

HPC User Environment 2

Siva Prasad Kasetti

HPC User Services LSU HPC / LONI sys-help@loni.org

Louisiana State University

Baton Rouge July 16, 2025

- HPC User Environment 1
 - 1. Intro to HPC
 - 2. Getting started
 - 3. Into the cluster
 - 4. Software environment (modules)

- HPC User Environment 2
 - 1. Basic concepts
 - 2. Preparing my job
 - 3. Submitting my job
 - 4. Managing my jobs

HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Partitions and job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Partitions and job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

You own this computer.

You can use this however you like. You can also install any software packages with root privileges like sudo <yum, dnf, apt-get> etc. You can run your code however long it takes, take full advantage of all resources like full memory, all cores, gpus etc. available on your machine.

What if the available resources on your computer are not sufficient?

1. Basic concepts

2. Preparing my job

3. Submitting my job

Two things needed to run jobs on our clusters:

1) Account

2) Allocation

http://www.hpc.lsu.edu/links.php

6

1. Basic concepts

2. Preparing my job

3. Submitting my job

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

1. Basic concepts

2. Preparing my job

3. Submitting my job

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job and Job Scheduler

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Partitions and job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

- a) The job is <u>a computational task</u> submitted to a cluster for execution.
 - Job script: It can be a file that contains all the instructions and parameters needed to execute the job written in the shell scripting language. It specifies <u>the resource requirements</u> and <u>the commands</u>.
 - <u>Resource requirements</u>: You should define the computational resources needed, such as the partition type, the number of nodes, the number of cores, the amount of memory, and the computational time limit, to execute your job using Slurm directives such as **#SBATCH...**
 - **<u>Commands</u>**: After the Slurm directives, you can add any commands to execute your job.
 - **SUs** are deducted from allocations based on the actual usage of each job.
 - Example:
 - My allocation balance: 50,000 SU
 - Running a job: 128 cores * 10 hours = 1280 SU
 - Balance after the job is completed: 48,720 SU

1 SU Unit = 1 CORE / hour

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

2) Job Scheduler

2) Job Scheduler

b) What's a "job scheduler"?

Allocation of resources: queue management and allocation of the resources based on job requirements.

Priority scheduling:

assigns priority to jobs based on required computational resources and job duration. It also checks for fair resource distribution.

Command line tools: provide users with the tool submission, monitoring, and management.

Monitoring and reporting:

monitoring of the job progress, resource usage, and job status.

Fault tolerance and recovery:

supports job checkpointing and recovery. It also handles job rescheduling when a compute node fails.

Online Web tools: support webbased interfaces for easier job scheduling and management, such as Open OnDemand https://ondemand.qbd.loni.org

1. Basic concepts

2. Preparing my job

Node001

3. Submitting my job

Node004

2) Job Scheduler

b) What's a "job scheduler"?

https://www.ibm.com/docs/en/spectrum-lsf/10.1.0

LSF (Load Sharing Facility)

OpenPBS

https://github.com/openpbs/openpbs

PBS (Portable Batch System)

SLURM (Simple Linux Utility for Resource Management)

https://slurm.schedmd.com/documentation.html

14

1. Basic concepts

2. Preparing my job

b) What's a "job scheduler"?

Workload manager	LSU HPC	LONI
slurm workload manager	Deep Bayou SuperMike III SMIC	QB3 (QBC) QB4 (QBD)

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

Job	Job Scheduler
 Computational task: data processing Resources: CPU cores, RAM memory Execution environment: modules Input/Output: input files/output files 	 Allocation of resources: Nodes, CPUs, memory Priority scheduling: assigns priority to jobs Monitoring and reporting: the job progress Fault tolerance and recovery: checkpointing
 <u>A job script might be submitted by a user to</u> <u>the job scheduler for execution.</u> 	 Command line tools: job management Online web tools: job management using OOD

1. Basic concepts

2. Preparing my job

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Partitions and job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

1) Basic principles

- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Partitions and job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

	Large enough	Small enough
•	To successfully complete your job	To ensure quick turnaroundNot to waste resources for other users

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

Available HPC Resources	Description
• Time:	Job run time / wall time
Compute resources:	 Nodes, CPU cores, threads
Memory:	RAM, per-core memory, total memory
Partition or queue:	Appropriate queues
Software:	Modules or specific software (containers)

... and other resources such as storage, networking, and other special hardware.

1. Basic concepts

• HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Partitions and job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

#SBATCH --time=DD-HH:MM:SS

1. Basic concepts

2. Preparing my job

• SuperMike3

Partition Name	Max Walltime	Max Jobs (per user)	Max Nodes (per user)	Allowed Cores per Node
single	168	32	96	1- 64
checkpt	72	32	96	64
workq	72	32	96	64
bigmem	72	-	4	64
gpu	72	8	4	32/64
gpu4	72	8	4	16/32/48/64

http://www.hpc.lsu.edu/docs/guides.php?system=SuperMike3

22

1. Basic concepts

2. Preparing my job

• FAQ

	Q	Α
•	What if my command is still running when the wall time runs out?	 Job is terminated. Any running process will be killed.
•	What if all my commands in the job finished before the wall time runs out?	• Job exits successfully when all commands finished.
•	If my job exits before requested wall time, how many SUs will I be charged?	 You will be charged based on your actual time used (if less than requested).
•	In that case, why don't I just request maximum wall time every time?	Your queuing time might be quite long.

SNI

2. Preparing my job

3. Submitting my job

HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)

3) Number of nodes & cores

- 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

	SuperMIC			Deep Ba	iyou	Super	/like III
	Hostname	smic.hpc.lsu.edu		Hostname	db1.lsu.edu	Hostname	mike.hpc.lsu.edu
	Peak Performance/TFlops	925		Peak Performance/TFlops	257	Peak Performance/TFlops	1,285
Γ	Compute nodes	360		Compute nodes	13	Compute nodes	183
	Processor/node	2 10-core		Processor/node	2 24-core	Processor/node	2 32-core
_	Processor Speed	2.8 GHz		Processor Speed	2.4 GHz	Processor Speed	2.6GHz
	Processor Type	Intel Xeon 64bit		Processor Type	Intel Cascade Lake Xeon 64bit	Processor Type	Intel Xeon Ice Lake
	Nodes with Accelerators	360		Nodes with Accelerators	13	Nodes with Accelerators	8
	Accelerator Type	Xeon Phi 7120P		Accelerator Type	2 x NVIDIA Volta V100S	Accelerator Type	4 NVIDIA A100
	OS	RHEL v6		OS	RHEL v7	OS	RHEL v8
	Vendor			Vendor	Dell	Vendor	Dell
	Memory per node	64 GB		Memory per node	192 GB	Memory per node	256/2048 GB
	Detailed Cluster Description			Detailed Cluster Description		Detailed Clust	er Description
	User Guide			User Guide		User Guide	
	Available	Software		Available Software		Available Software	
	https://www.hpc.lsu.edu/resources/hpc/index.php#lsuhpc						

1. Basic concepts

2. Preparing my job

3. Submitting my job

- When submitting you job...
 - Required
 - Must tell job scheduler the number of nodes & cores you need

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

• FAQ

	Q	Α
•	My code runs slow. Can I request more nodes / cores to make it faster?	 Not quite! Your code most likely is NOT using multiple nodes / cores, if: You do not know if it is using multiple nodes / cores You did not tell it to use multiple nodes / cores You are not familiar with names like "MPI" / "OpenMP" Underutilization is THE most common warning received on our clusters
•	How many nodes / cores should I request?	 In short: We can't answer that Each code / job is different. You must test to determine

1. Basic concepts

2. Preparing my job

3. Submitting my job

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Partitions and job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

• HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Partitions and job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Partitions and job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

single

4. Managing my jobs

4) Partitions and job queues

a) Definition

- Lines where jobs are waiting to be executed
- Must pick one queue
- Goal: Use the resources efficiently

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

31

. . .

[username@host ~]\$ sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

single*	up 7-00:00:00	1 drain* qbd422
single*	up 7-00:00:00	1 down*qbd041
single*	up 7-00:00:00	163 alloc qbd[056-080,088-091,191-299,431-455]
single*	up 7-00:00:00	315 idle qbd[001-040,042-055,081-087,092-190,300-421,423-430,456-480]
checkpt	up 3-00:00:00	1 drain* qbd422
checkpt	up 3-00:00:00	1 down*qbd041
checkpt	up 3-00:00:00	163 alloc qbd[056-080,088-091,191-299,431-455]
checkpt	up 3-00:00:00	315 idle qbd[001-040,042-055,081-087,092-190,300-421,423-430,456-480]
workq	up 3-00:00:00	1 drain* qbd422
workq	up 3-00:00:00	1 down* qbd041
workq	up 3-00:00:00	163 alloc qbd[056-080,088-091,191-299,431-455]
workq	up 3-00:00:00	315 idle qbd[001-040,042-055,081-087,092-190,300-421,423-430,456-480]
bigmem	up 3-00:00:00	1 alloc qbd482
bigmem	up 3-00:00:00	4 idle qbd[481,483-485]
gpu2	up 3-00:00:00	52 idle qbd[486-511,517-542]
gpu4	up 3-00:00:00	3 mix qbd[543-545]
gpu4	up 3-00:00:00	6 idle qbd[512-516,546]
gpu-smal	l up 3-00:00:00	1 idle qbd547

3. Submitting my job

b) Available partitions/queues

i. workq / checkpt

Purpose		 General purposes Most likely your default queue Difference: non-preemptible (workq) vs. preemptible (checkpt)
Name		 All clusters: workq / checkpt
Resource availability	Nodes	 Entire node(s) Up to a maximum
	Cores	All cores on the node(s)
	Memory	All memory on the node(s)
Max duration		• 72 hours (3 days)

Available partitions/queues b)

ii. single

	Purpose		Only need a portion	n of one node		
Names		• All clusters: single				
		Nodes	Portion of one node	e: 1/2/4/8/16/32/64		
	Resource availability	Cores	 1 ~ all cores 			
		Memory	• A portion, proporti	onal to the number	of requested cores	
	Max dur	ation	• 168 hours (7 days)		[QB-4]	
					 Total: 64 cores, 256 GB memory → 4 GB / core 	
LSU	INFORMATION TECHNOLOGY SERVICES				- Request: 10 cores \rightarrow 40 GB memory	
1. Ba	asic concepts	2.	Preparing my job	3. Submittin	g my job 4. Managing m	y jo

34

bs

b) Available partitions/queues

iii. bigmem

Purpose		Need large memory (larger than regular computing nodes have)
Names		All clusters: bigmem
Resource availability	Nodes	Entire node(s)
	Cores	All cores on the node
	Memory	All memory on the node
Max duration		• 72 hours (3 days)

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4) Partitions and job queues

b) Available partitions/queues

iv.	GPU					gpuX : X = [Number of GPUs on one node]			
	Purpose		•	Need GPU		-			
	Name		•	QB-3: gpu2	•	SMIC:gpu2Deep Bayou:gpu2, gpSuperMike 3:gpu4QB-4:gpu2, gp	ou4		
	Resource availability	Nodes	•	Entire node(s)	•	Portion or entire node(s)		
		Cores	•	All cores on the node(s)	•	Portion or all on the nod	۴ Г QB-4 /	[QB-4 / apu4]	
		Memory	•	All memory on the node(s)	•	Portion or all on the nod			
		GPU	•	All GPUs on the node(s)	•	1 ~ all GPU on the node(- Iotal : 64 →	- Iotal : 64 cores, 4 GPUs \rightarrow 16 cores / GPU	
Max duration			•	72 hours (3 days)		 Request: 3 GPUs → 48 cores 			
INFORMATION TECHNOLOGY SERVICES									
1. Basic concepts 2. Preparing my job 3. Submitting my job 4. Managing my jobs 36									
c) Available partitions/queues by clusters (LSU HPC)

Cluster	Partition/Queue	Cores per node (ppn)	Max running jobs	Max nodes per user	
	workq	20		86	
	checkpt	20			
	single	1 ~ 20	45 (alaba))		
(smc.npc.isu.edu)	gpu2	18,36	(grobar)	2	
	bigmem	28		3	
DeepBayou	gpu2	24,48		8	
(db1.hpc.lsu.edu)	gpu4	12,24,36,48	-	2	
	workq	64		96	
	checkpt	04			
SuperMike-III (mike.hpc.lsu.edu)	single	1 ~ 64	32 (global)		
	gpu4	16,32,48,64	(grobar)	4	
	bigmem	64		4	

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

c) Available partitions/queues by clusters (LONI)

Cluster	Partition/Queue	Cores per node (ppn)	Max running jobs	Max nodes per user	
	workq	48		48	
	checkpt		22		
QB-3	single	1 ~ 48	32 (qlobal)		
	gpu2	48		4	
	bigmem	48		2	
	workq	64		96	
	checkpt	Ŭ,			
OB-4	single	1 ~ 64	32		
	gpu2	32,64	(global)	4	
	gpu4	16,32,48,64		4	
	bigmem	64		5	

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

d) Choose your partition/queue

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

4) Partitions and job queues

d) Choose your partition/queue

Queue choice? My job (include number of nodes / cores) SMIC • workq / checkpt MPI code, needs 100 CPU cores (5 nodes, 20 cores per node) Hint: SMIC has 20 cores / node SuperMike 3 . gpu4 Uses 3 GPUs to train a neural network (1 node, 48 cores per node) Hint: SuperMike 3 has 64 cores / node, 4 GPUs / node \rightarrow 16 cores / GPU QB-3 • single Single-core serial code (1 node, 8 cores per node) Needs to store and process 30 GB data in RAM • Hint: QB-3 has 192 GB RAM / node, 4 GB RAM / core

Test

SNI

40

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

[username@host ~]\$ squeue

 JOBID PARTITION
 NAME
 USER
 STATE
 TIME TIME_LIMI NODES NODELIST(REASON)

 50878
 bigmem submit-p
 username1
 RUNNING 2-06:28:02 3-00:00:00
 1 qbd482

 51761
 checkpt CuFe_Fit
 username2
 RUNNING
 1:29 1-00:00:00
 1 qbd081

 51257
 checkpt GOM1km_e
 username3
 RUNNING 1-17:35:43 3-00:00:00
 25 qbd[275-299]

 51731
 gpu4 submit-1
 username6
 RUNNING
 2:55:23 3-00:00:00
 1 qbd544

 50873
 workq
 qbd.sh
 username8
 RUNNING 2-07:06:42 3-00:00:00
 84 qbd[191-274]

[username@host ~]\$ squeue -u \$USER

JOBIDPARTITION NAMEUSERST TIME_LIMITTIMECPUSNODESNODELIST(REASON)51740gpu4submit-1-4.shusername6R3-00:00:002:40:00161qbd54551731gpu4submit-1-4.shusername6R3-00:00:002:57:14161qbd544

[username@host ~]\$ squeue -j 158426

JOBIDPARTITION NAMEUSERST TIME_LIMITTIMECPUS NODES NODELIST(REASON)158426workqTestusername5R5:000:17641qbd096

[username@host ~]\$ squeue --me

JOBIDPARTITION NAMEUSERST TIME_LIMITTIMECPUS NODES NODELIST(REASON)158426workqTestusername5R5:000:17641qbd096

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) How job works on clustersb) Job scheduler and how it works

1.

Summary

2. Preparing my job

a) Basic principles

Basic concepts

- "large enough" and "small enough"
- b) Information you need to tell job scheduler:
 - Time duration
 - Number of nodes & cores
 - Job partition

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

Let's have a 5-minute break!

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

Break

- 1) Have your terminal open and ready to connect to HPC
- 2) Download our testing code (π calculation) to your /home directory
 - <u>http://www.hpc.lsu.edu/training/weekly-materials/Downloads/pi_Jason.tar.gz</u>
 - Hint: use *wget* command

Outlines

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues

3. Submitting my job

- 1) Interactive job
- 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

3. Submitting a job

• Two types of jobs:

2) Batch job

- Submit to server and runs by itself, until finished or error
- Cannot interact with the job while running

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

3. Submitting a job

• Two types of jobs:

		1) Interactive job		2) Batch job
Pros	•	Can interact and monitor with job in real time	•	Submit and leave it Repeatable for complicated jobs
Cons	•	Waiting for human intervention is the opposite of "high performance"	•	Cannot edit or interact with job while running
Ideal for	•	Debugging, testing, and compiling	•	Production

1. Basic concepts

INFORMATION TECHNOLOGY

2. Preparing my job

3. Submitting my job

4. Managing my jobs

Outlines

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues

3. Submitting my job

1) Interactive job

- 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Starting an interactive job (bare minimum)

salloc [options]

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Starting an interactive job (bare minimum)

a) Starting an interactive job (bare minimum)

a) Starting an interactive job (bare minimum)

1. Basic concepts

2. Preparing my job

3. Submitting my job

a) Starting an interactive job (bare minimum)

1. Basic concepts

2. Preparing my job

3. Submitting my job

a) Starting an interactive job (bare minimum)

salloc

- -A <allocation name>
- -t <D-HH:MM:SS>
- -p <partition name>
- -N <number of nodes>
- -n <number of tasks/cores>

a) Starting an interactive job (bare minimum)

[username@host ~]\$ salloc -A loni_loniadmin1 -p workq –N 1 –n64 --time=01:00:00

salloc: Pending job allocation 51814 salloc: lua: Submitted job 51814 salloc: job 51814 queued and waiting for resources salloc: job 51814 has been allocated resources salloc: Granted job allocation 51814 salloc: Waiting for resource configuration salloc: Nodes qbd085 are ready for job

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Starting an interactive job (bare minimum)

[username@host ~]\$ salloc -A loni_loniadmin1 -p workq –N 1 –n64 --time=01:00:00

salloc: Pending job allocation 51814 salloc: lua: Submitted job 51814 salloc: job 51814 queued and waiting for resources salloc: job 51814 has been allocated resources salloc: Granted job allocation 51814 salloc: Waiting for resource configuration salloc: Nodes qbd085 are ready for job

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Starting an interactive job (bare minimum)

Successfully started: on a computing node (3-digit number)

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Starting an interactive job (bare minimum)

[username@qbd1 Tests]\$ sallo? --account=loni_loniadmin1 --partition=workq --nodes=1 --ntasks=64 --time=12:00:00 --jobname=training --mail-user=username@lsu.edu --mail-type=BEGIN,END salloc: Pending job allocation 51860 salloc: lua: Submitted job 51860 salloc: job 51860 queued and waiting for resources salloc: job 51860 has been allocated resources salloc: Granted job allocation 51860 salloc: Nodes qbd083 are ready for job [username@qbd083 Tests]\$

Job starts in where the job was submitted

62

a) Starting an interactive job (bare minimum)

[username@qbd1Tests]\$ salloc --account=loni_loniadmin1 --partition=workq --nodes=1 --ntasks=64 --time=12:00:00 --jobname=training --mail-user=username@lsu.edu --mail-type=BEGIN,END salloc: Pending job allocation 51860 salloc: lua: Submitted job 51860 salloc: job 51860 queued and waiting for resources salloc: job 51860 has been allocated resources salloc: Granted job allocation 51860 salloc: Nodes qbd083 are ready for job [username@qbd083 Tests]\$

Once a job starts, **type and run commands** as you normally do.

63

1. Basic concepts

2. Preparing my job

3. Submitting my job

1. Basic concepts

2. Preparing my job

3. Submitting my job

2. Preparing my job

3. Submitting my job

4. Managing my jobs

2. Preparing my job

3. Submitting my job

4. Managing my jobs

2. Preparing my job

3. Submitting my job

4. Managing my jobs

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

salloc

- -A <allocation name>
- -t <D-HH:MM:SS>
- -p <partition name>
- -N <number of nodes>
- -n <number of tasks/cores>

70

71

2. Preparing my job

3. Submitting my job

2. Preparing my job

3. Submitting my job

4. Managing my jobs

2. Preparing my job

2. Preparing my job

3. Submitting my job

4. Managing my jobs

d) Other useful flags

Flag		Description		
x11		Enable x11 forwarding for GUI (exclusive to interactive job)		
-J		Job name		
dependency=afterok:[jobid]		Dependent job (starts after another job finishes)		
	FAIL		Job aborts / fails	
mail-type	BEGIN	Send email when	Job begins	
	END		Job ends	
mail-user		Email address (will check against registered institutional email)		

[1] <u>http://www.hpc.lsu.edu/docs/slurm.php</u>

1. Basic concepts

2. Preparing my job

3. Submitting my job

The default partition/queue

single

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

d) Other useful flags

[username@host ~]\$ salloc -A loni_loniadmin1 -p workq -N1 -n64 -t 12:00:00

[username@host ~]\$ salloc -A loni_loniadmin1 -p workq -t 1-00:00:00

[username@host ~]\$ salloc --account=loni_loniadmin1 --partition=workq --nodes=1 --ntasks=64 --time=1-00:00:00 -job-name=training --mail-user=user@mail.address --mail-type=BEGIN,END

[1] <u>http://www.hpc.lsu.edu/docs/slurm.php</u>

78

1. Basic concepts

2. Preparing my job

3. Submitting my job

1) Interactive job

- e) Running an interactive job
 - After job started:

Serial (Single-thread)	Parallel (MPI)
 Run commands as you normally do \$ <executable> [options]</executable> 	 Method 1 (Recommended) <pre>\$ srun -N[] -n[] -c[] <mpi_executable> [options]</mpi_executable></pre> Method 2 <pre>\$ module load <desired mpi=""> \$ export OMP_NUM_THREADS=[] \$ mpirun -np [] <mpi_executable> [options]</mpi_executable></desired></pre>

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

Outlines

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues

3. Submitting my job

- 1) Interactive job
- 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

• What do you need?

- 1. A batch file (containing job parameters and bash scripts)
- 2. Submit this batch file with the **submission command <sbatch>**

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Batch file

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Batch file

#!/bin/bash #SBATCH -A <Allocation name> #SBATCH -p workq #SBATCH -t 1:00:00 #SBATCH -N 1 #SBATCH -N 64 module load python cd \$SLURM_SUBMIT_DIR ./pi_serial.out 100000000

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

<mark>83</mark>

a) Batch file

<pre>#!/bin/bash #SBATCH -A <allocation name=""></allocation></pre>	Allocation name
#SBATCH -p workq #SBATCH -t 1:00:00 #SBATCH -N 1 #SBATCH -n 64	
module load python	
cd \$SLURM_SUBMIT_DIR ./pi_serial.out 100000000	

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Batch file

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

a) Batch file

<pre>#!/bin/bash #SBATCH -A <allocation name=""></allocation></pre>	
#SBATCH -p Workq #SBATCH -t 1:00:00	Wall time
#SBATCH -N 1 #SBATCH -n 64	
module load python	
cd \$SLURM_SUBMIT_DIR ./pi_serial.out 100000000	

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Batch file

<pre>#!/bin/bash #SBATCH -A <allocation name=""> #SBATCH -p workq #SBATCH -t 1:00:00 #SBATCH -N 1</allocation></pre>	Number of nodes and
#SBATCH -n 64	cores
module load python	
cd \$SLURM_SUBMIT_DIR ./pi_serial.out 100000000	

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Batch file

Fla	ag	Description			
-0		Standard output file (exclusive to batch job)			
-e		Standard error file (exclusive to batch job)			
- J		Job name			
dependency=aft	erok:[jobid]	Dependent job (starts after another job finishes)			
FAIL			Job aborts / fails		
mail-type	BEGIN	Send email when	Job begins		
	END		Job ends		
mail-user		Email address (will check against registered institutional email)			

3. Submitting my job

2. Preparing my job

1. Basic concepts

[1] <u>http://www.hpc.lsu.edu/docs/slurm.php</u>

4. Managing my jobs

a) Batch file

#!/bin/bash
#SBATCH -A <Allocation name>
#SBATCH -p workq
#SBATCH -t 1:00:00
#SBATCH -N 1
#SBATCH -n 64

module load python

cd \$SLURM_SUBMIT_DIR
_/pi_serial.out 100000000

[Body] Commands to run after the job starts

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Batch file

#!/bin/bash
#SBATCH -A <Allocation name>
#SBATCH -p workq
#SBATCH -t 1:00:00
#SBATCH -N 1
#SBATCH -n 64

module load python

cd \$SLURM_SUBMIT_DIR
./pi_serial.out 100000000

[Recommended] Explicitly load modules if. needed

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Batch file

#!/bin/bash
#SBATCH -A <Allocation name>
#SBATCH -p workq
#SBATCH -t 1:00:00
#SBATCH -N 1
#SBATCH -n 64

module load python

cd \$SLURM_SUBMIT_DIR
_/pi_serial.out 100000000

Whatever commands you need to run your job.

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Batch file

#!/bin/bash
#SBATCH -A <Allocation name>
#SBATCH -p workq
#SBATCH -t 1:00:00
#SBATCH -N 1
#SBATCH -N 64

module load python

cd \$SLURM_SUBMIT_DIR ./pi_serial.out 100000000

Empty line to avoid error

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

b) Submit

sbatch batch-script.sh

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

Outlines

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Partitions and job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job

4. Managing my jobs

- 1) Useful commands
- 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

Running jobs on HPC ≠ "Submit and done"

- Monitoring and managing jobs are part of the work

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

Outlines

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Partitions and job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

(Command	Description				
		List all jobs				
<pre>-j <job id=""> squeue -u <username> -p <partition name=""></partition></username></job></pre>		List the job of specific ID				
		List all jobs belong to a specific user				
		List all jobs in a particular partition/queue				
	start	Estimated start time of queuing jobs				
<pre>scontrol show job <job id=""></job></pre>		Show job details				
<pre>scancel <job id=""></job></pre>		Cancel <job id=""></job>				

Alter jobs after submission? \rightarrow NOT allowed!

[1] <u>http://www.hpc.lsu.edu/docs/slurm.php</u>

2. Preparing my job

3. Submitting my job

Outlines

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Partitions and job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job

4. Managing my jobs

- 1) Useful commands
- 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

A job requesting n cores \neq A job utilizing n cores

- Goal
 - Use the allocated resources (CPU cores, RAM, time, ...) as fully and efficiently as possible
 - No serious underutilizing
 - No serious overutilizing
- Things to check
 - CPU / GPU load
 - Memory usage

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

- a) Method 1: qshow <Job ID>
 - Displays diagnostic information of a running job
 - Can be run on head node

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Method 1: qshow <Job ID>

(base) [jasonli3@mike4 ~]\$ qshow 38581 PBS job: 38581, nodes: 1 Hostname Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours) 278 64.12 6033 68 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:533M:107M:13.5 yxan:lmp mik+:748M:128M:13.5 mike145 yxan:lmp_mik+:738M:124M:13.5_yxan:lmp_mik+:520M:104M:13.5_yxan:lmp_mik+:587M:109M:13.5_yxan:lmp_mik+:743M:128M:13.5_yxan:lmp_mik+:696M:118M:13.5 yxan:lmp_mik+:528M:101M:13.5_yxan:lmp_mik+:578M:108M:13.5_yxan:lmp_mik+:528M:105M:13.5_yxan:lmp_mik+:528M:106M:13.5_yxan:lmp_mik+:520M:105M:13.5_ yxan:lmp_mik+:561M:106M:13.5_yxan:lmp_mik+:583M:109M:13.5_yxan:lmp_mik+:520M:103M:13.5_yxan:lmp_mik+:524M:103M:13.5_yxan:lmp_mik+:738M:125M:13.5 yxan:lmp_mik+:709M:119M:13.5_yxan:lmp_mik+:524M:103M:13.5_yxan:lmp_mik+:574M:107M:13.5_yxan:lmp_mik+:697M:121M:13.5_yxan:lmp_mik+:658M:115M:13.5 yxan:lmp_mik+:528M:102M:13.5_yxan:lmp_mik+:557M:108M:13.5_yxan:lmp_mik+:524M:105M:13.5_yxan:lmp_mik+:524M:105M:13.5_yxan:lmp_mik+:515M:102M:13.5 yxan:lmp_mik+:520M:104M:13.5_yxan:lmp_mik+:567M:108M:13.5_yxan:lmp_mik+:566M:108M:13.5_yxan:lmp_mik+:519M:103M:13.5_yxan:lmp_mik+:536M:105M:13.5 yxan:lmp mik+:519M:104M:13.5 yxan:lmp mik+:528M:103M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:528M:104M:13.5 yxan:lmp mik+:516M:101M:13.5 yxan:lmp mik+:515M:101M:13.5 yxan:lmp mik+:515M:104M:13.5 yxan:lmp mik+:520M:101M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:520M:101M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:516M:102M:13.5 yxan:lmp mik+:587M:110M:13.5 yxan:lmp mik+:558M:108M:13.5 yxan:lmp mik+:524M:102M:13.5 yxan:lmp mik+:537M:103M:13.5 yxan:lmp mik+:572M:109M:13.5 yxan:lmp mik+:549M:104M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:528M:104M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:520M:105M:13.5 yxan:lmp mik+:528M:105M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:515M:104M:13.5 yxan:lmp mik+:515M:104M:13.5 yxan:slurm s+:12M:3M yxan:srun:324M:8M yxan:srun:53M:1M PBS job=38581 user=yxan allocation=hpc lipidhpre queue=checkpt total load=64.12 cpu hours=866.08 wall hours=13.21 unused nodes=0 total nodes=1 pp n=64 avg load=64.12 avg cpu=6033% avg mem=6852mb avg vmem=36176mb top proc=yxan:lmp mik+:mike145:524M:104M:13.5hr:100% toppm=yxan:lmp mikeCpu:mik e145:730M:125M node processes=68

What to look at	Normal behavior	You should be concerned if

SNI

101

1. Basic concepts

2. Preparing my job

3. Submitting my job

a) Method 1: qshow <Job ID>

(base) [jasonli3@mike4 ~]\$ qshow 38581 PBS job: 38581, nodes: 1 Hostname Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours) 278 64.12 6033 68 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:533M:107M:13.5 yxan:lmp mik+:748M:128M:13.5 mike145 yxan:lmp_mik+:738M:124M:13.5_yxan:lmp_mik+:520M:104M:13.5_yxan:lmp_mik+:587M:109M:13.5_yxan:lmp_mik+:743M:128M:13.5_yxan:lmp_mik+:696M:118M:13.5 yxan:lmp_mik+:528M:101M:13.5_yxan:lmp_mik+:578M:108M:13.5_yxan:lmp_mik+:528M:105M:13.5_yxan:lmp_mik+:528M:106M:13.5_yxan:lmp_mik+:520M:105M:13.5_ yxan:lmp_mik+:561M:106M:13.5_yxan:lmp_mik+:583M:109M:13.5_yxan:lmp_mik+:520M:103M:13.5_yxan:lmp_mik+:524M:103M:13.5_yxan:lmp_mik+:738M:125M:13.5 yxan:lmp_mik+:709M:119M:13.5_yxan:lmp_mik+:524M:103M:13.5_yxan:lmp_mik+:574M:107M:13.5_yxan:lmp_mik+:697M:121M:13.5_yxan:lmp_mik+:658M:115M:13.5 yxan:lmp_mik+:528M:102M:13.5_yxan:lmp_mik+:557M:108M:13.5_yxan:lmp_mik+:524M:105M:13.5_yxan:lmp_mik+:524M:105M:13.5_yxan:lmp_mik+:515M:102M:13.5 yxan:lmp_mik+:520M:104M:13.5_yxan:lmp_mik+:567M:108M:13.5_yxan:lmp_mik+:566M:108M:13.5_yxan:lmp_mik+:519M:103M:13.5_yxan:lmp_mik+:536M:105M:13.5 yxan:lmp mik+:519M:104M:13.5 yxan:lmp mik+:528M:103M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:528M:104M:13.5 yxan:lmp mik+:516M:101M:13.5 yxan:lmp mik+:515M:101M:13.5 yxan:lmp mik+:515M:104M:13.5 yxan:lmp mik+:520M:101M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:520M:101M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:516M:102M:13.5 yxan:lmp mik+:587M:110M:13.5 yxan:lmp mik+:558M:108M:13.5 yxan:lmp mik+:524M:102M:13.5 yxan:lmp mik+:537M:103M:13.5 yxan:lmp mik+:572M:109M:13.5 yxan:lmp mik+:549M:104M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:528M:104M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:520M:105M:13.5 yxan:lmp mik+:528M:105M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:515M:104M:13.5 yxan:lmp mik+:515M:104M:13.5 yxan:slurm s+:12M:3M yxan:srun:324M:8M yxan:srun:53M:1M PBS job=20501 user=yxan allocation=hpc lipidhpre queue=checkpt total load=64.12 cpu hours=866.08 wall hours=13.21 unused nodes=0 total nodes=1 pp n=🗗 avg load=64.12 avg cpu=6033% avg mem=6852mb avg vmem=36176mb top proc=yxan:lmp mik+:mike145:524M:104M:13.5hr:100% toppm=yxan:lmp mikeCpu:mik e145.720M:125M_node_processes=68

What to look at	Normal behavior	You should be concerned if
avg_load	Close to allocated number of cores on the node	Consistently too low or too high

SNI

102

1. Basic concepts

2. Preparing my job

3. Submitting my job

a) Method 1: qshow <Job ID>

(base) [jasonli3@mike4 ~]\$ qshow 38581 PBS job: 38581, nodes: 1 Hostname Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours) 278 64.12 6033 68 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:533M:107M:13.5 yxan:lmp mik+:748M:128M:13.5 mike145 yxan:lmp mik+:738M:124M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:587M:109M:13.5 yxan:lmp mik+:743M:128M:13.5 yxan:lmp mik+:696M:118M:13.5 yxan:lmp_mik+:528M:101M:13.5_yxan:lmp_mik+:578M:108M:13.5_yxan:lmp_mik+:528M:105M:13.5_yxan:lmp_mik+:528M:106M:13.5_yxan:lmp_mik+:520M:105M:13.5_ yxan:lmp_mik+:561M:106M:13.5_yxan:lmp_mik+:583M:109M:13.5_yxan:lmp_mik+:520M:103M:13.5_yxan:lmp_mik+:524M:103M:13.5_yxan:lmp_mik+:738M:125M:13.5 yxan:lmp_mik+:709M:119M:13.5_yxan:lmp_mik+:524M:103M:13.5_yxan:lmp_mik+:574M:107M:13.5_yxan:lmp_mik+:697M:121M:13.5_yxan:lmp_mik+:658M:115M:13.5 yxan:lmp_mik+:528M:102M:13.5_yxan:lmp_mik+:557M:108M:13.5_yxan:lmp_mik+:524M:105M:13.5_yxan:lmp_mik+:524M:105M:13.5_yxan:lmp_mik+:515M:102M:13.5 yxan:lmp_mik+:520M:104M:13.5_yxan:lmp_mik+:567M:108M:13.5_yxan:lmp_mik+:566M:108M:13.5_yxan:lmp_mik+:519M:103M:13.5_yxan:lmp_mik+:536M:105M:13.5 yxan:lmp mik+:519M:104M:13.5 yxan:lmp mik+:528M:103M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:528M:104M:13.5 yxan:lmp mik+:516M:101M:13.5 yxan:lmp mik+:515M:101M:13.5 yxan:lmp mik+:515M:104M:13.5 yxan:lmp mik+:520M:101M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:520M:101M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:516M:102M:13.5 yxan:lmp mik+:587M:110M:13.5 yxan:lmp mik+:558M:108M:13.5 yxan:lmp mik+:524M:102M:13.5 yxan:lmp mik+:537M:103M:13.5 yxan:lmp mik+:572M:109M:13.5 yxan:lmp mik+:549M:104M:13.5 yxan:lmp_mik+:519M:103M:13.5_yxan:lmp_mik+:528M:104M:13.5_yxan:lmp_mik+:520M:104M:13.5_yxan:lmp_mik+:515M:103M:13.5_yxan:lmp_mik+:515 yxan:lmp mik+:520M:105M:13.5 yxan:lmp mik+:528M:105M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:515M:104M:13.5 yxan:lmp mik+:515M:104M:13.5 yxan:slurm s+:12M:3M yxan:srun:324M:8M yxan:srun:53M:1M PBS_job=38581 user=yxan allocation=hpc_lipidhpre_queue=checkpt total_load=64.12 cpu_hours=866.08 wall_hours=13.21 unused_nodes=0 total_nodes=1 pp n=64 avg load=64.12 avg cpu=603 % avg mem=6852mb avg vmem=36176mb top proc=yxan:lmp mik+:mike145:524M:104M:13.5hr:100% toppm=yxan:lmp mikeCpu:mik e145:730M:125M node processes=68

What to look at	Normal behavior	You should be concerned if		
avg_load	Close to allocated number of cores on the node	Consistently too low or too high		
ave_mem	Does not exceed total allocated memory	Exceeds total allocated memory		

103

1. Basic concepts

2. Preparing my job

3. Submitting my job

- Displays dynamic real-time view of a computing node
- Must run on computing nodes !

* ssh to computing nodes while job running (cannot ssh if you do not have jobs on it)

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

top - 02:23:58 up 278 days, 19:17, 2 users, load average: 63.63, 39.81, 17.49									
Tasks: 9	Tasks: 981 total, 65 running, 916 sleeping, 0 <mark>stopped</mark> , 0 zombie								
%Cpu(s):	90.2 us,	9.	2 sy	, 0.0 r	i, 0.0	id, 0.	0 wa,	0.5 hi,	0.0 si, 0.0 st
MiB Mem	: 257004.	8 to	tal,	211261.	0 free,	41926.	9 used,	3816	.9 buff/cache
MiB Swap	: 16641.	0 to	tal,	16580.	7 free,	60.	2 used.	212737	.8 avail Mem
PID	USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+ COMMAND
2701318	jasonli3	20	0	595668	582356	2568 F	100.0	0.2	4:08.94 TDSE_np3_e0
2701342	jasonli3	20	0	595668	581944	2616 F	100.0	0.2	4:08.90 TDSE_np3_e0
2701249	jasonli3	20	Θ	595668	581792	2464 F	99.7	0.2	4:08.97 TDSE_np3_e0
2701252	jasonli3	20	Θ	595668	514684	2520 F	99.7	0.2	4:09.00 TDSE_np3_e0
2701261	jasonli3	20	0	595668	393828	2616 F	99.7	0.1	4:08.97 TDSE_np3_e0
2701264	jasonli3	20	0	595668	581856	2532 F	99.7	0.2	4:08.92 TDSE_np3_e0
2701270	jasonli3	20	Θ	595668	582480	2432 F	99.7	0.2	4:08.95 TDSE np3 e0
2701273	jasonli3	20	0	595668	581776	2448 F	99.7	0.2	4:08.81 TDSE_np3_e0
2701276	jasonli3	20	0	595668	582160	2568 F	99.7	0.2	4:08.98 TDSE np3 e0
2701270	inconlin	20	0	ENECCO	222064	2644 6	00 7	0 1	4.00 00 TOCE no 2.00

What to lo	ook at
------------	--------

Normal behavior ...

You should be concerned if ...

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

top - 02:	top - 02:23:58 up 278 days, 19:17, 2 users, load average: 63.63, 39.81, 17.49								
Tasks: 98	Tasks: 981 total, 65 running, 916 sleeping, 0 scopped, 0 zombie								
%Cpu(s):	%Cpu(s): 90.2 us, 9.2 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.5 hi, 0.0 si, 0.0 st								
MiB Mem	: 257004.8	3 to	tal,	211261.	0 free,	41926.9) used,	3816	.9 buff/cache
MiB Swap	: 16641.0) to	tal,	16580.	7 free,	60.2	2 used.	212737	.8 avail Mem
PID U	USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+ COMMAND
2701318	jasonli3	20	0	595668	582356	2568 R	100.0	0.2	4:08.94 TDSE_np3_e0
2701342	jasonli3	20	0	595668	581944	2616 R	100.0	0.2	4:08.90 TDSE_np3_e0
2701249	jasonli3	20	0	595668	581792	2464 R	99.7	0.2	4:08.97 TDSE_np3_e0
2701252	jasonli3	20	0	595668	514684	2520 R	99.7	0.2	4:09.00 TDSE_np3_e0
2701261	jasonli3	20	0	595668	393828	2616 R	99.7	0.1	4:08.97 TDSE_np3_e0
2701264	jasonli3	20	0	595668	581856	2532 R	99.7	0.2	4:08.92 TDSE_np3_e0
2701270	jasonli3	20	0	595668	582480	2432 R	99.7	0.2	4:08.95 TDSE_np3_e0
2701273	jasonli3	20	0	595668	581776	2448 R	99.7	0.2	4:08.81 TDSE_np3_e0
2701276	jasonli3	20	0	595668	582160	2568 R	99.7	0.2	4:08.98 TDSE_np3_e0
2701270	1-2	20	0	EDECCO	222064	2644 D	00 7	0 1	4.00 00 TOCE

What to look at	Normal behavior	You should be concerned if
Load average	Close to allocated number of cores on the node	Consistently too low or too high

SNI

106

1. Basic concepts

2. Preparing my job

3. Submitting my job

						_			
top - 02:23:58 up 278 days, 19:17, 2 users, load average: 63.63, 39.81, 17.49									
Tasks: 981 total, 65 running, 916 sleeping, 0 stopped, 0 zombie									
%Cpu(s):	%Cpu(s): 90.2 us, 9.2 sv, 0.0 ni, 0.0 id, 0.0 wa, 0.5 hi, 0.0 si, 0.0 st								
MiB Mem	: 257004.8	3 to	tal,	211261	0 free.	41926.9) used.	3816	0.9 buff/cache
MiB Swar	: 16641.0) to	tal.	10500	7 free.	60.3) used.	212737	.8 avail Mem
into onep	200121		cur,	20000					
PTD	LISER	PR	NT	VTRT	RES	SHR S	%CPI1	%MEM	TIME+ COMMAND
0704040	doen 1/2	20		FOFCCO	FOODEC		100.0		
2/01318	Jasonii3	20	0	595668	582356	2568 R	100.0	0.2	4:08.94 IDSE_np3_e0
2701342	jasonli3	20	0	595668	581944	2616 R	100.0	0.2	4:08.90 TDSE_np3_e0
2701249	jasonli3	20	Θ	595668	581792	2464 R	99.7	0.2	4:08.97 TDSE np3 e0
2701252	jasonli3	20	Θ	595668	514684	2520 R	99.7	0.2	4:09.00 TDSE np3 e0
2701261	jasonli3	20	Θ	595668	393828	2616 R	99.7	0.1	4:08.97 TDSE_np3_e0
2701264	jasonli3	20	0	595668	581856	2532 R	99.7	0.2	4:08.92 TDSE np3 e0
2701270	jasonli3	20	0	595668	582480	2432 R	99.7	0.2	4:08.95 TDSE np3 e0
2701273	jasonli <u>3</u>	20	0	595668	581776	2448 R	99.7	0.2	4:08.81 TDSE np3 e0
2701276	jasonli3	20	0	595668	582160	2568 R	99.7	0.2	4:08.98 TDSE np3 e0
0704070	1	20	0	FOFCCO	000004	0044 D	00 7	0 1	

What to look at	Normal behavior	You should be concerned if
Load average	Close to allocated number of cores on the node	Consistently too low or too high
Memory usage (not virtual memory)	Does not exceed total allocated memory	Exceeds total allocated memory
INFORMATION TECHNOLOGY SERVICES		

107

1. Basic concepts

2. Preparing my job

3. Submitting my job

c) Method 3: nvidia-smi (for GPU only)

base) [jasonli3@qbc193 ~]\$ nvidia-smi ed Feb 1 02:38:32 2023					
NVIDIA-SMI	510.47.03 Drive	r Version: 510.47.03	CUDA Version: 11.6		
GPU Name Fan Temp	Persistence- Perf Pwr:Usage/Ca	M Bus-Id Disp.A p Memory-Usage	Volatile Uncorr. ECC GPU-Util Compute M. MIG M.		
0 Tesla N/A 36C	V100-PCIE On P0 54W / 250W	00000000:3B:00.0 Off 4155MiB / 32768MiB 	0ff 72% Default N/A		
1 Tesla N/A 36C 	V100-PCIE On P0 52W / 250W	00000000:AF:00.0 Off 4155MiB / 32768MiB 	0ff 78% Default N/A		
+			+		
Processes: GPU GI ID	CI PID T ID	ype Process name	GPU Memory Usage		
0 N/A 1 N/A	N/A 259491 N/A 259491	Cche/TeraChem/bu Cche/TeraChem/bu	n/terachem 4147MiB n/terachem 4147MiB		

What to look at	Normal behavior	You should be concerned if

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

c) Method 3: nvidia-smi (for GPU only)

(base) Wed Fel	base)[jasonli3@qbc193 ~]\$ nvidia-smi ed Feb 1 02:38:32 2023							
NVID	IA-SMI	510.4	7.03 Driver	Ver	sion: 510.47.(93 C	DA Version	n: 11.6
GPU Fan	Name Temp	Perf	Persistence-M Pwr:Usage/Cap	1 Bu	s-Id D [.] Memory-U	isp.A Jsage 	Volatile GPU-Util	Incorr. ECC Compute M. MIG M.
 0 N/A	Tesla 36C	V100- P0	PCIE On 54W / 250W	00	000000:3B:00.(4155MiB / 327(9 Of1 58MiE 	72%	Off Default N/A
1 N/A 	Tesla 36C	V100- P0	PCIE On 52W / 250W	00 	000000:AF:00.0 4155MiB / 3270	9 Off 58MiB	78%	Off Default N/A
+								+
Proce GPU 	esses: GI ID	CI ID	PID Ty	/pe	Process name			GPU Memory Usage
0	N/A N/A	N/A N/A	259491 259491	C C	che/TeraCl che/TeraCl	nem/bin nem/bin	/terachem /terachem	4147MiB 4147MiB

What to look at	Normal behavior	You should be concerned if
GPU usage	Close to 100%	Consistently too low

SNI

109

1. Basic concepts

2. Preparing my job

3. Submitting my job

c) Method 3: nvidia-smi (for GPU only)

(base) Wed Fel	base) [jasonli3@qbc193 ~]\$ nvidia-smi /ed Feb 1 02:38:32 2023						
NVID	IA-SMI	510.4	7.03 Driv	/er V	/ersion: 510.47.03	CUDA Versio	n: 11.6
GPU Fan	Name Temp	Perf	Persistence Pwr:Usage/(e-M Cap	Bus-Id Disp.A Memory-Usage	Volatile GPU-Util 	Uncorr. ECC Compute M. MIG M.
 0 N/A 	Tesla 36C	V100- P0	PCIE On 54W / 250		00000000:3B:00.0 Off 4155MiB / 32768MiB	 72% 	Off Default N/A
1 N/A 	Tesla 36C	V100- P0	PCIE On 52W / 250	0W	00000000:AF:00.0 Off 4155MiB / 32768MiB	 78% 	0ff Default N/A
+							· +
Proc GPU 	esses: GI ID	CI ID	PID	Туре	e Process name		GPU Memory Usage
0	N/A N/A	N/A N/A	259491 259491	C C	C che/TeraChem/bi C che/TeraChem/bi	n/terachem n/terachem	4147MiB 4147MiB

	What to look at	Normal behavior	You should be concerned if	
	GPU usage	Close to 100%	Consistently too low	
	Memory usage (not virtual memory)	Not used up	Used up	
LSI	INFORMATION TECHNOLOGY SERVICES			

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

d) Common issues

Issue	What would happen
Exceeded memory allocation (e.g., using more memory than allocated w/ single queue)	Terminated. Receive email notice.
Exceeded ppn/core allocation (e.g., using more cores than allocated w/ single queue)	Terminated. Receive email notice.
Seriously underutilize node CPU cores / unused nodes (e.g., Requested multiple nodes but only runs on one node)	Receive email warning. (* Killed if completely idle for a long time)
Submitting to bigmem but only using little memory	Receive email warning.
Running intensive calculation on head nodes	Terminated. Receive email notice.
Submitting too many (i.e., hundreds of) single-thread jobs	Poor parallelization and bad for server. We may reach out to you to help. (Better yet, reach out to us first)

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

Summary

• A typical workflow --

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs
Outlines

HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers \rightarrow All calculation must be submitted as jobs
- 2. Preparing my job
 - 1) Basic principles

- \rightarrow Large enough & small enough
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Partitions and job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

- \rightarrow Good for testing and debugging
- \rightarrow Good for production
- \rightarrow How to monitor jobs health, and how to create health jobs

salloc -A loni_loniadmin1 -p single --nodelist=qbd042 -t 1-00:00:00

salloc - A loni_loniadmin1 - p single -- nodelist=qbd042 - N1 - n64 -t 1-00:00:00

salloc -A loni_loniadmin1 -p workq --nodelist=qbd[046-047] -N2 --n128 -t 1-00:00:00

squeue --me

SLURM JOB ID SLURM_JOB NAME SLURM_NTASKS SLURM_CPUS_PER_TASK SLURM_NODES SLURM_NODELIST SLURM_SUBMIT_DIR SLURM_ARRAY_JOB_ID SLURM_ARRAY_TASK_ID SLURM JOB NODELIST SLURM_JOB_DEPENDENCY. SLURM MEM PER CPU

- This ID can be used to track the job status and retrieve logs
- The name of the job as specified by the user in command or script.
- The total number of tasks (processes) allocated for the job.
- The number of CPUs allocated per task.
- A list of nodes allocated for the job.
- A comma-separated list of nodes that are allocated for the job.
- The directory from which the job was submitted.
- The job ID of the array job if the job is part of a job array.
- The ID of the specific task in an array job.
- List of nodes allocated for the job, specifically formatted for easier parsing.
- Indicating which jobs must complete before this job can start.
- The amount of memory allocated per CPU core for the job.

command > output.log 2>&1

In Unix-like operating systems, processes have three standard file descriptors:

Standard Input (stdin): File descriptor 0 (used for input).
Standard Output (stdout): File descriptor 1 (used for normal output).
Standard Error (stderr): File descriptor 2 (used for error messages).

