Basic Shell Scripting

Siva Prasad Kasetti

HPC User Services Louisiana State University

LSU & LONI HPC
1 S1) | Baton Rouge v
o sys-help@Ioni.org 11 February 2026

Outlines

= HPC User Environment 1 = HPC User Environment 2
1. Intro to HPC 1. Basic concepts
2. Getting started 2. Preparing my job
3. Into the cluster 3. Submitting my job
4. Software environment (modules) 4. Managing my jobs

Outlines

1. Introduction
1) What's Shell?
2) What can Shell do?
2. Basic Knowledge
1) Interactive vs Non-interactive (Shell Script)
2) Basic Commands & Syntax
3) Variables
4) Arrays
5) Arithmetic Operations
3. Beyond Basics
1) Subshells
2) Flow Control
3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

LSL)

Outlines

= Example and exercises:

— http://www.hpc.lsu.edu/training/weekly-materials/Downloads/ShellScripting.zip

http://www.hpc.lsu.edu/training/weekly-materials/Downloads/ShellScripting.zip
http://www.hpc.lsu.edu/training/weekly-materials/Downloads/ShellScripting.zip
http://www.hpc.lsu.edu/training/weekly-materials/Downloads/ShellScripting.zip
http://www.hpc.lsu.edu/training/weekly-materials/Downloads/ShellScripting.zip

Outlines

1. Introduction
1) What's Shell?

’— P B A
e | & i

Introduction 5

1) What’s Shell?

* Previously in HPC User Environment 2...
— Two types of jobs

1) Interactive job 2) Batch job

In both cases, you are accessing a Linux system through Shell

(base) []
salloc: .
salloc: Graiitcu JUM dlilucdl Wil £240U

salloc: Waiting for resource configuration

salloc: Nodes gbd454 are ready for job
salloc: lua: Submitted job 23480
(base) [jasonli3@qbd454 pil$

module load python

cd $SLURM SUBMIT DIR
./p1l serial.out

Introduction 6

1) What’s Shell?

Resource management
Process management
Device Drivers

* System Calls

— Speaks: Machine

Hardware

L5SL) Ne

Introduction 7

1) What’s Shell?

e Command execution
* Scripting

— Speaks: Human

> Hardware

LS | A

Introduction 8

1) What’s Shell?

« Scenario 1: Multiple Shells

Ker\

Hardware

User 4

L5SLU) e

Introduction

1) What’s Shell?

« Scenario 1: Multiple Shells

Hardware

LSU o8

Introduction

1) What’s Shell?

« Scenario 2: Shells within Shells (Subshells)

L5SL)

Introduction

1) What’s Shell?

e Shell:

— A user interface to access UNIX-like systems (e.g., Linux) by executing commands.

LSL) b

Introduction

Outlines

1. Introduction

2) What can Shell do?

’— Pl B A
T— 1 - 4

Introduction

2) What can Shell do?

 Shell can do this ...

[[kasetti@gbdl ShellScripting]$ 1s
1.1-ShellExamples 2.1-InteractiveVsNonInteractive 2.5-Arithmetic 3.2-FlowControl
1.2-WhatCanShellDo 2.2-BasicCommands 3.1-Subshells 3.3-TextProcessing
[[kasetti@gbdl ShellScripting]l$
[[kasetti@gbdl ShellScripting]$ date
Wed Feb 11 06:17:39 CST 2026
[[kasetti@gbdl ShellScripting]$
[[kasetti@gbdl ShellScripting]$ echo $SHELL
. /bin/bash

- Typmg commands one by one [[kasetti@gbdl ShellScripting]$
[[kasetti@gbdl ShellScripting]$ cd 1.1-ShellExamples/
[[kasetti@gbdl 1.1-ShellExamples]$
[[kasetti@gbdl 1.1-ShellExamples]$ 1s

[[kasetti@gbdl 1.1-ShellExamples]$

[[kasetti@gbdl 1.1-ShellExamples]$./pi_c 10000000
hiter=10000000

count in circle:7854959

Pi: 3.141984

[[kasetti@gbdl 1.1-ShellExamples]$

] L
L= B

Introduction

2) What can Shell do?

#!/bin/bash

« Shell can also do this ... % Vaviables
DATA_DIR=%$1
MAX_FILES=3
count=0

echo "Starting the script..."
echo "Looking for files in $DATA_DIR"

Check if directory exists
if [[! -d $DATA_DIR]]; then
echo "Directory $DATA_DIR does not exist"

exit 1
— A much more complicated f
i # Check if any .txt files exist
F)r()ngEarT1 / ESC:rIF)t if [[-z $(find "$DATA_DIR" -maxdepth 1 -name "*.txt" -print -quit)]]; then
echo "No .txt files found"
exit @
£

Loop over files
for file in "$DATA_DIR"/*.txt; do
echo "Found file: $file"

count=$((count + 1))

Stop after a few files
if [[$count -ge $MAX_FILES 17]; then
echo "Reached the limit of $MAX_FILES files"
break
£l
done

[_ _::_f__ | echo "Script finished. Processed $count files." "
. [1] ShellScripting/1.2-WhatCanShellDo/parallelDownload.sh

Introduction

2) What can Shell do?

* Shell Scripting:

— A practice to automate tasks with Shell commands.

LSL) he

Introduction

2) What can Shell do?

#!/bin/bash

» Take a closer look at this: B ——
DATA_DIR=%$1
MAX_FILES=3
count=0

echo "Starting the script..."
echo "Looking for files in $DATA_DIR"

Check if directory exists

if [[! -d $DATA_DIR]]; then
echo "Directory $DATA_DIR does not exist"
exit 1

fi

Check if any .txt files exist

if [[-z $(find "$DATA_DIR" -maxdepth 1 -name "*.txt" -print -quit)]]; then
echo "No .txt files found"
exit @

£y

Loop over files
for file in "$DATA_DIR"/*.txt; do
echo "Found file: $file"

count=$((count + 1))

Stop after a few files
if [[$count -ge $MAX_FILES 17]; then
echo "Reached the limit of $MAX_FILES files"
break
£l
done

[_ _::_f__ | echo "Script finished. Processed $count files." "
. [1] ShellScripting/1.2-WhatCanShellDo/parallelDownload.sh

Introduction

2) What can Shell do?

#!/bin/bash

» Take a closer look at this: # Nariables
DATA_DIR=%$1
MAX_FILES=3
count=0

echo "Starting the script..."
echo "Looking for files in $DATA_DIR"

Check if directory exists

if [[! -d $DATA_DIR]]; then
echo "Directory $DATA_DIR does not exist"
exit 1

fi

Check if any .txt files exist

if [[-z $(find "$DATA_DIR" -maxdepth 1 -name "*.txt" -print -quit)]]; then
echo "No .txt files found"
exit @

£y

Loop over files
for file in "$DATA_DIR"/*.txt; do
echo "Found file: $file"

count=$((count + 1))

Stop after a few files
if [[$count -ge $MAX_FILES 17]; then
echo "Reached the limit of $MAX_FILES files"
break
£l
done

[_ _::_f__ | echo "Script finished. Processed $count files." "
. [1] ShellScripting/1.2-WhatCanShellDo/parallelDownload.sh

Introduction

2) What can Shell do?

#!/bin/bash

» Take a closer look at this: # Nariables
DATA_DIR=%$1
MAX_FILES=3
count=0

echo "Starting the script..."
echo "Looking for files in $DATA_DIR"

Check if directory exists

if [[! -d $DATA_DIR]]; then
echo "Directory $DATA_DIR does not exist"
exit 1

fi

Check if any .txt files exist

if [[-z $(find "$DATA_DIR" -maxdepth 1 -name "*.txt" -print -quit)]]; then
echo "No .txt files found"
exit @

£y

Loop over files
for file in "$DATA_DIR"/*.txt; do
echo "Found file: $file"

count=$((count + 1))

Stop after a few files
if [[$count -ge $MAX_FILES 17]; then
echo "Reached the limit of $MAX_FILES files"
break
£l
done

[_ _::_f__ | echo "Script finished. Processed $count files." "
. [1] ShellScripting/1.2-WhatCanShellDo/parallelDownload.sh

Introduction

2) What can Shell do?

#!/bin/bash

» Take a closer look at this: # Nariables
DATA_DIR=%$1
MAX_FILES=3
count=0

echo "Starting the script..."
echo "Looking for files in $DATA_DIR"

Check if directory exists

if [[! -d $DATA_DIR]]; then
echo "Directory $DATA_DIR does not exist"
exit 1

fi

ISn,t |t baSica”y a # Check if any .txt files exist

if [[-z $(find "$DATA_DIR" -maxdepth 1 -name "*.txt" -print -quit)]]; then
i ? echo "No .txt files found"
programming Ianguage ! e
fa

(# Loop over files N
for file in "$DATA_DIR"/*.txt; do
echo "Found file: $file"

count=$((count + 1))

Stop after a few files
if [[$count -ge $MAX_FILES 17]; then
echo "Reached the limit of $MAX_FILES files"
break
£l
\ done Yy

[_ _::_f__ | echo "Script finished. Processed $count files." "
. [1] ShellScripting/1.2-WhatCanShellDo/parallelDownload.sh

Introduction

2) What can Shell do?

« Questions:

Why would | need ... If | can just use ...

Shell Another language (Python / C++ / Fortran)

Another language (Python / C++ / Fortran) Shell

LSLU :
._ 4 J 13

Introduction

2) What can Shell do?

a) Why would | need Shell if | can just use another language?

— Shell is a “quick and dirty” way to get things done!

» Example: Change all text "/ddnB/work" to "/work" in all files in folder "~/mycode/" and subfolders.
— sk

folder = os.path.expanduser(

dirpath, , filenames os.walk{folder):

filename in filenames: find ~/mycode/ —type ¥ -exec sed -i

filepath = os.path.join{dirpath, filename)
open(filepath,) file:

content = file.read()
new_content = content.replace(

open(filepath,) file:

file.write(new content)

[1] ShellScripting/1.2-WhatCanShellDo/pathSwap.py
[2] ShellScripting/1.2-WhatCanShellDo/pathSwap.sh

Introduction

2) What can Shell do?

b) Why would | need another language if | can just use Shell?

— Shell is highly inefficient for heavy calculation!

« Example: Try the pi calculation codes in folder "ShellScripting/1.2-WhatCanShellDo/":

I T

<(/pi_c 10000)

S(. /pi_shell.sh 10000
[[kasetti@gbdl 1.2-WhatCanShellDo]$ time ./pi_c 10000

[[kasetti@gbdl 1.2-What ? ./pi_shell.sh 10000
niter=10000 niter=10000
count in circle:7852

count in circle:7866
Pi: 3.140800 Pi: 3.14640000000000000000

" real 0md.003s

-real 1m7.762s
T000S :::;;5!,___ e 105;:::::
sys 0m@.001s

sys 0m46.509s

[1] ShellScripting/1.2-WhatCanShellDo/pi ¢

[2] ShellScripting/1.2-WhatCanShellDo/pi_shell.sh
Introduction

2) What can Shell do?

* Rule of thumb:

Anything you wish to run faster, you should NOT use shell!

LS h

Introduction

2) What can Shell do?

LS

Goal of Shell scripting:

Shell scripting is NOT for... Shell scripting IS for...

Heavy calculation (basically, anything you Automating job workflow with minimum scripting
cavy y, ahythingy (e.g., set up environment, call proper executables, etc.)
wish to run faster!)

. Replacing your known language / software | re-Processing / Post-processing
g 9 duag (e.g., trim data, edit config files in batch, etc.)

Goal of this training:

We do NOT expect you to be... We DO expect you to be...

o « Familiar with Shell’s basic usage.
* An expert in Linux or Shell language. o -
« Able to use Shell scripting to optimize job workflow.

Introduction

Outlines

2. Basic Knowledge
1) Interactive vs Non-interactive (Shell Script)
2) Basic Commands & Syntax
3) Variables
4) Arrays
5) Arithmetic Operations

Basic Knowledge

Before we continue...

« Remember we had this figure...

Hardware

LSU o8

Basic Knowledge

Before we continue...

* There are many Shell implementations

r ™
— sh (Original Bourne Shell) * Supported by our clusters
— bash (Bourne Again Shell) * Feel free to use whichever you like!
— csh (C Shell) * Can set your own default Shell

— tcsh (TENEX C Shell, more features)
— ksh (KornShell)

— zsh (Z Shell)

— dash (Debian Almquist Shell)

— fish (Friendly Interactive Shell)

LSL :
._ 4 J 13

Basic Knowledge

Before we continue...

* There are many Shell implementations

— bash (Bourne Again Shell)
— rTett)

— tcsh (TENEX C Shell, more features)
— ksh (KornShell)

— zsh (Z Shell)

— dash (Debian Almquist Shell)

— fish (Friendly Interactive Shell)

_ i ourne Shell) * Default Shell on all clusters
l * Will only talk about it today

Basic Knowledge

Outlines

2. Basic Knowledge
1) Interactive vs Non-interactive (Shell Script)

’— Pl B A
T— 1 - 4

Basic Knowledge

1) Interactive vs Non-interactive Shell

a) Two ways to access Shell

Interactive Non-interactive

[[kasetti@qbdl ShellScripting]$ ls #!/bin/bash

1.1-ShellExamples 2.1-InteractiveVsNonInteractive 2.5-Arithmetic 3.2-FlowControl

1.2-WhatCanShellDo 2.2-BasicCommands 3.1-Subshells 3.3-TextProcessing &

[kasetti@qgbdl ShellScripting]$ # Variables

[[kasetti@qgbdl ShellScripting]$ date DATA_DIR=$1

Wed Feb 11 ©06:17:39 CST 2026 MAX_FILES=3

[[kasetti@qgbdl ShellScripting]$ —

[[kasetti@gbdl ShellScripting]$ echo $SHELL count=0

/bin/bash

[[kasetti@qgbdl ShellScripting]$ " : . "
[kasetti@qbdl ShellScripting]$ cd 1.1-ShellExamples/ el "Star"_cmg the ;cmp‘_c. . o
[[kasetti@gbdl 1.1-ShellExamples]$ echo LOOklng for files in $DATA_DIR
[[kasetti@gbdl 1.1-ShellExamples]$ 1s

countFiles.sh helloworld.sh parallelDownload.sh pi_c pi_c.sbatch O s C

[[kasetti@gbdl 1.1-ShellExamples]$ # Check if dlreCtory gxists
[kasetti@qbdl 1.1-ShellExamples]$./pi_c 10000000 if [[! -d $DATA_DIR]]; then
niter=10000000 echo "Directory $DATA_DIR does not exist"
count in circle:7854959 3

Pi: 3.141984 ‘8X1t -

[kasetti@qgbdl 1.1-ShellExamples]$ fi

Basic Knowledge

1) Interactive vs Non-interactive Shell

a) Two ways to access Shell

Interactive Non-interactive

#!/bin/bash

* Runs in terminal f vaniables
DATA_DIR=$1
i . . MAX_FILES=3
 Can interact in real time count=0
. echo "Starting the script...”
Type commands One_by-one echo "Looking for files in $DATA_DIR"

« E.g., every time you log in in terminal # Check if directory exists
if [[! -d $DATA_DIR]]; then

echo "Directory $DATA_DIR does not exist"
exit 1
il

Basic Knowledge

1) Interactive vs Non-interactive Shell

a) Two ways to access Shell

Interactive Non-interactive
* Runsin terminal * Prewritten script (Shell script)
« Can interact in real time « Cannot interact while it is running
« Type commands one-by-one * Runs by itself (line-by-line)

« E.g., every time you log in in terminal

Basic Knowledge

1) Interactive vs Non-interactive Shell

a) Two ways to access Shell

Interactive Non-interactive

Shell scripting works the same way in both! *

’7_. — . * A few features may be slightly different. But for now, don’t worry about that.

Basic Knowledge

1) Interactive vs Non-interactive Shell

b) How to write a Shell script

" Shebang " -
« Shell to run this script with

’7 — [1] ShellScripting/2.1-InteractiveVisNoninteractive/helloworld.sh

Basic Knowledge

1) Interactive vs Non-interactive Shell

b) How to write a Shell script

wands to run]

’7 — [1] ShellScripting/2.1-InteractiveVisNoninteractive/helloworld.sh

Basic Knowledge

1) Interactive vs Non-interactive Shell

c) How to run a Shell script (four methods)

TR Which Shell? | Start subshell?
executable?

Use full path S ./helloworld.sh Shebang (if exist) or
1 \ N ;
(Most common) ¢ /path/to/helloworld.sh default Shell
mename]" if file is not executable }
o S bash helloworld.sh N
2 Use specific Shell X Specified Shell \/ -
S c¢sh helloworld.sh

source helloworld.sh
3 Use "source" or "." X Current Shell X -
. helloworld.sh

Shebang (if exist) or Parent directory must

4 Runas Shellcommand $ helloworld.sh \ e N be included in $PATH
environment variable

[1] ShellScripting/2.1-InteractiveVsNonInteractive/helloworld.sh

Basic Knowledge

1) Interactive vs Non-interactive Shell

Pop quiz: What is this?

=>» Anything you learned about
Shell today, applies to your
batch job files!

Basic Knowledge

#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH

date

/pl_c

date

-A
_Fj
-t 1
-N
-1

lon1_loniadmuinl
single

1 I-ull-ul 1 -.Il-ul

[1] ShellScripting/2.1-InteractiveVsNonlinteractive/pi_c.sbatch

Outlines

2. Basic Knowledge

2) Basic Commands & Syntax

Basic Knowledge

2) Basic Commands & Syntax

a) Basic commands

1s List files at a given location .
) cp / mv Copy / Move files.
File :
rm Remove files.
find Search for files.
cd Change directory.
Directory mkdir Create a directory.
pwd Print current directory in standard output.
cat Print out an entire file in standard output.
Display head / tail Show first / last several lines of a file.
more / less Display file one page at a time.
echo Print out strings in standard output.
System _ o
date Print out current date & time in standard output.

[1] https://www.hpc.lsu.edu/training/archive/tutorials.php

Basic Knowledge

https://www.hpc.lsu.edu/training/archive/tutorials.php

2) Basic Commands & Syntax

b) Commonly used special characters that works with commands

e T S N S

Comment: Anything follows in the same line will not be executed. S date # Print time stamp
. Command separator: Allows multiple commands in one line. S module purge; module load python
| Pipeline: Use output of first command as input of the second. S squeue -u SUSER | wc -1
N Redirect (Output): Redirect standard output / error to file. This S ./testoutput > out.txt
method overwrites the file. $./testoutput 1> out.txt 2> err.txt
o~ Redirect (Output): Redirect standard output / error to file. This S ./testoutput >> out.txt
method appends to the file. S ./testoutput 1>> out.txt 2>> err.txt
< Redirect (Input): Read input from a file instead of standard input. S ./testinput < input.txt
8 Send to background: Send a command to background, and do not & sleep 10 &

wait for it to finish.

[1] ShellScripting/2.2-BasicCommands/testoutput
[2] ShellScripting/2.2-BasicCommands/testinput

Basic Knowledge

Outlines

2. Basic Knowledge

3) Variables

Basic Knowledge

3) Variables

a) Variable basics

Syntax var=value Svar unset var
S str="Hello World!" S echo Sstr
S workdir="/work/jasonli3/test/" S cd Sworkdir
S mycmd="/home/jasonli3/myexec"

S $mycmd > $Smyout

1

myout="/work/jasonli3/out.txt"

— ATTENTION!

. All Shell variables are treated as strings! (No integer, float, Boolean...)
. No space allowed in assignment!

. Use { } to explicitly mark variable name. (e.g., ${var} instead of $var)

— Think about it. When can this be useful?

] L
L= B

Basic Knowledge

3) Variables

b) Naming rules

— Allowed characters: letters (a-z, A-Z), numbers (0-9), underscore (_)
— Must begin with a letter or an underscore.

— No other special characters (e.g., #,@, %, S, ...)
. Allowed: varname, var_name, _varName, vari123
. Not allowed: 123var, #var, var@name, var-123

— Case sensitive

. VAR and var are different variables!

LS A3

3

Basic Knowledge

3) Variables

c) Global & local variables

Syntax S var=value S export VAR=value
« Exist only in current shell « Copied to all subshells
Differences
* Lowercase* « Uppercase*

* Convention, to avoid conflict

Basic Knowledge

3) Variables

d) Environment variables
— Definition:

. Specific variables used by Shell or other programs to regulate certain functionalities.

— Remarks:

Usually global (Convention)
Customizable, will change Shell or program behavior (Caution!)
. Programs may have their own environment variables (e.g., Conda / Python /R / MPI ...)

Basic Knowledge

3) Variables

d) Environment variables

USER Username.

PWD Full path to current directory.

HOME Full path to user’s home directory.
Shell

SHELL Default Shell

PATH A list of paths to look for executables as Shell commands (separated by ":").

LD_LIBRARY_PATH A list of paths to look for shared libraries (separated by ":").
SLURM_JOB_ID Slurm job ID.
Slurm _ _ _
SLURM_JOB_NODELIST Alist of nodes required for current job (useful for MPI).
OpenMP OMP_NUM_THREADS Number of threads per process for OpenMP.

[1] Attps://www.hpc.lsu.edu/docs/slurm.php

Basic Knowledge

https://www.hpc.lsu.edu/docs/slurm.php

3) Variables

e) Quotations & variables

Lo | o | o

. Allows variable expansion (“$”) and command substitution (“**”) 5 echo "echo SUSER"
within quotes, and preserves literal values of all other characters. echo jasonli3

: o S echo 'echo SUSER'
' Preserves the literal value of ALL CHARACTERS within the quotes.

echo SUSER
.. Command substitute: Execute the command(s) inside the 5 echo “echo SUSER
quotation and use its output to replace the quotation. jasonli3

Basic Knowledge

Outlines

2. Basic Knowledge

4) Arrays

Basic Knowledge

4) Arrays

* A collection of multiple values

— Basic logic very similar to “arrays” in any other language, with some twists!
« Each element is accessed by index

e |ndex starts with 0

Entire array S myAry=("Alice" "Bob" "Charlie") S unset myAry S echo ${myAry[@]}

S myAry[1]="Brian" S unset myAry[1] S echo ${myAry[1]}

« Bonus: Get length of array - ${#myAry[@]}

(] W A
._ y 4 I;‘\

Basic Knowledge

4) Arrays

* Question:

— |'am not using Shell for heavy calculation anyways! What can | possibly need arrays for?

LS NI

Introduction to GNU Parallel -
Parallelizing Massive
Individual Tasks S parallel myexec ::: ${inputParams[@]}

Siva Prasad Kasetti
HPC User Services
LSU HPC & LONI
sys-help@]loni.org

Louisiana State University
Baton Rouge

- Apr 08, 2026

[1] https://www.hpc.] rainin rials.php# min

Basic Knowledge

https://www.hpc.lsu.edu/training/tutorials.php#upcoming

Outlines

2. Basic Knowledge

5) Arithmetic Operations

Basic Knowledge

5) Arithmetic Operations

« Wait a minute!

— Didn’t you say Shell does not support number type, and we should not use it for heavy calculation?

— Correct!

— But! Sometimes arithmetic is still needed.

Basic Knowledge

5) Arithmetic Operations

e What does NOT work:

S a=10
S b=$a/3+2

S echo $b # Guess what you get?
10/3+2

[1] ShellScripting/2.5-Arithmetic/bcExample.txt

Basic Knowledge

5) Arithmetic Operations

« What DOES work (assuming a=10):

1 $((-))

(Most common)

5 echo $(($a/3+2))

S let b=$%Sa/3+2
let b=a/3+2
let b++

let
(Slightly more advanced)

expr

expr >a 3 + 2
(Legacy, most limited) CERT R

S bc

scale=3

a=10;a/3+2

S bc < bcExample.txt
S echo "$a/2+3" | bc

bc
(Most powerful)

Evaluate everything inside the braces.
Integers only!

Evaluate assignment w/ arithmetic calculation.
“$” can be emitted.
Integers only!

Strictly limited to "ARG1 OPERATION ARG2” format.
Integers only!

Interactive and non-interactive mode.

Does NOT support Shell syntax (namely, “$” for variables).
Unassigned variables treated as 0.

scale variable determines number of decimals.

Supports float number!

[1] ShellScripting/2.5-Arithmetic/bcExample.txt

Basic Knowledge

Summary

* In this section, we talked about:

1) Interactive vs Non-interactive (Shell Script)
2) Basic Commands & Syntax

3) Variables

4) Arrays

5) Arithmetic Operations

Basic Knowledge

Break

= Get some water
= Use restroom
= Ask questions

= Don’t forget, the examples are at:
— http://www.hpc.lsu.edu/training/weekly-materials/Downloads/ShellScripting.zip

http://www.hpc.lsu.edu/training/weekly-materials/Downloads/ShellScripting.zip
http://www.hpc.lsu.edu/training/weekly-materials/Downloads/ShellScripting.zip
http://www.hpc.lsu.edu/training/weekly-materials/Downloads/ShellScripting.zip
http://www.hpc.lsu.edu/training/weekly-materials/Downloads/ShellScripting.zip

Outlines

3. Beyond Basics
1) Subshells
2) Flow Control
3) Advanced Text Processing Commands

’— Pl B A
T— 1 - 4

Beyond Basics

Outlines

3. Beyond Basics
1) Subshells

Beyond Basics

1) Subshells

* Definition:
— A child process of launched by an existing shell.

« Similarity:

— Still a Shell!
(Everything we talked about works the same way!)

 Difference:

~
~
7]
<
— An isolated environment from its parent 6”
(A “sandbox” Shell) S
9
Q
)
(%)

L5SL)

Beyond Basics

1) Subshells

a) Launch a subshell

. . S S ./subshell.sh
un a Shell scri . .
P ¢ bash subshell.sh Can launch different Shell types
* Check subshell level: $SHLVL
2 Explicitly launch an interactive subshell S bash
_ « Launches the same Shell type
3 Use command grouping "(..)" S (echo "I am in subshell!")
 Does NOT change $SHLVL
— What does NOT launch a subshell?
. source subshell.sh
. Commonly used for environment setting scripts (You WANT it to set up current Shell)

- source setenv.sh

[1] ShellScripting/3.1-Subshells/subshell.sh
[2] ShellScripting/3.1-Subshells/setenv.sh

Beyond Basics

1) Subshells

b) Scope of variables
Local variable Global variable

(Exists only in current Shell) (Copied to all subshells)

Shell Llevel 1 X X
|
) Shelll levell 2 N J
|
Shell level 3 < J |
LSLU .

Beyond Basics

Outlines

3. Beyond Basics

2) Flow Control

” = -
— | B 5

Beyond Basics

2) Flow control

agm ° #!/bin/bash
a) Condition - if statement A
DATA DIR-S1

b) Loop - for loop MAX_FILES=3

count=0
° echo "Starting the script..."
C) LOOp — while IOOp echo "Looking for files in $DATA_DIR"

. # Check if directory exists
d) FunCtIOnS if [[! -d $DATA_DIR]]; then
echo "Directory $DATA_DIR does not exist"
exit 1
il

Check if any .txt files exist

if [[-z $(find "$DATA_DIR" -maxdepth 1 -name "*.txt" -print -quit)]]; then
echo "No .txt files found"
exit @

£l

Loop over files
for file in "$DATA_DIR"/*.txt; do
echo "Found file: $file"

count=$((Ccount + 1))

Stop after a few files
if [[$count -ge $MAX_FILES]]; then
echo "Reached the 1imit of $MAX_FILES files"
break
i
done

{— —TE echo "Script finished. Processed $count files."

Beyond Basics

2) Flow control

a) Condition — if statement

— Optional: elif and else

if [condition]; then

— Strict spaces between "[]" and conditions

Do something
— Use double braces “[[117 : More modern

, . elif [condition 2] ; then
features (regular expressions, logic operators,
etc.) # Do something

else

Do something else
fi

Beyond Basics

2) Flow control

a) Condition — if statement

[Sa -eq 0] # Integer

Equal to [$a == $b] # String

Mo el o [[$$aa !n=e $G)b]] ## ISnttreignegr

Greater than [$Sa -gt 0] # Integer

Greater than or equal to [$a -ge 0] # Integer

Less than [$a -1t 0] # Integer

Less than or equal to [$a -le 0] # Integer
Zero length or null [-z $a] # String
Non zero length [-n $a] # String

Beyond Basics

2) Flow control

a) Condition — if statement

File exists [-e myfile]
File is a regular file [-f myfile]

File is a directory [-d /home/SUSER]
File is not zero size [-s myfile]
File has read permission [-r myfile]
File has write permission [-w myfile]
File has execute permission [-x myfile]

Beyond Basics

2) Flow control

a) Condition — if statement

T T R N T

I'(NOT) [! -e myfile]
&& (AND) [-f myfile] && [-s myfile] [[-f myfile && -s myfile]]
|| (OR) [-f myfile1] || [-f myfile2] [[-f myfilel || -f myfile2]]
* Supported by more Shells. - Best supported by Bash.
« Use if you need compatibility. * Use if you need versatility.

Beyond Basics

2) Flow control

b) Loop — for loop

— Do something for each element in an array. for arg in S{myAry[@]}
do

Do something

done

’* __ [F\"
== 4

Beyond Basics

2) Flow control

b) Loop — for loop

A mawe

myAry=("Alice" "Bob" "Charlie")
User defined array $ for arg in ${myAry[@]}

f in ° 14
Shell generated sequence S for arg in “seq

S for arg in "Ls SHOME®

Output of commands

[1] ShellScripting/3.2-FlowControl/for.sh

Beyond Basics

2) Flow control

c) Loop —while loop

— Loop as long as condition is satisfied. while [condition]

— Make sure there is an escape condition ! do

Do something

. Otherwise the loop is doomed!

done

Beyond Basics

2) Flow control

c) Loop —while loop

S counter=0
S while [Scounter -1t 10]
do
echo "Counter is now Scounter"

let counter++ # <- What does this do?

done

[1] ShellScripting/3.2-FlowControl/while.sh

Beyond Basics

2) Flow control

d) Functions

— A block of pre-defined code that can be reused.

— Passed arguments are accessed by:
o $1,82,...9%9, ${10}, ...
e 5@ (Allarguments)

Define

function_name () {

Do something

Call, no "()"
function_name [ARG1] [ARG2]

Beyond Basics

2) Flow control

d) Functions

S myFuncl () {

var="Bob"
All variables are global by default }
S var="Alice"; myFuncl ; echo $var
Bob

S myFunc2 () {
local var="Bob"

Local variables must be explicitly declared }
S var="Alice"; myFunc2 ; echo $var
Alice
S myAdd () {

Does NOT support return result=5(($1+$2))

(Use global variable if needed)

}
S myAdd 10 20 ; echo Sresult

30

[1] ShellScripting/3.2-FlowControl/function.sh

Beyond Basics

2) Flow control

Summary

a) Condition — if statement
b) Loop — for loop

c) Loop—while loop

d) Functions

Beyond Basics

Outlines

3. Beyond Basics

3) Advanced Text Processing Commands

’— Pl B A
T— 1 - 4

Beyond Basics

3) Advanced Text Processing Commands

a) grep — search

b) sed — edit

LSL) b

Beyond Basics

3) Advanced Text Processing Commands

a) grep

— Search for patterns (formatted strings) in input stream (files & pipe)

S grep <options> <search pattern> <files>

Beyond Basics

3) Advanced Text Processing Commands

a) grep

i. Basic functionality - Search for a string

S e T e

Search for lines contain given string in a file S grep "Sales" employeel.txt
Search for lines do NOT contain given string in a file S grep -v "Sales" employeel.txt
Search all files for lines contain given string in the directory $ grep "Sales" *
List files that do NOT contain given string in the directory $ grep -L "Sales" *
Search for strings in a pipe S squeue | grep SUSER

[1] ShellScripting/3.3-TextProcessing/employeel.txt
[2] ShellScripting/3.3-TextProcessing/employee2.txt

Beyond Basics

3) Advanced Text Processing Commands

a) grep

ii. Useful options

Sopin | e

-1 Ignore cases.
-r,-R Search recursively.
-v Invert match (return those do NOT match pattern)
-1 List names of the files that match the pattern.
-L List names of the files that do NOT match the pattern.
-n Print line number with output lines.

[1] Attps://manZ.org/linux/man-pages/manl/grep.1.html

Beyond Basics

https://man7.org/linux/man-pages/man1/grep.1.html
https://man7.org/linux/man-pages/man1/grep.1.html
https://man7.org/linux/man-pages/man1/grep.1.html

3) Advanced Text Processing Commands

a) grep
iii. Pattern
Can be as simple as strings.
Can be Regular Expression (formatted strings to match beyond fixed strings).
LS ~

Beyond Basics

3) Advanced Text Processing Commands

a) grep

iii. Pattern

A Beginning of a line.
Anchor
S End of a line.
Substitution . Any single character
* Preceding char. repeats 0 or more times
+ Preceding char. repeats 1 or more times
Repetition _
? Preceding char. repeats 0 or 1 times
\{n,m\} Preceding char. repeats n to m times
[] Any single character inside
or [~] Any single character NOT inside

| Either pattern

AName (Beginning of a line followed by "Name")

Salary$ ("Salary"” followed by end of a line)
a.e (E.g., "age", "ame", "a#e", "ale",..)
50* (E.g., "5", "50", "5600",..)
50+ (E.g., "50", "500",..)

50? (E.g., "5", "50")

50\{1,3\} (E.g., "50", "500", "5000")
[0-9] (E.g., any single number character)
[70-9] (E.g., any single character but a number)

Sales|Technology (E.g., "Sales" or "Technology")

Beyond Basics

3) Advanced Text Processing Commands

b) sed

— A powerful “Stream editor” for text transformation on input stream (files & pipe)

S sed <options> <script> <files>

Beyond Basics

3) Advanced Text Processing Commands

b) sed

i. Basic functionality (all patterns support regular expression)

I ™ S N S

Substitution

Deletion

Insertion

's/pattern/replacement/flags' file

S sed 's/$[0-9]%/59000/"' employee?2.txt

S sed 's/S[0-91*%/59000/g"' employee2.txt
sed '/pattern/d' file

S sed '/Sales/d' employee2.txt

S sed '2,4d' employee2.txt

sed '/pattern/ i\newline' file # Insert before
sed '/pattern/ a\newline' file # Insert after

S sed "/Alice/ i\newline'

S sed '3 a\newline'

For each line, replace matched “pattern” with “replacement”,
and print out results.

Replace only the first match of each line.
“Greedy” mode, replace all matches of each line.

Delete lines with matched pattern, and print results.
Delete all lines matches “Sales”.

Remove line 2 through 4.
Insert / Append new line at specific location, and print results.

Insert before lines matches “Alice”.

Append to line 3.

[1] ShellScripting/3.3-TextProcessing/employee2.txt

Beyond Basics

3) Advanced Text Processing Commands

b) sed

ii. Other common usage

I T

Change file in-place instead of printing
results.

S sed -i <script> file S sed -1 's/$[0-9]*/$9000/' employee?2.txt

S sed -e <scriptl> -e <script2> S sed -e 's/$[0-9]*/$9000/"' \

Execute multiple scripts.
file -e 's/Rep/Assistant/' employee2.txt P P

S cmd | sed <options> <script> S conda env list | sed '/~#/d' Parsing piped output instead of file.

[1] ShellScripting/3.3-TextProcessing/employee2.txt

Beyond Basics

3) Advanced Text Processing Commands

Summary

— “grep searches, sed edits.”

LSL) b

Beyond Basics

Outlines

4. BONUS: Where to Get Help

’— Pl B A
T— 1 - y

BONUS: Where to Get Help

* | need more help with Shell scripting. Where do | get help?

1) Contact HPC User Services

Email Help Ticket: sys-help@loni.org

Telephone Help Desk: +1 (225) 578-0900

mailto:sys-help@loni.org
mailto:sys-help@loni.org
mailto:sys-help@loni.org

BONUS: Where to Get Help

* | need more help with Shell scripting. Where do | get help?

2) Generative Al

® @ * Git Commit %2
ChatGPT 40 v &1
Claude Code
Please write me a bash command to search for all files in a given
directory (and subdirectories), and replace all */ddnB/work" text
in all files with "/work".

You can achieve this by using the find command along with sed to search for and replace

text in all files recursively. Here's a Bash command that performs this task:

Call
E)
Bash
Bash

find /path/to/directory

Explanation:

® find /path/to/directory : Recursively searches for files in the given directory and

subdirectories.
® _type f:Limits the search to files only

® _exec ... {} +:Executes the sed command on each found file.
@ Message ChatGPT

ChatGPT can make portant info.

ChatGPT Claude Code

BONUS: Where to Get Help

* | need more help with Shell scripting. Where do | get help?

LSL)

2) Generative Al

@ MikeGPT

+ New Chat

@ Home

Chats

Chat 1

@ Help

M

MeE GPT

MikeGPT

(LSU’s own GPT chat box! Trained with LSU public realm data)

[1] https://mikegpt.Isu.edu/

BONUS

https://mikegpt.lsu.edu/

BONUS: Where to Get Help

« Why recommend generative Al for Shell scripting?

Generative Al Shell scripting
« Good at giving quick and dirty answers. * Quick and dirty answer is all you need!
- Bad at giving reliable sources. * Don't really care about sources.

* Good at coding.
- Bad when code is too long & complicated.

* One line is all you need

BONUS: Where to Get Help

« Steps

1) Find out what you want to do and ask Al the right questions

« Try these examples (think about how to do it first, then ask Al):

a) Change all text"/ddnB/work" to "/work" in all files in folder "~/mycode/" and subfolders.

b) Ina“,” separated .csv database, delete all columns starting from the 10, and add an index column as the
first column.

c) Run executable “myexec” with “input.txt” as standard input, but replacing all “TIME” text in “Lnput.txt” with
current timestamp generated by “date”.

BONUS: Where to Get Help

« Steps

2) TEST! TEST! TEST!

« Al generated scripts may not work right away!

« Testitin a safe & isolated environment (a sandbox) first, especially your script is something destructive!

* You may need to come back and ask Al to revise your script.

BONUS: Where to Get Help

« Steps

3) Adopt in your workflow

BONUS: Where to Get Help

Steps

Ask Al the right questions and |5
get the results

TEST! TEST! TEST!

Adopt generated script in your
workflow

Conclusion

1. Introduction
1) What's Shell?
2) What can Shell do?
2. Basic Knowledge
1) Interactive vs Non-interactive (Shell Script)
2) Basic Commands & Syntax
3) Variables
4) Arrays
5) Arithmetic Operations
3. Beyond Basics
1) Subshells
2) Flow Control
3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

LSL)

Conclusion

= Take-home message:

Anything you wish to run faster, you should not use shell!

When NOT to use Shell scripting? When TO use Shell scripting?

« Automating job workflow

- Heavy calculation! * Pre-processing / Post-processing

Contact us

= Contact user services

= Email Help Ticket: sys-help@loni.org

» Telephone Help Desk: +1 (225) 578-0900

mailto:sys-help@loni.org
mailto:sys-help@loni.org
mailto:sys-help@loni.org

	Overview and Outline
	Slide 1: Basic Shell Scripting
	Slide 2: Outlines
	Slide 3: Outlines
	Slide 4: Outlines

	Introduction
	Slide 5: Outlines
	Slide 6: 1) What’s Shell?
	Slide 7: 1) What’s Shell?
	Slide 8: 1) What’s Shell?
	Slide 9: 1) What’s Shell?
	Slide 10: 1) What’s Shell?
	Slide 11: 1) What’s Shell?
	Slide 12: 1) What’s Shell?
	Slide 13: Outlines
	Slide 14: 2) What can Shell do?
	Slide 15: 2) What can Shell do?
	Slide 16: 2) What can Shell do?
	Slide 17: 2) What can Shell do?
	Slide 18: 2) What can Shell do?
	Slide 19: 2) What can Shell do?
	Slide 20: 2) What can Shell do?
	Slide 21: 2) What can Shell do?
	Slide 22: 2) What can Shell do?
	Slide 23: 2) What can Shell do?
	Slide 24: 2) What can Shell do?
	Slide 25: 2) What can Shell do?

	Basic Knowledge
	Slide 26: Outlines
	Slide 27: Before we continue…
	Slide 28: Before we continue…
	Slide 29: Before we continue…
	Slide 30: Outlines
	Slide 31: 1) Interactive vs Non-interactive Shell
	Slide 32: 1) Interactive vs Non-interactive Shell
	Slide 33: 1) Interactive vs Non-interactive Shell
	Slide 34: 1) Interactive vs Non-interactive Shell
	Slide 35: 1) Interactive vs Non-interactive Shell
	Slide 36: 1) Interactive vs Non-interactive Shell
	Slide 37: 1) Interactive vs Non-interactive Shell
	Slide 39: 1) Interactive vs Non-interactive Shell
	Slide 40: Outlines
	Slide 41: 2) Basic Commands & Syntax
	Slide 42: 2) Basic Commands & Syntax
	Slide 43: Outlines
	Slide 44: 3) Variables
	Slide 45: 3) Variables
	Slide 46: 3) Variables
	Slide 47: 3) Variables
	Slide 48: 3) Variables
	Slide 49: 3) Variables
	Slide 50: Outlines
	Slide 51: 4) Arrays
	Slide 52: 4) Arrays
	Slide 53: Outlines
	Slide 54: 5) Arithmetic Operations
	Slide 55: 5) Arithmetic Operations
	Slide 56: 5) Arithmetic Operations
	Slide 57: Summary

	Break
	Slide 58: Break

	Beyond Basics
	Slide 59: Outlines
	Slide 60: Outlines
	Slide 61: 1) Subshells
	Slide 62: 1) Subshells
	Slide 63: 1) Subshells
	Slide 64: Outlines
	Slide 65: 2) Flow control
	Slide 66: 2) Flow control
	Slide 67: 2) Flow control
	Slide 68: 2) Flow control
	Slide 69: 2) Flow control
	Slide 70: 2) Flow control
	Slide 71: 2) Flow control
	Slide 72: 2) Flow control
	Slide 73: 2) Flow control
	Slide 74: 2) Flow control
	Slide 75: 2) Flow control
	Slide 76: 2) Flow control
	Slide 77: Outlines
	Slide 78: 3) Advanced Text Processing Commands
	Slide 79: 3) Advanced Text Processing Commands
	Slide 80: 3) Advanced Text Processing Commands
	Slide 82: 3) Advanced Text Processing Commands
	Slide 83: 3) Advanced Text Processing Commands
	Slide 84: 3) Advanced Text Processing Commands
	Slide 86: 3) Advanced Text Processing Commands
	Slide 87: 3) Advanced Text Processing Commands
	Slide 89: 3) Advanced Text Processing Commands
	Slide 91: 3) Advanced Text Processing Commands

	BONUS
	Slide 92: Outlines
	Slide 93: BONUS: Where to Get Help
	Slide 94: BONUS: Where to Get Help
	Slide 95: BONUS: Where to Get Help
	Slide 96: BONUS: Where to Get Help
	Slide 97: BONUS: Where to Get Help
	Slide 98: BONUS: Where to Get Help
	Slide 99: BONUS: Where to Get Help
	Slide 100: BONUS: Where to Get Help

	Conclusion
	Slide 101: Conclusion
	Slide 102: Conclusion
	Slide 103: Contact us

