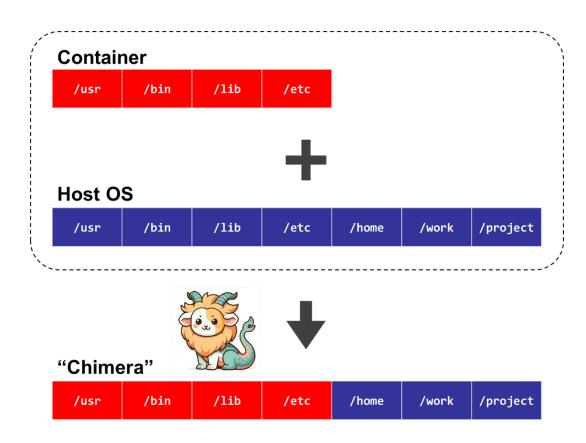
a) What is a container?

- A "chimera" system:
 - Can virtualize an entirely different OS!
 - Can contain other software packages (inc. dependencies, environment settings, etc.) installed in the guest OS



a) What is a container?

a) What is a container?


Properties:

Self-contained

All dependencies can be installed within the container

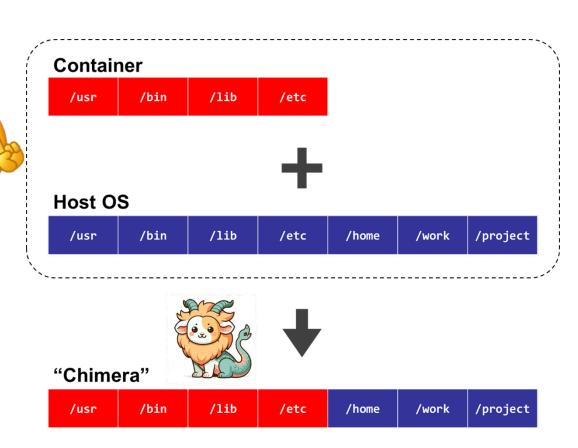
Isolated

Whatever happens in a container stays in that container...

b) How does it solve my problems?

Dependency issue

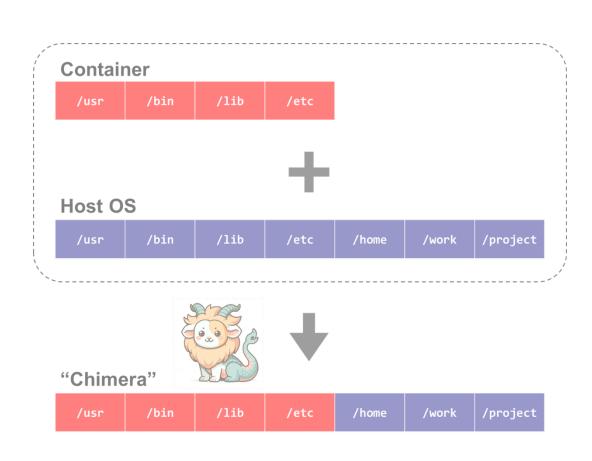
- Pack all dependencies (even OS) in container
- Can use apt-get or yum
- Developers now release containers!


Permission issue

Can't write to certain paths on HPC, but CAN write to them in container

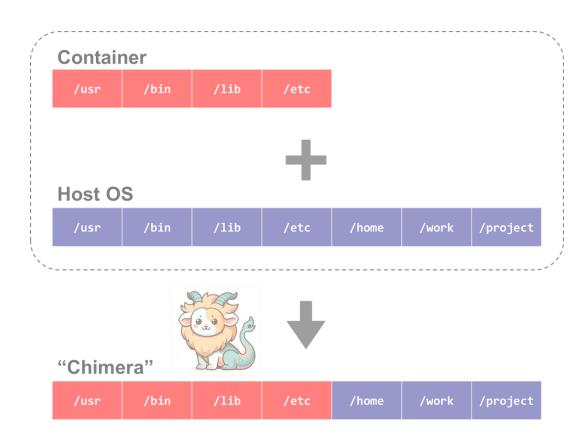
Conflicted packages

- Install in different containers.
- Share / Migrate
 - Copy-paste a container image!



c) What is Singularity?

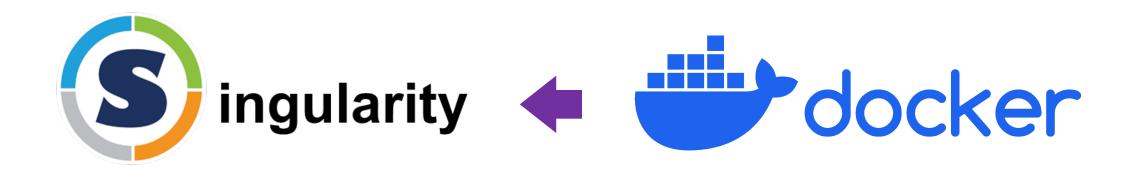
Technology →



c) What is Singularity?

↑ Software system that implements the technology

c) What is Singularity?



c) What is Singularity?

- Does NOT need root privileges
- "Container for HPC"

Needs root privileges

2) Container & Singularity

d) Singularity availability

i. On all clusters

✓ **LSU HPC**: SMIC, Deep Bayou, Supermike 3

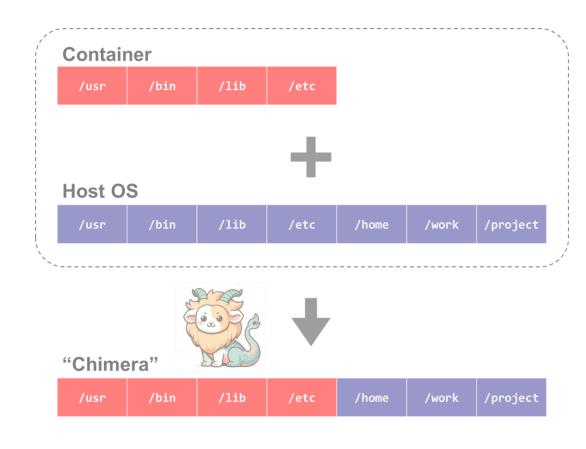
✓ **LONI**: QB-3, QB-4

ii. Only on computing nodes

- × Unavailable on head nodes
- ✓ Must start a job (interactive & batch)

iii. To all users

× No additional action required


Summary

Technology that helps with software installation →

↓ Software system that implements the technology

1. Why Container?

- 1) Problems
- 2) Container & Singularity

2. Run an Existing Container Image

- 1) Basic commands
- 2) Running jobs with Singularity

3. Get More Container Images

- 1) Where to get
- 2) Basic commands

4. Build Your Own Container Image

- 1) What you need
- 2) Typical workflow
- 3) Make it easier Recipe

1. Why Container?

- 1) Problems
- 2) Container & Singularity

2. Run an Existing Container Image

- 1) Basic commands
- 2) Running jobs with Singularity

3. Get More Container Images

- 1) Where to get
- 2) Basic commands

4. Build Your Own Container Image

- 1) What you need
- 2) Typical workflow
- 3) Make it easier Recipe

Available images

– On all clusters: /project/containers/images

```
(base) [jasonli3@qbd4 ~]$ ls /project/containers/images/
agat-1.4.0.sif
                                            fed28.simg
                                            fenics-adjoint.2018.ubuntu16.simg
alphafold-catgumag-2.2.sif
alps-2.3.0-dockerhub.simg
                                            firedrake.dockerhub.simg
alps-2.3.0-dockerhub-v2.simg
                                            firedrake.vanilla.simg
bcftools-1.18.sif
                                            fmriprep-1.1.8-ubuntu-16.0.4.simg
                                            fmriprep-1.3.2-ubuntu-16.0.4.simg
beast2-2.7.7.sif
blast-2.14.1.sif
                                            gatk-4.5.0.0.sif
blender-2.79b-cuda-8.0-ubuntu-16.04.simg
                                            gcc-9.2.0-dockerhub.simg
bowtie2-2.5.1.sif
                                            hisat2-2.2.1.sif
braker-3.0.8.sif
                                            iax-0.4.26.sif
busco-5.7.1.sif
                                            jax.sif
                                            maker-3.01.03.sif
bwa-0.7.17.sif
```


a) Open an interactive shell in the image

Syntax		Description
singularity shell	<container></container>	Starts an interactive shell in the image

Try me: /project/containers/images/ubuntu-training.sif

a) Open an interactive shell in the image

Syntax		Description
singularity s	shell [options] <container></container>	Starts an interactive shell in the image
[Options]	-B /path/to/bind	Bind a path(s) • /home is bound by default
	nv	Enable Nvidia GPU

b) Execute a single command in the image

Syntax		Description
singularity exec	<container> <command/></container>	Execute a command in the image

Try me: /project/containers/images/ubuntu-training.sif

b) Execute a single command in the image

Syntax		Description
singularity e	exec [options] <container> <command/></container>	Execute a command in the image
[Options]	-B /path/to/bind	Bind a path(s) • /home is bound by default
	nv	Enable Nvidia GPU

c) Run a prewritten script (less common)

Syntax		Description
singularity r	un [options] <container></container>	Run a prewritten script
[Options]	-B /path/to/bind	Bind a path(s) • /home is bound by default
	nv	Enable Nvidia GPU

Quick recap

Syntax	Description
singularity shell [options] <container></container>	Starts an interactive shell in the image
singularity exec [options] <container> <command/></container>	Execute a command in the image
singularity run [options] <container></container>	Run a prewritten script

1. Why Container?

- 1) Problems
- 2) Container & Singularity

2. Run an Existing Container Image

- 1) Basic commands
- 2) Running jobs with Singularity

3. Get More Container Images

- 1) Where to get
- 2) Basic commands

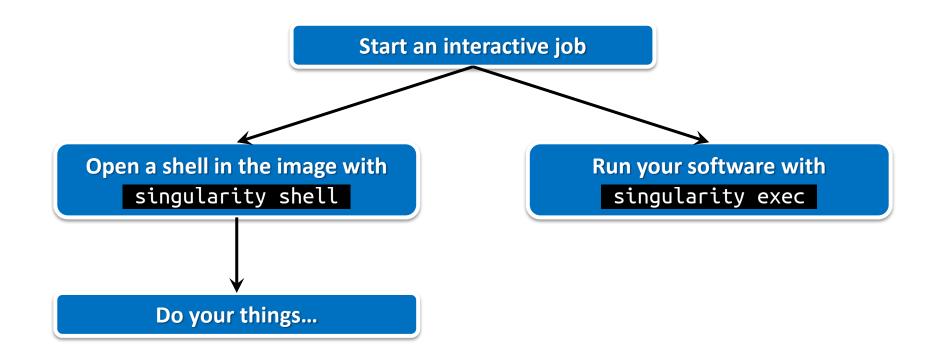
4. Build Your Own Container Image

- 1) What you need
- 2) Typical workflow
- 3) Make it easier Recipe

2) Run jobs with Singularity

Job types and commands

Job Type	Commands	Purpose
Interactive	 singularity shell [options] <container></container> singularity exec [options] <container> <command/></container> 	Debugging & testing
Batch	• singularity exec [options] <container> <command/></container>	• Production



2) Run jobs with Singularity

a) Interactive job

2) Run jobs with Singularity

b) Batch job

```
#!/bin/bash
#SBATCH -A <Allocation name>
#SBATCH -p workq
#SBATCH -N 1
#SBATCH -n 64
#SBATCH -t 24:00:00
cd /to/work/directory
IMG=/home/admin/singularity/ubuntu-training.sif
singularity exec -B /work,/project $IMG \
  python myjob.py
```


Summary

Syntax	Description
singularity shell [options] <container></container>	Run a prewritten script
singularity exec [options] <container> <command/></container>	Execute a command in the image
singularity run [options] <container></container>	Run a prewritten script

1. Why Container?

- 1) Problems
- 2) Container & Singularity

2. Run an Existing Container Image

- 1) Basic commands
- 2) Running jobs with Singularity

3. Get More Container Images

- 1) Where to get
- 2) Basic commands

4. Build Your Own Container Image

- 1) What you need
- 2) Typical workflow
- 3) Make it easier Recipe

Get More Container Images

Available images

– On all clusters: /project/containers/images

```
(base) [jasonli3@qbd4 ~]$ ls /project/containers/images/
agat-1.4.0.sif
                                            fed28.sima
alphafold-catgumag-2.2.sif
                                            fenics-adjoint.2018.ubuntu16.simg
alps-2.3.0-dockerhub.simg
                                            firedrake.dockerhub.simg
alps-2.3.0-dockerhub-v2.simg
                                            firedrake.vanilla.simg
bcftools-1.18.sif
                                            fmriprep-1.1.8-ubuntu-16.0.4.simg
                                            fmriprep-1.3.2-ubuntu-16.0.4.simg
beast2-2.7.7.sif
blast-2.14.1.sif
                                            gatk-4.5.0.0.sif
blender-2.79b-cuda-8.0-ubuntu-16.04.simg
                                            gcc-9.2.0-dockerhub.simg
bowtie2-2.5.1.sif
                                            hisat2-2.2.1.sif
braker-3.0.8.sif
                                            iax-0.4.26.sif
busco-5.7.1.sif
                                            jax.sif
                                            maker-3.01.03.sif
bwa-0.7.17.sif
```


1. Why Container?

- 1) Problems
- 2) Container & Singularity

2. Run an Existing Container Image

- 1) Basic commands
- 2) Running jobs with Singularity

3. Get More Container Images

- 1) Where to get
- 2) Basic commands

4. Build Your Own Container Image

- 1) What you need
- 2) Typical workflow
- 3) Make it easier Recipe

1) Where to get

- You can get container images from a lot of places
 - Not that you should!
- Concerns?
 - Reliability
 - Some third-party or untested images may not work
 - Security risk
 - Some untrustworthy publishers may pack something you don't know about
- Solution
 - Always get from a source that you can trust!

[1] https://www.techradar.com/pro/security/malware-attacks-on-docker-hub-spread-millions-of-malicious-repositories

4. Build your own

1) Where to get

- Tier 1: Developer release (official release)
 - On software's <u>official website</u>, look for "Docker" / "Singularity" / "Container" / etc.
 - E.g., <u>Tensorflow</u>, <u>Trinity</u>, <u>Salmon</u>

Tier 2: Trustworthy third party

Name	Notes
Biocontainers	 https://biocontainers-edu.readthedocs.io/en/latest/ For biology
Nvidia NGC	 https://catalog.ngc.nvidia.com/containers For Nvidia GPU
Bitnami	https://bitnami.com/stacks/containersBy VmWare
Docker Hub Quay.io	 https://hub.docker.com/ & https://quay.io/ Don't just trust everything you see there! Look for trustworthy icons like ☑ Docker Official Image or ☑ Verified Publisher Avoid third-party publishers that you don't know

1. Why Container?

- 1) Problems
- 2) Container & Singularity

2. Run an Existing Container Image

- 1) Basic commands
- 2) Running jobs with Singularity

3. Get More Container Images

- 1) Where to get
- 2) Basic commands

4. Build Your Own Container Image

- 1) What you need
- 2) Typical workflow
- 3) Make it easier Recipe

a) Simple version

Syntax		Description
singularit	y pull <source/>	Pull an image from source
<source/>	<pre>docker://container[:tag] • (Compare to Docker command) docker pull container[:tag]</pre>	Pull a Docker container and convert to Singularity • Many software's official container release is in Docker form (may or may not on Docker Hub)
	<pre>http://www.myexample.com/container_in</pre>	Download an image file from a web source

b) Advanced version

Syntax		Description
singularity build <target><source/></target>		Build an image from source (Advanced)
	docker://container[:tag]	Build from a Docker container
<source/>	container_image.sif	Build from a local image file
	container_sandbox/	Build from a local sandbox (A directory form of a container)
	container_recipe.def	Build from a recipe (an instruction script of how to build an image)

Quick recap

Syntax	Description
singularity <pre>pull [options] [target] <source/></pre>	Simple pull
singularity <pre>build [options] <target> <source/></target></pre>	Advanced build command

- BONUS: Hot packages!
 - i. PyTorch (2.8.0, w/ GPU support)

\$ singularity pull docker://pytorch/pytorch:2.8.0-cuda12.9-cudnn9-runtime

ii. Tensorflow (2.17.0 *, w/ GPU support)

\$ singularity pull docker://tensorflow/tensorflow:2.17.0-gpu-jupyter

* 2.17.0 is the latest **working** official container, but not the latest version (2.20.0). Tensorflow develop team has not updated CUDA support in their official container over a year for unknown reason...

- BONUS: Hot packages!
 - i. PyTorch (2.6.0, w/ GPU support)

\$ module load pytorch

ii. Tensorflow (2.16.1, w/ GPU support)

\$ module load tensorflow

Summary

Syntax	Description
singularity <pre>pull [options] [target] <source/></pre>	Simple pull
<pre>singularity build [options] <target> <source/></target></pre>	Advanced build command

1. Why Container?

- 1) Problems
- 2) Container & Singularity

2. Run an Existing Container Image

- 1) Basic commands
- 2) Running jobs with Singularity

3. Get More Container Images

- 1) Where to get
- 2) Basic commands

4. Build Your Own Container Image

- 1) What you need
- 2) Typical workflow
- 3) Make it easier Recipe

Build Your Own Container Image

Scenarios:

- I did not find any container release. Need to DIY.
- Installation can be easily done using sudo apt or sudo yum if I have the permission.
- I found a container, but need to make changes (e.g., adding something else).

1. Why Container?

- 1) Problems
- 2) Container & Singularity

2. Run an Existing Container Image

- 1) Basic commands
- 2) Running jobs with Singularity

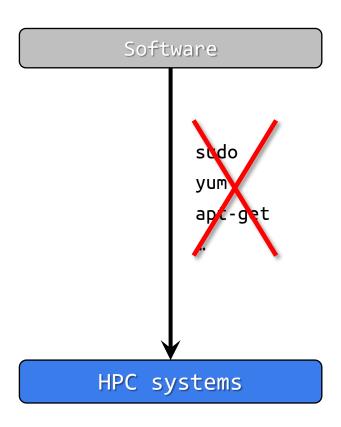
3. Get More Container Images

- 1) Where to get
- 2) Basic commands

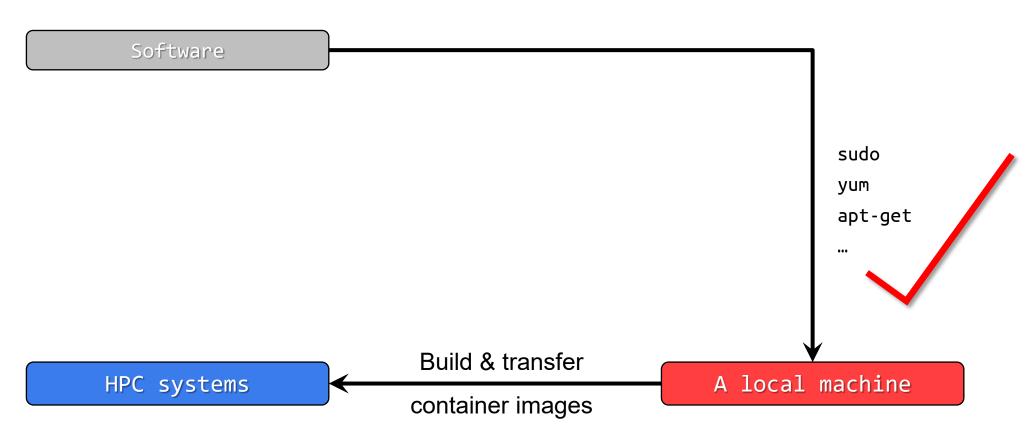
4. Build Your Own Container Image

- 1) What you need
- 2) Typical workflow
- 3) Make it easier Recipe

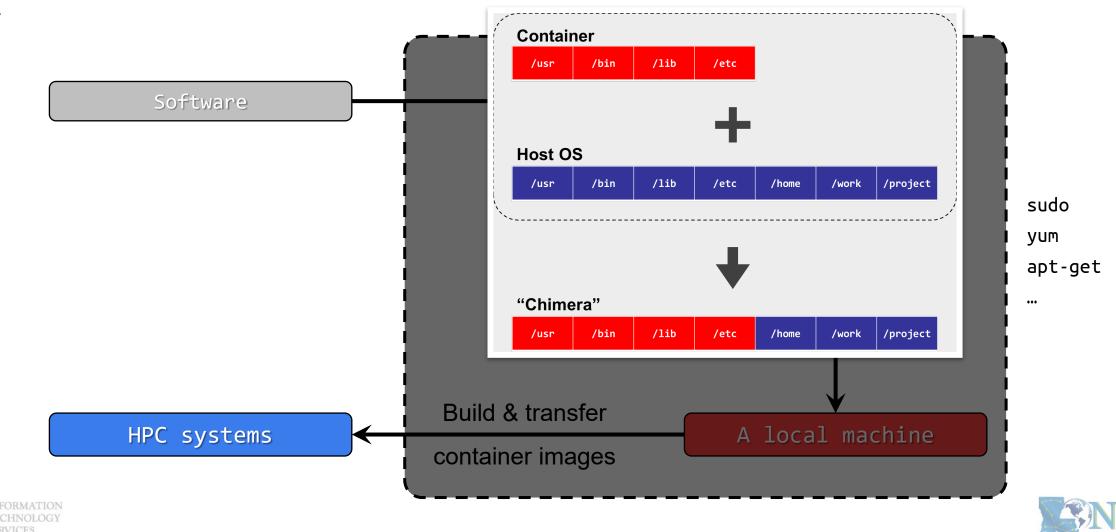
a) What you need:


A Linux machine w/ root privilege

b) Idea



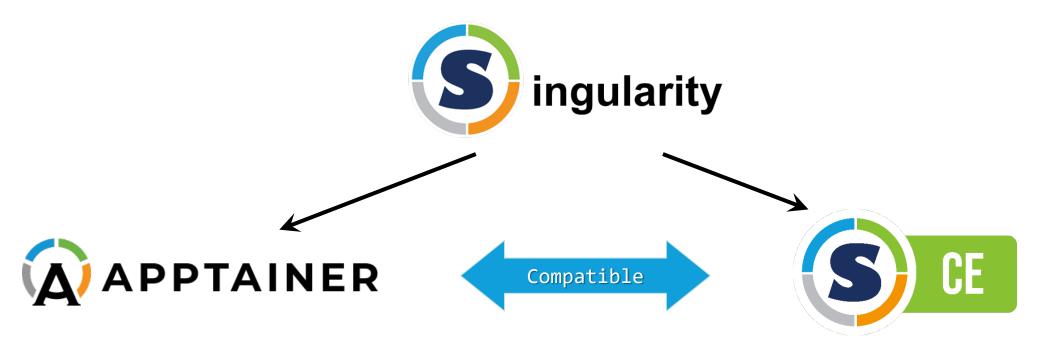
b) Idea



72

b) Idea

1. Why Container?


2. Run

3. Get More

4. Build your own

c) Install Singularity

- Joined Linux Foundation
- Easier installation

- Community supported
- Installed on our clusters

[1] https://apptainer.org/docs/admin/main/installation.html

[2] https://docs.sylabs.io/guides/3.8/admin-guide/installation.html

Outlines

1. Why Container?

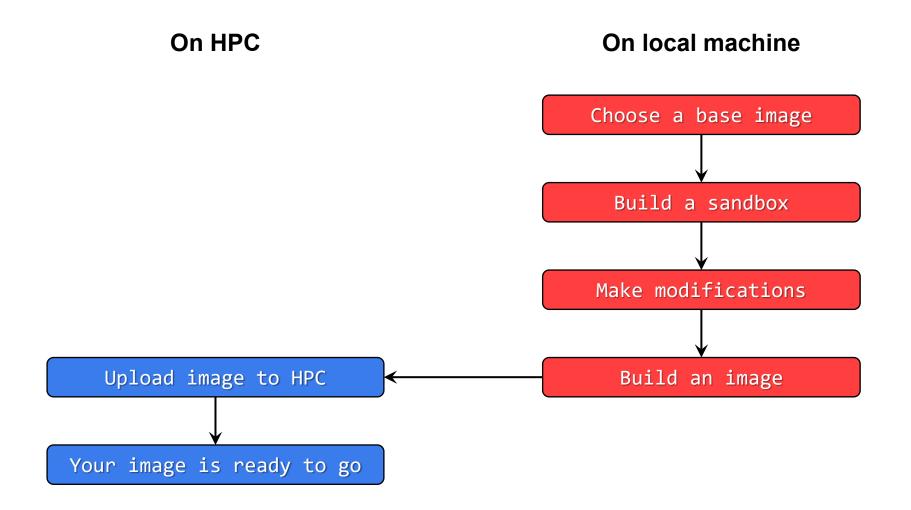
- 1) Problems
- 2) Container & Singularity

2. Run an Existing Container Image

- 1) Basic commands
- 2) Running jobs with Singularity

3. Get More Container Images

- 1) Where to get
- 2) Basic commands


4. Build Your Own Container Image

- 1) What you need
- 2) Typical workflow
- 3) Make it easier Recipe

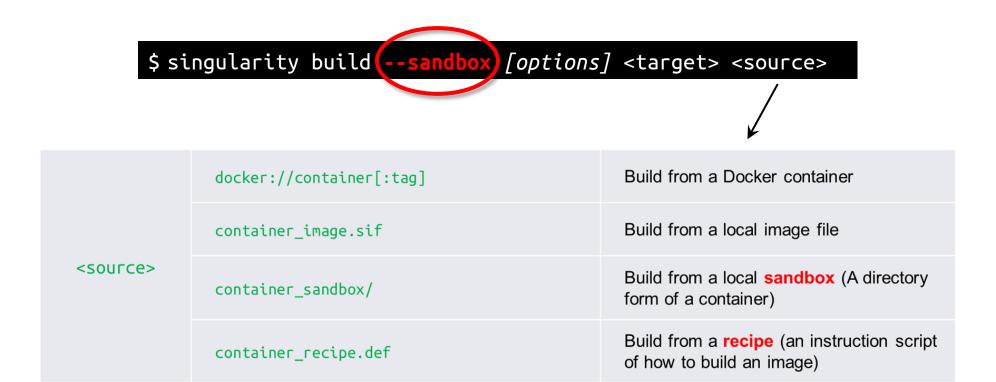
a) Choose a base image

Common choices	Typical scenarios
A minimum, "vanilla" OS (e.g., Ubuntu, Rocky, Debian,)	 You cannot find an existing image with the software you need, and need to install from the scratch. You need to build a minimum size image
A container with software already installed (e.g., TensorFlow, PyTorch,)	 You need to modify an existing working image (e.g., add a Python module to Tensorflow image)

b) Build a sandbox

- What's a sandbox ?
 - A directory form of a container (instead of a single, binary image file)
 - Allows modification

b) Build a sandbox


\$ si	ngularity <mark>build</mark>	[options] <target> <source/></target>
	docker://container[:tag]	Build from a Docker container
<soufce></soufce>	container_image.sif	Build from a local image file
	container_sandbox/	Build from a local sandbox (A directory form of a container)
	container_recipe.def	Build from a recipe (an instruction script of how to build an image)

b) Build a sandbox

c) Make modifications

\$ singularity shell [options] <container>

c) Make modifications

- i. Allows writing to the sandbox
 - Without it, just like running a regular container image

c) Make modifications

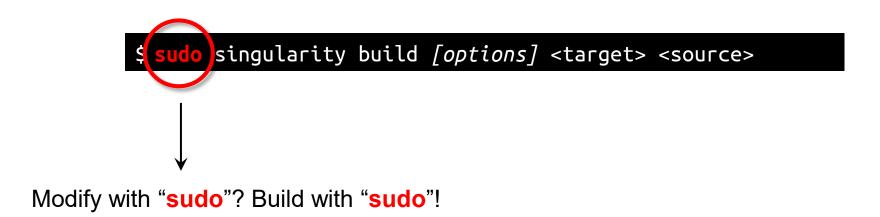
- ii. Run the container as root
 - Grants root privilege in container
 - Needed in most cases
 - Technically not required, but cannot run things like sudo apt or sudo yum without it

- i. Allows **writing** to the sandbox
 - Without it, just like running a regular container image

c) Make modifications

```
$ sudo singularity shell --writable [options] <container>
Singularity>
Singularity> apt update
Singularity> apt install ...
```

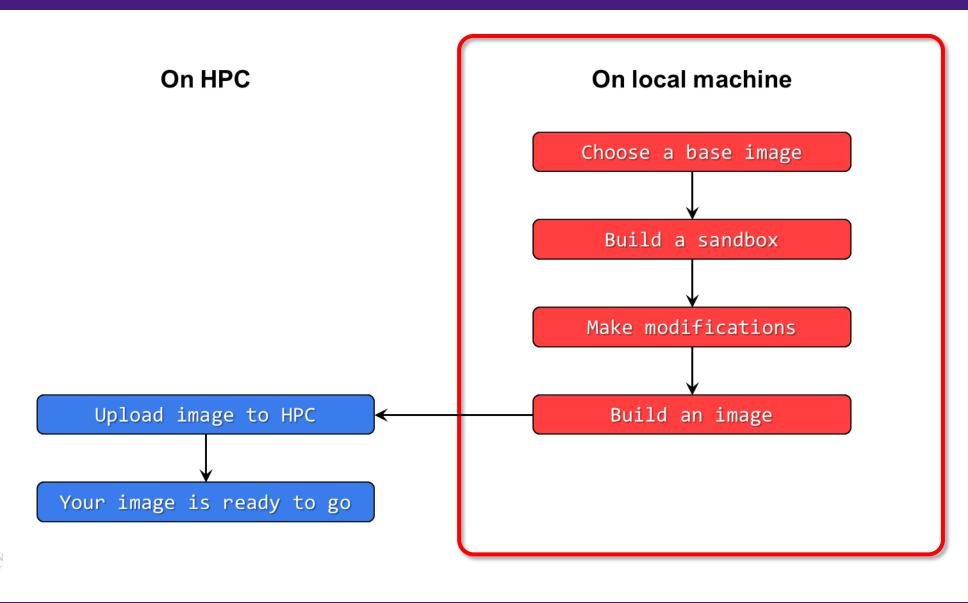

d) Build an image from sandbox


\$	<pre>singularity build [options] <target> <source/></target></pre>	
	<pre>docker://container[:tag]</pre>	Build from a Docker container
	container image.sif	Build from a local image file
<source/>	container_sandbox/	Build from a local sandbox (A directory form of a container)
	container_recipe.def	Build from a recipe (an instruction script of how to build an image)

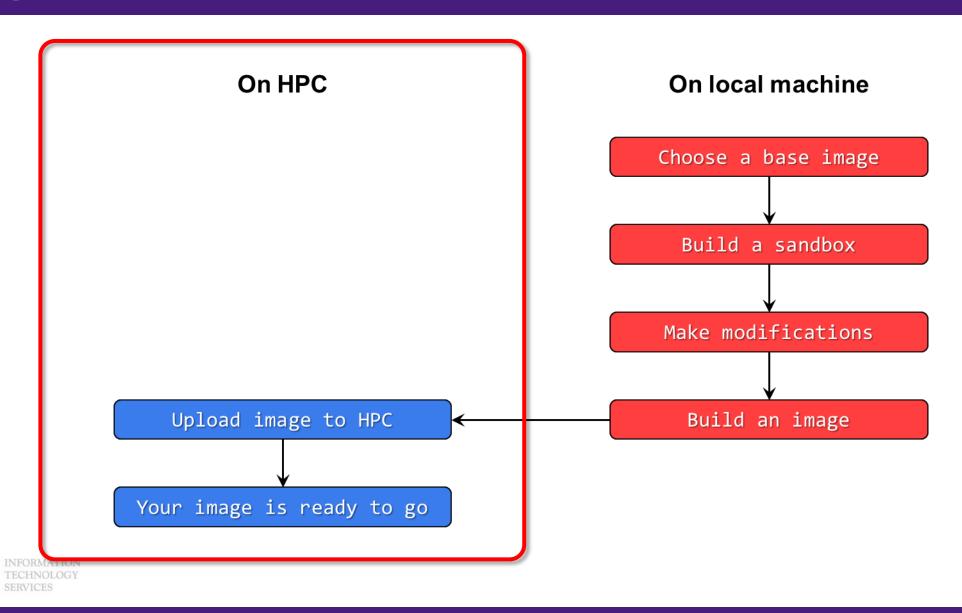
d) Build an image from sandbox

Quick recap

To	You need to
Build a sandbox	\$ singularity buildsandbox
Modify a sandbox	\$ sudo singularity shellwritable
Build an image from sandbox	\$ sudo singularity build


e) Upload image to HPC and run

Now! The moment of truth!



Outlines

1. Why Container?

- 1) Problems
- 2) Container & Singularity

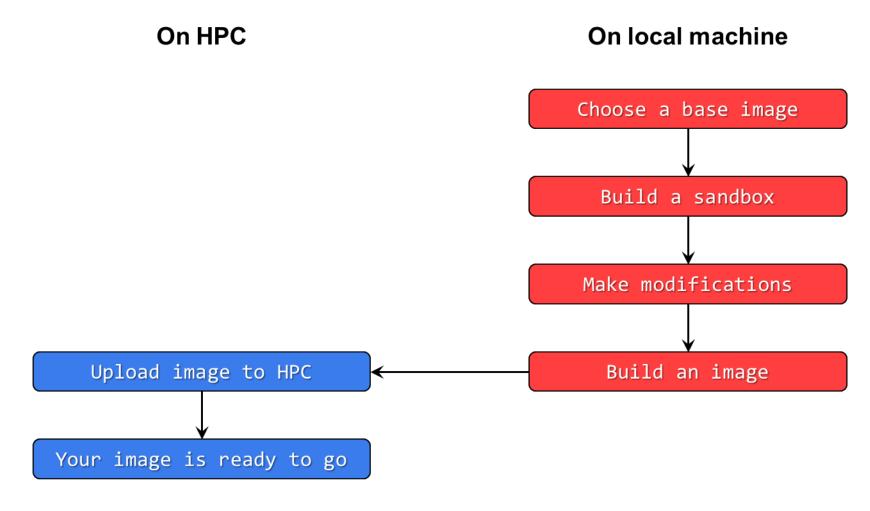
2. Run an Existing Container Image

- 1) Basic commands
- 2) Running jobs with Singularity

3. Get More Container Images

- 1) Where to get
- 2) Basic commands

4. Build Your Own Container Image


- 1) What you need
- 2) Typical workflow
- 3) Make it easier Recipe

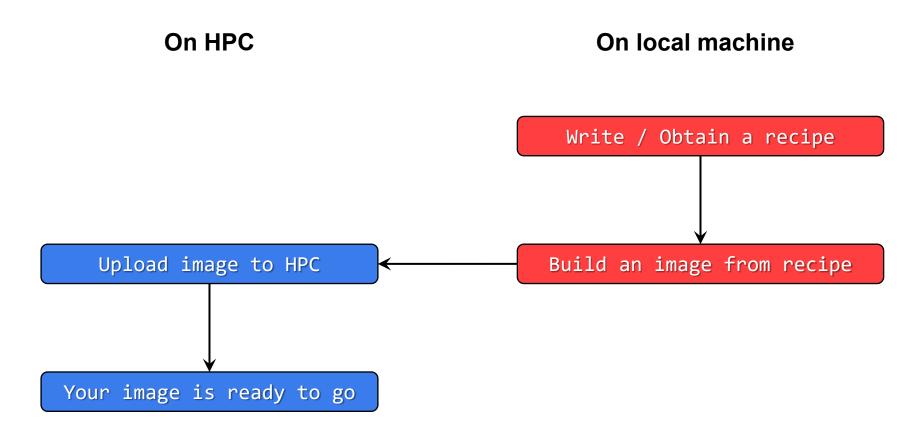
Why?

Why?

Pros	Cons
• Flexibility	RepeatabilityMinimizing image size

Solution:

Recipe: A text file containing instructions to build a container


Why? On HPC On local machine Choose a base image Build a sandbox Make modifications Build an image Upload image to HPC Your image is ready to go

Why?

a) What does a recipe look like?

ruby.def

```
BootStrap: docker
From: ubuntu:latest
%labels
Author
             Jason Li
Description A container with Ruby installed
%post
apt update
apt install -y ruby
%environment
export MYENV="Some environmental variable"
%runscript
ruby -e "puts 'Hello from container!'"
```


a) What does a recipe look like?

rubv.def

BootStrap: docker

From: ubuntu:latest

%labels

Author Jason Li

Description A container with Ruby installed

%post

apt update

apt install -y ruby

%environment

export MYENV="Some environmental variable"

%runscript

ruby -e "puts 'Hello from container!'"

Header

- Base image info (how, where, what to pull)

a) What does a recipe look like?

ruby.def

BootStrap: docker
From: ubuntu:latest

%labels

Author Jason Li

Description A container with Ruby installed

%post
apt update
apt install -y ruby

%environment
export MYENV="Some environmental variable"

%runscript
ruby -e "puts 'Hello from container!'"

Label

Container information (write whatever you want)

a) What does a recipe look like?

ruby.def

BootStrap: docker
From: ubuntu:latest

%labels

Author Jason Li

Description A container with Ruby installed

%post
apt update
apt install -y ruby

%environment
export MYENV="Some environmental variable"

%runscript
ruby -e "puts 'Hello from container!'"

Post

- Commands to execute after the base image is pulled

a) What does a recipe look like?

ruby.def

```
BootStrap: docker
From: ubuntu:latest

%labels
Author Jason Li
Description A container with Ruby installed

%post
apt update
apt install -y ruby
```

%environment
export MYENV="Some environmental variable"

```
%runscript
ruby -e "puts 'Hello from container!'"
```

Environment

- Define environmental variables every time the container is executed

a) What does a recipe look like?

ruby.def

```
BootStrap: docker
From: ubuntu:latest
%labels
             Jason Li
Author
Description A container with Ruby installed
%post
apt update
apt install -y ruby
%environment
export MYENV="Some environmental variable"
%runscript
ruby -e "puts 'Hello from container!'"
```

Runscript

- Commands to be run with singularity run

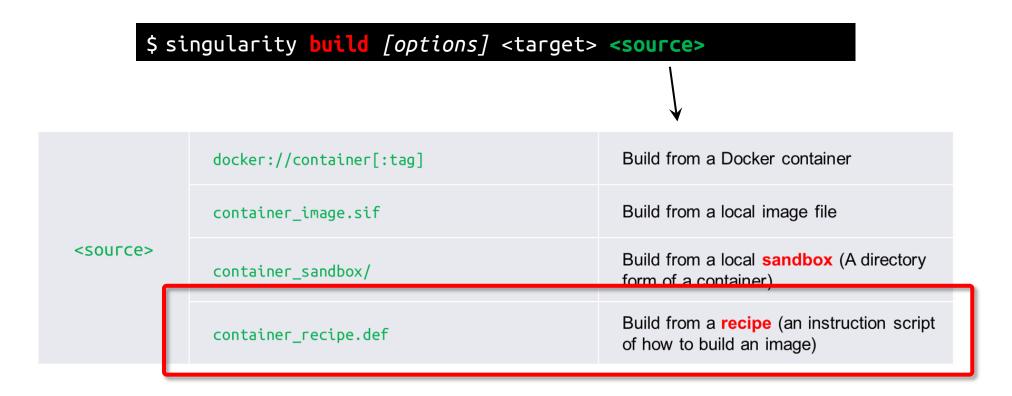
a) What does a recipe look like?

ruby.def

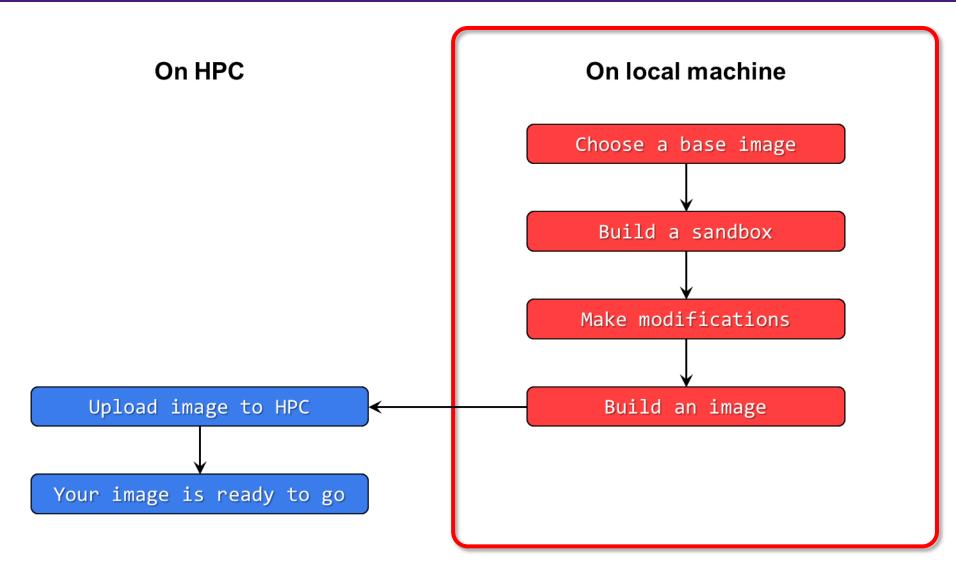
```
BootStrap: docker
From: ubuntu:latest
```


a) What does a recipe look like?

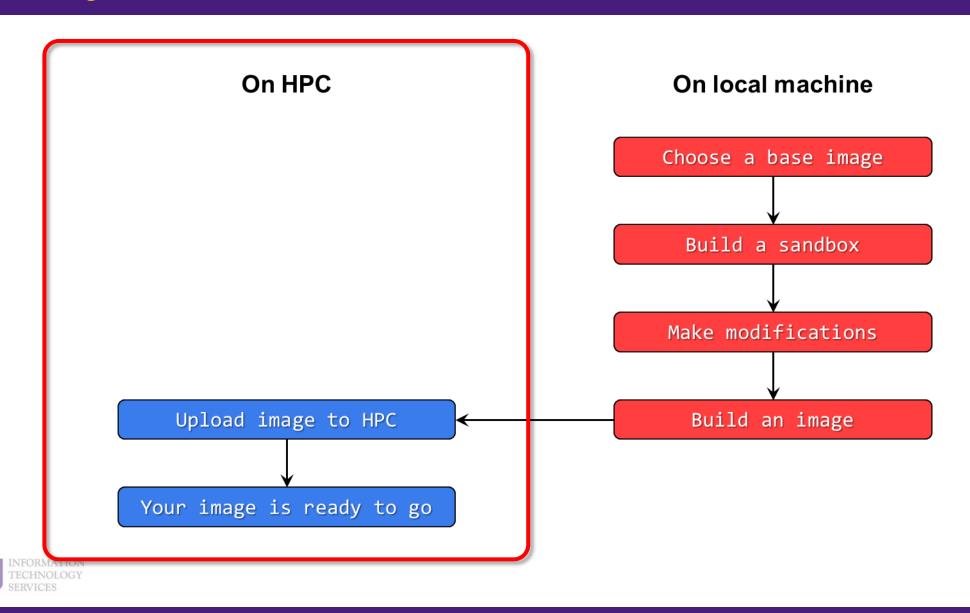
ruby.def


```
BootStrap: docker
From: ubuntu:latest
%post
apt update
apt install -y ruby
```


b) Build the recipe



Summary



Summary

105

1. Why Container?

2. Run

3. Get More

4. Build your own

Conclusion

Outlines

1. Why Container?

- 1) Problems
- 2) Container & Singularity

2. Run an Existing Container Image

- 1) Basic commands
- 2) Running jobs with Singularity

3. Get More Container Images

- 1) Where to get
- 2) Basic commands

4. Build Your Own Container Image

- 1) What you need
- 2) Typical workflow
- 3) Make it easier Recipe

Take home message

To use:

Syntax	Description
singularity shell [options] <container></container>	Run a prewritten script
singularity exec [options] <container> <command/></container>	Execute a command in the image
singularity run [options] <container></container>	Run a prewritten script

To get:

Syntax	Description
singularity <pre>pull [options] [target] <source/></pre>	Simple pull
<pre>singularity build [options] <target> <source/></target></pre>	Advanced build command

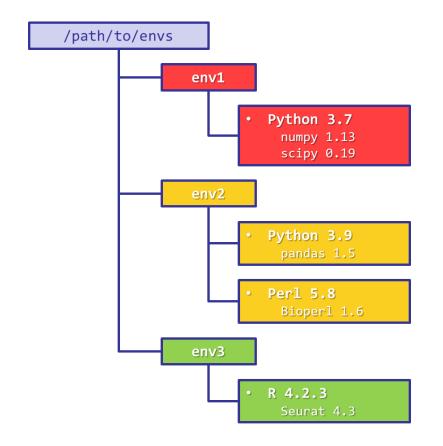
Contact us

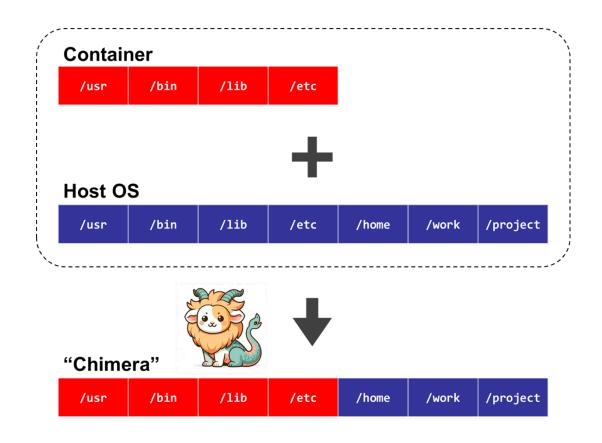
Contact user services

Email Help Ticket: sys-help@loni.org

■ Telephone Help Desk: +1 (225) 578-0900

To conclude our mini series...





Conda vs Singularity

Virtual Environment v.s. Container ?

Conda vs Singularity

	Conda / Virtual Environments	Singularity / Containers
Availability	All users	All users, but may need additional things
Self-contained	Yes	Yes
Isolated	Yes (but still accessible from outside)	Perfect (completely isolated from outside)
Editability	Yes	No (Must create a new image)
Disk usage	Large	Smaller
Portability	Possible (but .yml may not work)	Great (just copy-paste one file)
Security	Fair	Good
Ease of use	Good	May require a little more understanding

Conda vs Singularity

	Conda / Virtual Environments	Singularity / Containers
Good for	 Less hassle to create and install software from scratch If you need to frequently make modifications 	 Less hassle if the developer releases a working container If you don't need to make changes after it is created Portability Reduce disk usage Your system admins yelled at you about security risk

"Commercial" time!

Are you tired of wring the long, tedious singularity commands?

```
$ singularity exec --nv -B /work,/project,/usr/local/package \
    /home/admin/singularity/ubuntu-training.sif \
    python helloworld.py
```


"Commercial" time!

Browse

Browse

Delete selected module

Delete

Try SIMPLE-MOD!

- https://github.com/lsuhpchelp/SIMPLE-MOD
- A GUI tool to create module key from containerbased software.
- Using the software in containers is as easy as:

```
$ module load busco
$ busco --version
  BUSCO 5.6.1
```


X SIMPLE-MOD @mike4

Module List Module name

Module version 5.6.1

Module Details

Software description

Singularity image path

Singularity binding paths Additional Singularity flags

Conflicts

File Settings Help

busco

Add a new module

Copy current module

/home/admin/singularity/busco-5.6.1.sif

rsal single-copy orthologs, BUSCO metric is complementary to technical metrics like N50.

