
Basic Shell Scripting

1

Siva Prasad Kasetti

HPC User Services

LSU & LONI HPC

sys-help@loni.org

Louisiana State University

Baton Rouge

11 February 2026

Outlines

▪ HPC User Environment 2

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

▪ HPC User Environment 1

1. Intro to HPC

2. Getting started

3. Into the cluster

4. Software environment (modules)

2

Outlines

1. Introduction

1) What’s Shell?

2) What can Shell do?

2. Basic Knowledge

1) Interactive vs Non-interactive (Shell Script)

2) Basic Commands & Syntax

3) Variables

4) Arrays

5) Arithmetic Operations

3. Beyond Basics

1) Subshells

2) Flow Control

3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

3

Outlines

4

▪ Example and exercises:

– http://www.hpc.lsu.edu/training/weekly-materials/Downloads/ShellScripting.zip

http://www.hpc.lsu.edu/training/weekly-materials/Downloads/ShellScripting.zip
http://www.hpc.lsu.edu/training/weekly-materials/Downloads/ShellScripting.zip
http://www.hpc.lsu.edu/training/weekly-materials/Downloads/ShellScripting.zip
http://www.hpc.lsu.edu/training/weekly-materials/Downloads/ShellScripting.zip

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction

1) What’s Shell?

2) What can Shell do?

2. Basic Knowledge

1) Interactive vs Non-interactive (Shell Script)

2) Basic Commands & Syntax

3) Variables

4) Arrays

5) Arithmetic Operations

3. Beyond Basics

1) Subshells

2) Flow Control

3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

5

BONUSBasic Knowledge Beyond BasicsIntroduction

1) What’s Shell?

• Previously in HPC User Environment 2…

– Two types of jobs

6

1) Interactive job 2) Batch job

In both cases, you are accessing a Linux system through Shell

BONUSBasic Knowledge Beyond BasicsIntroduction

1) What’s Shell?

7

User

Kernel

Hardware

• Resource management
• Process management
• Device Drivers
• System Calls
• …

→ Speaks: Machine

BONUSBasic Knowledge Beyond BasicsIntroduction

1) What’s Shell?

8

Shell

Kernel

Hardware

User

• Command execution
• Scripting
• …

→ Speaks: Human

BONUSBasic Knowledge Beyond BasicsIntroduction

1) What’s Shell?

• Scenario 1: Multiple Shells

9

Kernel

Hardware

User 1

User 4 User 3

User 2

BONUSBasic Knowledge Beyond BasicsIntroduction

1) What’s Shell?

• Scenario 1: Multiple Shells

10

Kernel

Hardware

BONUSBasic Knowledge Beyond BasicsIntroduction

• Scenario 2: Shells within Shells (Subshells)

1) What’s Shell?

1111BONUSBasic Knowledge Beyond BasicsIntroduction

User 1

BONUSBasic Knowledge Beyond BasicsIntroduction

1) What’s Shell?

12

• Shell:

– A user interface to access UNIX-like systems (e.g., Linux) by executing commands.

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction

1) What’s Shell?

2) What can Shell do?

2. Basic Knowledge

1) Interactive vs Non-interactive (Shell Script)

2) Basic Commands & Syntax

3) Variables

4) Arrays

5) Arithmetic Operations

3. Beyond Basics

1) Subshells

2) Flow Control

3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

13

BONUSBasic Knowledge Beyond BasicsIntroduction

2) What can Shell do?

• Shell can do this …

– Typing commands one by one

14

BONUSBasic Knowledge Beyond BasicsIntroduction

2) What can Shell do?

• Shell can also do this …

– A much more complicated

program / script

15

[1] ShellScripting/1.2-WhatCanShellDo/parallelDownload.sh

BONUSBasic Knowledge Beyond BasicsIntroduction

2) What can Shell do?

16

• Shell Scripting:

– A practice to automate tasks with Shell commands.

BONUSBasic Knowledge Beyond BasicsIntroduction

2) What can Shell do?

17

• Take a closer look at this:

[1] ShellScripting/1.2-WhatCanShellDo/parallelDownload.sh

BONUSBasic Knowledge Beyond BasicsIntroduction

2) What can Shell do?

18

• Take a closer look at this:

[1] ShellScripting/1.2-WhatCanShellDo/parallelDownload.sh

BONUSBasic Knowledge Beyond BasicsIntroduction

2) What can Shell do?

19

• Take a closer look at this:

[1] ShellScripting/1.2-WhatCanShellDo/parallelDownload.sh

BONUSBasic Knowledge Beyond BasicsIntroduction

2) What can Shell do?

20

• Take a closer look at this:

Isn’t it basically a

programming language?

[1] ShellScripting/1.2-WhatCanShellDo/parallelDownload.sh

BONUSBasic Knowledge Beyond BasicsIntroduction

2) What can Shell do?

21

• Questions:

Why would I need … If I can just use …

Shell Another language (Python / C++ / Fortran)

Another language (Python / C++ / Fortran) Shell

BONUSBasic Knowledge Beyond BasicsIntroduction

2) What can Shell do?

22

a) Why would I need Shell if I can just use another language?

– Shell is a “quick and dirty” way to get things done!

• Example: Change all text "/ddnB/work" to "/work" in all files in folder "~/mycode/" and subfolders.

Python Shell

[1] ShellScripting/1.2-WhatCanShellDo/pathSwap.py
[2] ShellScripting/1.2-WhatCanShellDo/pathSwap.sh

BONUSBasic Knowledge Beyond BasicsIntroduction

2) What can Shell do?

23

b) Why would I need another language if I can just use Shell?

– Shell is highly inefficient for heavy calculation!

• Example: Try the pi calculation codes in folder "ShellScripting/1.2-WhatCanShellDo/":

C Shell

$./pi_c 10000 $./pi_shell.sh 10000

[1] ShellScripting/1.2-WhatCanShellDo/pi_c
[2] ShellScripting/1.2-WhatCanShellDo/pi_shell.sh

BONUSBasic Knowledge Beyond BasicsIntroduction

2) What can Shell do?

• Rule of thumb:

Anything you wish to run faster, you should NOT use shell!

24

BONUSBasic Knowledge Beyond BasicsIntroduction

2) What can Shell do?

• Goal of Shell scripting:

• Goal of this training:

25

Shell scripting is NOT for…

• Heavy calculation (basically, anything you

wish to run faster!)

• Replacing your known language / software

We do NOT expect you to be…

• An expert in Linux or Shell language.

Shell scripting IS for…

• Automating job workflow with minimum scripting

(e.g., set up environment, call proper executables, etc.)

• Pre-processing / Post-processing

(e.g., trim data, edit config files in batch, etc.)

We DO expect you to be…

• Familiar with Shell’s basic usage.

• Able to use Shell scripting to optimize job workflow.

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction

1) What’s Shell?

2) What can Shell do?

2. Basic Knowledge

1) Interactive vs Non-interactive (Shell Script)

2) Basic Commands & Syntax

3) Variables

4) Arrays

5) Arithmetic Operations

3. Beyond Basics

1) Subshells

2) Flow Control

3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

26

BONUSBasic Knowledge Beyond BasicsIntroduction

Before we continue…

27

• Remember we had this figure…

Kernel

Hardware

BONUSBasic Knowledge Beyond BasicsIntroduction

Before we continue…

28

• There are many Shell implementations

– sh (Original Bourne Shell)

– bash (Bourne Again Shell)

– csh (C Shell)

– tcsh (TENEX C Shell, more features)

– ksh (KornShell)

– zsh (Z Shell)

– dash (Debian Almquist Shell)

– fish (Friendly Interactive Shell)

– …

• Supported by our clusters
• Feel free to use whichever you like!
• Can set your own default Shell

BONUSBasic Knowledge Beyond BasicsIntroduction

Before we continue…

29

• There are many Shell implementations

– sh (Original Bourne Shell)

– bash (Bourne Again Shell)
– csh (C Shell)

– tcsh (TENEX C Shell, more features)

– ksh (KornShell)

– zsh (Z Shell)

– dash (Debian Almquist Shell)

– fish (Friendly Interactive Shell)

– …

• Default Shell on all clusters
• Will only talk about it today

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction

1) What’s Shell?

2) What can Shell do?

2. Basic Knowledge

1) Interactive vs Non-interactive (Shell Script)

2) Basic Commands & Syntax

3) Variables

4) Arrays

5) Arithmetic Operations

3. Beyond Basics

1) Subshells

2) Flow Control

3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

30

BONUSBasic Knowledge Beyond BasicsIntroduction

1) Interactive vs Non-interactive Shell

a) Two ways to access Shell

31

Interactive

• Runs in terminal

• Can interact in real time

• Type commands one-by-one

• E.g., every time you log in in terminal

Non-interactive

• Prewritten script (Shell script)

• Cannot interact while it is running

• Runs by itself (line-by-line)

BONUSBasic Knowledge Beyond BasicsIntroduction

1) Interactive vs Non-interactive Shell

a) Two ways to access Shell

32

Interactive

• Runs in terminal

• Can interact in real time

• Type commands one-by-one

• E.g., every time you log in in terminal

Non-interactive

• Prewritten script (Shell script)

• Cannot interact while it is running

• Runs by itself (line-by-line)

BONUSBasic Knowledge Beyond BasicsIntroduction

1) Interactive vs Non-interactive Shell

a) Two ways to access Shell

33

Interactive

• Runs in terminal

• Can interact in real time

• Type commands one-by-one

• E.g., every time you log in in terminal

Non-interactive

• Prewritten script (Shell script)

• Cannot interact while it is running

• Runs by itself (line-by-line)

BONUSBasic Knowledge Beyond BasicsIntroduction

1) Interactive vs Non-interactive Shell

a) Two ways to access Shell

34

* A few features may be slightly different. But for now, don’t worry about that.

Interactive Non-interactive

Shell scripting works the same way in both! *

BONUSBasic Knowledge Beyond BasicsIntroduction

1) Interactive vs Non-interactive Shell

b) How to write a Shell script

35

[1] ShellScripting/2.1-InteractiveVsNonInteractive/helloworld.sh

" Shebang " -

• Shell to run this script with

BONUSBasic Knowledge Beyond BasicsIntroduction

1) Interactive vs Non-interactive Shell

b) How to write a Shell script

36

[1] ShellScripting/2.1-InteractiveVsNonInteractive/helloworld.sh

Commands to run

BONUSBasic Knowledge Beyond BasicsIntroduction

1) Interactive vs Non-interactive Shell

c) How to run a Shell script (four methods)

37

[1] ShellScripting/2.1-InteractiveVsNonInteractive/helloworld.sh

Method Example
Remarks

Must be

executable?
Which Shell? Start subshell? Others

1
Use full path

(Most common)

$./helloworld.sh

$ /path/to/helloworld.sh
√

2 Use specific Shell
$ bash helloworld.sh

$ csh helloworld.sh

3 Use "source" or "."
$ source helloworld.sh

$. helloworld.sh

4 Run as Shell command $ helloworld.sh

× Specified Shell √ -

× Current Shell × -

√
Shebang (if exist) or

default Shell √
Parent directory must

be included in $PATH

environment variable

Shebang (if exist) or

default Shell √ -

Run "chmod u+x [filename]" if file is not executable

BONUSBasic Knowledge Beyond BasicsIntroduction

1) Interactive vs Non-interactive Shell

• Pop quiz: What is this?

39

[1] ShellScripting/2.1-InteractiveVsNonInteractive/pi_c.sbatch

➔ Anything you learned about
Shell today, applies to your
batch job files!

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction

1) What’s Shell?

2) What can Shell do?

2. Basic Knowledge

1) Interactive vs Non-interactive (Shell Script)

2) Basic Commands & Syntax

3) Variables

4) Arrays

5) Arithmetic Operations

3. Beyond Basics

1) Subshells

2) Flow Control

3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

40

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Basic Commands & Syntax

41

a) Basic commands

Command Description

File

ls List files at a given location .

cp / mv Copy / Move files.

rm Remove files.

find Search for files.

Directory

cd Change directory.

mkdir Create a directory.

pwd Print current directory in standard output.

Display

cat Print out an entire file in standard output.

head / tail Show first / last several lines of a file.

more / less Display file one page at a time.

System
echo Print out strings in standard output.

date Print out current date & time in standard output.

…

[1] https://www.hpc.lsu.edu/training/archive/tutorials.php

https://www.hpc.lsu.edu/training/archive/tutorials.php

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Basic Commands & Syntax

42

b) Commonly used special characters that works with commands

Character Description Example

Comment: Anything follows in the same line will not be executed. $ date # Print time stamp

; Command separator: Allows multiple commands in one line. $ module purge; module load python

| Pipeline: Use output of first command as input of the second. $ squeue –u $USER | wc -l

>
Redirect (Output): Redirect standard output / error to file. This

method overwrites the file.

$./testoutput > out.txt

$./testoutput 1> out.txt 2> err.txt

>>
Redirect (Output): Redirect standard output / error to file. This

method appends to the file.

$./testoutput >> out.txt

$./testoutput 1>> out.txt 2>> err.txt

< Redirect (Input): Read input from a file instead of standard input. $./testinput < input.txt

&
Send to background: Send a command to background, and do not

wait for it to finish.
$ sleep 10 &

[1] ShellScripting/2.2-BasicCommands/testoutput
[2] ShellScripting/2.2-BasicCommands/testinput

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction

1) What’s Shell?

2) What can Shell do?

2. Basic Knowledge

1) Interactive vs Non-interactive (Shell Script)

2) Basic Commands & Syntax

3) Variables

4) Arrays

5) Arithmetic Operations

3. Beyond Basics

1) Subshells

2) Flow Control

3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

43

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Variables

44

a) Variable basics

– ATTENTION!

• All Shell variables are treated as strings! (No integer, float, Boolean...)

• No space allowed in assignment!

• Use { } to explicitly mark variable name. (e.g., ${var} instead of $var)

– Think about it. When can this be useful?

To assign To access To delete

Syntax var=value $var unset var

Examples

$ str="Hello World!" $ echo $str

$ workdir="/work/jasonli3/test/" $ cd $workdir

$ mycmd="/home/jasonli3/myexec"

$ myout="/work/jasonli3/out.txt"
$ $mycmd > $myout

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Variables

45

b) Naming rules

– Allowed characters: letters (a-z, A-Z), numbers (0-9), underscore (_)

– Must begin with a letter or an underscore.

– No other special characters (e.g., #, @, %, $, …)

• Allowed: varname, var_name, _varName, var123

• Not allowed: 123var, #var, var@name, var-123

– Case sensitive

• VAR and var are different variables!

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Variables

46

c) Global & local variables

* Convention, to avoid conflict

Local Global

Syntax $ var=value $ export VAR=value

Differences
• Exist only in current shell • Copied to all subshells

• Lowercase* • Uppercase*

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Variables

47

d) Environment variables

– Definition:

• Specific variables used by Shell or other programs to regulate certain functionalities.

– Remarks:

• Usually global (Convention)

• Customizable, will change Shell or program behavior (Caution!)

• Programs may have their own environment variables (e.g., Conda / Python / R / MPI …)

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Variables

48

d) Environment variables

Variable Functionality

[1] https://www.hpc.lsu.edu/docs/slurm.php

Shell

Slurm

…

OpenMP OMP_NUM_THREADS Number of threads per process for OpenMP.

USER Username.

PWD Full path to current directory.

HOME Full path to user’s home directory.

SHELL Default Shell

PATH A list of paths to look for executables as Shell commands (separated by ":").

LD_LIBRARY_PATH A list of paths to look for shared libraries (separated by ":").

SLURM_JOB_ID Slurm job ID.

SLURM_JOB_NODELIST A list of nodes required for current job (useful for MPI).

https://www.hpc.lsu.edu/docs/slurm.php

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Variables

49

e) Quotations & variables

Quotation Description Example

""

''

``

Allows variable expansion (“$”) and command substitution (“``”)

within quotes, and preserves literal values of all other characters.

$ echo "echo $USER"

Preserves the literal value of ALL CHARACTERS within the quotes.
$ echo 'echo $USER'

Command substitute: Execute the command(s) inside the

quotation and use its output to replace the quotation.

$ echo `echo $USER`

echo jasonli3

echo $USER

jasonli3

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction

1) What’s Shell?

2) What can Shell do?

2. Basic Knowledge

1) Interactive vs Non-interactive (Shell Script)

2) Basic Commands & Syntax

3) Variables

4) Arrays

5) Arithmetic Operations

3. Beyond Basics

1) Subshells

2) Flow Control

3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

50

BONUSBasic Knowledge Beyond BasicsIntroduction

4) Arrays

51

• A collection of multiple values

– Basic logic very similar to “arrays” in any other language, with some twists!

• Each element is accessed by index

• Index starts with 0

• Bonus: Get length of array - ${#myAry[@]}

Entire array

One element

To accessTo assign To delete

$ myAry=("Alice" "Bob" "Charlie") $ unset myAry $ echo ${myAry[@]}

$ echo ${myAry[1]}$ myAry[1]="Brian" $ unset myAry[1]

BONUSBasic Knowledge Beyond BasicsIntroduction

4) Arrays

52

• Question:

– I am not using Shell for heavy calculation anyways! What can I possibly need arrays for?

$ parallel myexec ::: ${inputParams[@]}

Apr 08, 2026

[1] https://www.hpc.lsu.edu/training/tutorials.php#upcoming

https://www.hpc.lsu.edu/training/tutorials.php#upcoming

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction

1) What’s Shell?

2) What can Shell do?

2. Basic Knowledge

1) Interactive vs Non-interactive (Shell Script)

2) Basic Commands & Syntax

3) Variables

4) Arrays

5) Arithmetic Operations

3. Beyond Basics

1) Subshells

2) Flow Control

3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

53

BONUSBasic Knowledge Beyond BasicsIntroduction

5) Arithmetic Operations

54

• Wait a minute!

– Didn’t you say Shell does not support number type, and we should not use it for heavy calculation?

– Correct!

– But! Sometimes arithmetic is still needed.

BONUSBasic Knowledge Beyond BasicsIntroduction

5) Arithmetic Operations

• What does NOT work:

[1] ShellScripting/2.5-Arithmetic/bcExample.txt

$ a=10

$ b=$a/3+2

$ echo $b # Guess what you get?

10/3+2

BONUSBasic Knowledge Beyond BasicsIntroduction

5) Arithmetic Operations

• What DOES work (assuming a=10):

Method Example Remarks

[1] ShellScripting/2.5-Arithmetic/bcExample.txt

1
$((…))

(Most common)
$ echo $(($a/3+2))

• Evaluate everything inside the braces.

• Integers only!

2
let

(Slightly more advanced)

$ let b=$a/3+2

$ let b=a/3+2

$ let b++

• Evaluate assignment w/ arithmetic calculation.

• “$” can be emitted.

• Integers only!

3
expr

(Legacy, most limited)
$ expr $a / 3 + 2

• Strictly limited to "ARG1 OPERATION ARG2” format.

• Integers only!

4
bc

(Most powerful)

$ bc

scale=3

a=10;a/3+2

$ bc < bcExample.txt

$ echo "$a/2+3" | bc

• Interactive and non-interactive mode.

• Does NOT support Shell syntax (namely, “$” for variables).

• Unassigned variables treated as 0.

• scale variable determines number of decimals.

• Supports float number!

BONUSBasic Knowledge Beyond BasicsIntroduction

Summary

• In this section, we talked about:

1) Interactive vs Non-interactive (Shell Script)

2) Basic Commands & Syntax

3) Variables

4) Arrays

5) Arithmetic Operations

57

Break

58

▪ Get some water

▪ Use restroom

▪ Ask questions

▪ Don’t forget, the examples are at:

– http://www.hpc.lsu.edu/training/weekly-materials/Downloads/ShellScripting.zip

http://www.hpc.lsu.edu/training/weekly-materials/Downloads/ShellScripting.zip
http://www.hpc.lsu.edu/training/weekly-materials/Downloads/ShellScripting.zip
http://www.hpc.lsu.edu/training/weekly-materials/Downloads/ShellScripting.zip
http://www.hpc.lsu.edu/training/weekly-materials/Downloads/ShellScripting.zip

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction

1) What’s Shell?

2) What can Shell do?

2. Basic Knowledge

1) Interactive vs Non-interactive (Shell Script)

2) Basic Commands & Syntax

3) Variables

4) Arrays

5) Arithmetic Operations

3. Beyond Basics

1) Subshells

2) Flow Control

3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

59

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction

1) What’s Shell?

2) What can Shell do?

2. Basic Knowledge

1) Interactive vs Non-interactive (Shell Script)

2) Basic Commands & Syntax

3) Variables

4) Arrays

5) Arithmetic Operations

3. Beyond Basics

1) Subshells

2) Flow Control

3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

60

BONUSBasic Knowledge Beyond BasicsIntroduction

1) Subshells

61

• Definition:

– A child process of launched by an existing shell.

• Similarity:

– Still a Shell!

(Everything we talked about works the same way!)

• Difference:

– An isolated environment from its parent

(A “sandbox” Shell)

61BONUSBasic Knowledge Beyond BasicsIntroduction

BONUSBasic Knowledge Beyond BasicsIntroduction

1) Subshells

6262BONUSBasic Knowledge Beyond BasicsIntroduction

a) Launch a subshell

– What does NOT launch a subshell?

• source subshell.sh

• Commonly used for environment setting scripts (You WANT it to set up current Shell)

– source setenv.sh

Method Example Remarks

1 Run a Shell script
$./subshell.sh

$ bash subshell.sh
• Can launch different Shell types

• Check subshell level: $SHLVL

• Launches the same Shell type

• Does NOT change $SHLVL

2 Explicitly launch an interactive subshell $ bash

3 Use command grouping "(…)" $ (echo "I am in subshell!")

[1] ShellScripting/3.1-Subshells/subshell.sh
[2] ShellScripting/3.1-Subshells/setenv.sh

BONUSBasic Knowledge Beyond BasicsIntroduction

1) Subshells

6363BONUSBasic Knowledge Beyond BasicsIntroduction

b) Scope of variables

Local variable Global variable

Shell level 1

Shell level 2

Shell level 3

var="Hello" export var="Hello"

×

(Exists only in current Shell) (Copied to all subshells)

√

×

×

√

√

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction

1) What’s Shell?

2) What can Shell do?

2. Basic Knowledge

1) Interactive vs Non-interactive (Shell Script)

2) Basic Commands & Syntax

3) Variables

4) Arrays

5) Arithmetic Operations

3. Beyond Basics

1) Subshells

2) Flow Control

3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

64

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Flow control

6565BONUSBasic Knowledge Beyond BasicsIntroduction

a) Condition – if statement

b) Loop – for loop

c) Loop – while loop

d) Functions

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Flow control

6666BONUSBasic Knowledge Beyond BasicsIntroduction

a) Condition – if statement

Syntax

if [condition]; then

 # Do something

elif [condition 2] ; then

 # Do something

else

 # Do something else

fi

– Optional: elif and else

– Strict spaces between "[]" and conditions

– Use double braces “[[]]” : More modern

features (regular expressions, logic operators,

etc.)

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Flow control

6767BONUSBasic Knowledge Beyond BasicsIntroduction

a) Condition – if statement

Condition Syntax

Equal to
[$a –eq 0] # Integer

[$a == $b] # String

Not equal to
[$a -ne 0] # Integer

[$a != $b] # String

Greater than [$a -gt 0] # Integer

Greater than or equal to [$a -ge 0] # Integer

Less than [$a -lt 0] # Integer

Less than or equal to [$a -le 0] # Integer

Zero length or null [-z $a] # String

Non zero length [-n $a] # String

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Flow control

6868BONUSBasic Knowledge Beyond BasicsIntroduction

a) Condition – if statement

Condition Syntax

File exists [-e myfile]

File is a regular file [-f myfile]

File is a directory [-d /home/$USER]

File is not zero size [-s myfile]

File has read permission [-r myfile]

File has write permission [-w myfile]

File has execute permission [-x myfile]

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Flow control

6969BONUSBasic Knowledge Beyond BasicsIntroduction

a) Condition – if statement

Condition [] [[]]

! (NOT) [! -e myfile]

&& (AND) [-f myfile] && [-s myfile] [[-f myfile && -s myfile]]

|| (OR) [-f myfile1] || [-f myfile2] [[-f myfile1 || -f myfile2]]

• Supported by more Shells.

• Use if you need compatibility.

• Best supported by Bash.

• Use if you need versatility.

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Flow control

7070BONUSBasic Knowledge Beyond BasicsIntroduction

b) Loop – for loop

Syntax

for arg in ${myAry[@]}

do

 # Do something

done

– Do something for each element in an array.

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Flow control

7171BONUSBasic Knowledge Beyond BasicsIntroduction

b) Loop – for loop

Array Example

User defined array

$ myAry=("Alice" "Bob" "Charlie")

$ for arg in ${myAry[@]}

…

Shell generated sequence
$ for arg in `seq 1 4`

…

Output of commands
$ for arg in `ls $HOME`

…

[1] ShellScripting/3.2-FlowControl/for.sh

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Flow control

7272BONUSBasic Knowledge Beyond BasicsIntroduction

c) Loop – while loop

Syntax

while [condition]

do

 # Do something

done

– Loop as long as condition is satisfied.

– Make sure there is an escape condition !

• Otherwise the loop is doomed!

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Flow control

7373BONUSBasic Knowledge Beyond BasicsIntroduction

c) Loop – while loop

Example

$ counter=0

$ while [$counter -lt 10]

do

 echo "Counter is now $counter"

 let counter++ # <- What does this do?

done

[1] ShellScripting/3.2-FlowControl/while.sh

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Flow control

7474BONUSBasic Knowledge Beyond BasicsIntroduction

d) Functions

Syntax

Define

function_name () {

 # Do something

}

Call, no "()"

function_name [ARG1] [ARG2]

– A block of pre-defined code that can be reused.

– Passed arguments are accessed by:

• $1, $2, … $9, ${10}, …

• $@ (All arguments)

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Flow control

7575BONUSBasic Knowledge Beyond BasicsIntroduction

d) Functions

Remarks Example

[1] ShellScripting/3.2-FlowControl/function.sh

All variables are global by default

$ myFunc1 () {

 var="Bob"

}

$ var="Alice"; myFunc1 ; echo $var

Bob

Local variables must be explicitly declared

$ myFunc2 () {

 local var="Bob"

}

$ var="Alice"; myFunc2 ; echo $var

Alice

Does NOT support return

(Use global variable if needed)

$ myAdd () {

 result=$(($1+$2))

}

$ myAdd 10 20 ; echo $result

30

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Flow control

7676BONUSBasic Knowledge Beyond BasicsIntroduction

• Summary

a) Condition – if statement

b) Loop – for loop

c) Loop – while loop

d) Functions

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction

1) What’s Shell?

2) What can Shell do?

2. Basic Knowledge

1) Interactive vs Non-interactive (Shell Script)

2) Basic Commands & Syntax

3) Variables

4) Arrays

5) Arithmetic Operations

3. Beyond Basics

1) Subshells

2) Flow Control

3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

77

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Advanced Text Processing Commands

78

a) grep

b) sed

→ search

→ edit

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Advanced Text Processing Commands

79

a) grep

– Search for patterns (formatted strings) in input stream (files & pipe)

Syntax

$ grep <options> <search pattern> <files>

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Advanced Text Processing Commands

80

a) grep

i. Basic functionality - Search for a string

Description Example

[1] ShellScripting/3.3-TextProcessing/employee1.txt
[2] ShellScripting/3.3-TextProcessing/employee2.txt

Search for lines contain given string in a file $ grep "Sales" employee1.txt

Search for lines do NOT contain given string in a file $ grep -v "Sales" employee1.txt

Search all files for lines contain given string in the directory $ grep "Sales" *

List files that do NOT contain given string in the directory $ grep –L "Sales" *

Search for strings in a pipe $ squeue | grep $USER

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Advanced Text Processing Commands

82

a) grep

ii. Useful options

Option Description

-i Ignore cases.

-r,-R Search recursively.

-v Invert match (return those do NOT match pattern)

-l List names of the files that match the pattern.

-L List names of the files that do NOT match the pattern.

-n Print line number with output lines.

…

[1] https://man7.org/linux/man-pages/man1/grep.1.html

https://man7.org/linux/man-pages/man1/grep.1.html
https://man7.org/linux/man-pages/man1/grep.1.html
https://man7.org/linux/man-pages/man1/grep.1.html

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Advanced Text Processing Commands

83

a) grep

iii. Pattern

• Can be as simple as strings.

• Can be Regular Expression (formatted strings to match beyond fixed strings).

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Advanced Text Processing Commands

84

a) grep

iii. Pattern

Metacharacter Matches Example

Anchor
^ Beginning of a line. ^Name (Beginning of a line followed by "Name")

$ End of a line. Salary$ ("Salary" followed by end of a line)

Substitution . Any single character a.e (E.g., "age", "ame", "a#e", "a1e",…)

Repetition

* Preceding char. repeats 0 or more times 50* (E.g., "5", "50", "500",…)

+ Preceding char. repeats 1 or more times 50+ (E.g., "50", "500",…)

? Preceding char. repeats 0 or 1 times 50? (E.g., "5", "50")

\{n,m\} Preceding char. repeats n to m times 50\{1,3\} (E.g., "50", "500", "5000")

Or

[] Any single character inside [0-9] (E.g., any single number character)

[^] Any single character NOT inside [^0-9] (E.g., any single character but a number)

| Either pattern Sales|Technology (E.g., "Sales" or "Technology")

…

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Advanced Text Processing Commands

86

b) sed

– A powerful “Stream editor” for text transformation on input stream (files & pipe)

Syntax

$ sed <options> <script> <files>

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Advanced Text Processing Commands

87

b) sed

i. Basic functionality (all patterns support regular expression)

Function Usage Description

Substitution

$ sed 's/pattern/replacement/flags' file
For each line, replace matched “pattern” with “replacement”,

and print out results.

Deletion

$ sed '/pattern/d' file Delete lines with matched pattern, and print results.

…

Insertion

$ sed '/pattern/ i\newline' file # Insert before

$ sed '/pattern/ a\newline' file # Insert after
Insert / Append new line at specific location, and print results.

$ sed 's/$[0-9]*/$9000/' employee2.txt Replace only the first match of each line.

$ sed 's/$[0-9]*/$9000/g' employee2.txt “Greedy” mode, replace all matches of each line.

$ sed '/Sales/d' employee2.txt Delete all lines matches “Sales”.

$ sed '2,4d' employee2.txt Remove line 2 through 4.

$ sed '/Alice/ i\newline' Insert before lines matches “Alice”.

$ sed '3 a\newline' Append to line 3.

[1] ShellScripting/3.3-TextProcessing/employee2.txt

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Advanced Text Processing Commands

89

b) sed

ii. Other common usage

Usage Example Description

[1] ShellScripting/3.3-TextProcessing/employee2.txt

$ sed –i <script> file $ sed –i 's/$[0-9]*/$9000/' employee2.txt
Change file in-place instead of printing

results.

$ sed –e <script1> –e <script2>

file

$ sed –e 's/$[0-9]*/$9000/' \

 –e 's/Rep/Assistant/' employee2.txt
Execute multiple scripts.

$ cmd | sed <options> <script> $ conda env list | sed '/^#/d' Parsing piped output instead of file.

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Advanced Text Processing Commands

91

• Summary

– “grep searches, sed edits.”

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction

1) What’s Shell?

2) What can Shell do?

2. Basic Knowledge

1) Interactive vs Non-interactive (Shell Script)

2) Basic Commands & Syntax

3) Variables

4) Arrays

5) Arithmetic Operations

3. Beyond Basics

1) Subshells

2) Flow Control

3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

92

BONUSBasic Knowledge Beyond BasicsIntroduction

BONUS: Where to Get Help

93

• I need more help with Shell scripting. Where do I get help?

1) Contact HPC User Services

• Email Help Ticket: sys-help@loni.org

• Telephone Help Desk: +1 (225) 578-0900

mailto:sys-help@loni.org
mailto:sys-help@loni.org
mailto:sys-help@loni.org

BONUSBasic Knowledge Beyond BasicsIntroduction

BONUS: Where to Get Help

94

• I need more help with Shell scripting. Where do I get help?

2) Generative AI

ChatGPT Claude Code

BONUSBasic Knowledge Beyond BasicsIntroduction

BONUS: Where to Get Help

95

• I need more help with Shell scripting. Where do I get help?

2) Generative AI

MikeGPT

(LSU’s own GPT chat box! Trained with LSU public realm data)

[1] https://mikegpt.lsu.edu/

https://mikegpt.lsu.edu/

BONUSBasic Knowledge Beyond BasicsIntroduction

BONUS: Where to Get Help

• Why recommend generative AI for Shell scripting?

96

Generative AI Shell scripting

• Good at giving quick and dirty answers.

• Bad at giving reliable sources.

• Quick and dirty answer is all you need!

• Don’t really care about sources.

• Good at coding.

• Bad when code is too long & complicated.
• One line is all you need

BONUSBasic Knowledge Beyond BasicsIntroduction

BONUS: Where to Get Help

• Steps

97

1) Find out what you want to do and ask AI the right questions

• Try these examples (think about how to do it first, then ask AI):

a) Change all text "/ddnB/work" to "/work" in all files in folder "~/mycode/" and subfolders.

b) In a “,” separated .csv database, delete all columns starting from the 10th, and add an index column as the

first column.

c) Run executable “myexec” with “input.txt” as standard input, but replacing all “TIME” text in “input.txt” with

current timestamp generated by “date”.

BONUSBasic Knowledge Beyond BasicsIntroduction

BONUS: Where to Get Help

• Steps

98

2) TEST! TEST! TEST!

• AI generated scripts may not work right away!

• Test it in a safe & isolated environment (a sandbox) first, especially your script is something destructive!

• You may need to come back and ask AI to revise your script.

BONUSBasic Knowledge Beyond BasicsIntroduction

BONUS: Where to Get Help

• Steps

99

3) Adopt in your workflow

BONUSBasic Knowledge Beyond BasicsIntroduction

BONUS: Where to Get Help

• Steps

100

Ask AI the right questions and

get the results

TEST! TEST! TEST!

Adopt generated script in your

workflow

Conclusion

1. Introduction

1) What’s Shell?

2) What can Shell do?

2. Basic Knowledge

1) Interactive vs Non-interactive (Shell Script)

2) Basic Commands & Syntax

3) Variables

4) Arrays

5) Arithmetic Operations

3. Beyond Basics

1) Subshells

2) Flow Control

3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

101

Conclusion

102

▪ Take-home message:

Anything you wish to run faster, you should not use shell!

When NOT to use Shell scripting?

• Heavy calculation!

• Automating job workflow

• Pre-processing / Post-processing

• …

When TO use Shell scripting?

Contact us

▪ Contact user services

▪ Email Help Ticket: sys-help@loni.org

▪ Telephone Help Desk: +1 (225) 578-0900

103

mailto:sys-help@loni.org
mailto:sys-help@loni.org
mailto:sys-help@loni.org

	Overview and Outline
	Slide 1: Basic Shell Scripting
	Slide 2: Outlines
	Slide 3: Outlines
	Slide 4: Outlines

	Introduction
	Slide 5: Outlines
	Slide 6: 1) What’s Shell?
	Slide 7: 1) What’s Shell?
	Slide 8: 1) What’s Shell?
	Slide 9: 1) What’s Shell?
	Slide 10: 1) What’s Shell?
	Slide 11: 1) What’s Shell?
	Slide 12: 1) What’s Shell?
	Slide 13: Outlines
	Slide 14: 2) What can Shell do?
	Slide 15: 2) What can Shell do?
	Slide 16: 2) What can Shell do?
	Slide 17: 2) What can Shell do?
	Slide 18: 2) What can Shell do?
	Slide 19: 2) What can Shell do?
	Slide 20: 2) What can Shell do?
	Slide 21: 2) What can Shell do?
	Slide 22: 2) What can Shell do?
	Slide 23: 2) What can Shell do?
	Slide 24: 2) What can Shell do?
	Slide 25: 2) What can Shell do?

	Basic Knowledge
	Slide 26: Outlines
	Slide 27: Before we continue…
	Slide 28: Before we continue…
	Slide 29: Before we continue…
	Slide 30: Outlines
	Slide 31: 1) Interactive vs Non-interactive Shell
	Slide 32: 1) Interactive vs Non-interactive Shell
	Slide 33: 1) Interactive vs Non-interactive Shell
	Slide 34: 1) Interactive vs Non-interactive Shell
	Slide 35: 1) Interactive vs Non-interactive Shell
	Slide 36: 1) Interactive vs Non-interactive Shell
	Slide 37: 1) Interactive vs Non-interactive Shell
	Slide 39: 1) Interactive vs Non-interactive Shell
	Slide 40: Outlines
	Slide 41: 2) Basic Commands & Syntax
	Slide 42: 2) Basic Commands & Syntax
	Slide 43: Outlines
	Slide 44: 3) Variables
	Slide 45: 3) Variables
	Slide 46: 3) Variables
	Slide 47: 3) Variables
	Slide 48: 3) Variables
	Slide 49: 3) Variables
	Slide 50: Outlines
	Slide 51: 4) Arrays
	Slide 52: 4) Arrays
	Slide 53: Outlines
	Slide 54: 5) Arithmetic Operations
	Slide 55: 5) Arithmetic Operations
	Slide 56: 5) Arithmetic Operations
	Slide 57: Summary

	Break
	Slide 58: Break

	Beyond Basics
	Slide 59: Outlines
	Slide 60: Outlines
	Slide 61: 1) Subshells
	Slide 62: 1) Subshells
	Slide 63: 1) Subshells
	Slide 64: Outlines
	Slide 65: 2) Flow control
	Slide 66: 2) Flow control
	Slide 67: 2) Flow control
	Slide 68: 2) Flow control
	Slide 69: 2) Flow control
	Slide 70: 2) Flow control
	Slide 71: 2) Flow control
	Slide 72: 2) Flow control
	Slide 73: 2) Flow control
	Slide 74: 2) Flow control
	Slide 75: 2) Flow control
	Slide 76: 2) Flow control
	Slide 77: Outlines
	Slide 78: 3) Advanced Text Processing Commands
	Slide 79: 3) Advanced Text Processing Commands
	Slide 80: 3) Advanced Text Processing Commands
	Slide 82: 3) Advanced Text Processing Commands
	Slide 83: 3) Advanced Text Processing Commands
	Slide 84: 3) Advanced Text Processing Commands
	Slide 86: 3) Advanced Text Processing Commands
	Slide 87: 3) Advanced Text Processing Commands
	Slide 89: 3) Advanced Text Processing Commands
	Slide 91: 3) Advanced Text Processing Commands

	BONUS
	Slide 92: Outlines
	Slide 93: BONUS: Where to Get Help
	Slide 94: BONUS: Where to Get Help
	Slide 95: BONUS: Where to Get Help
	Slide 96: BONUS: Where to Get Help
	Slide 97: BONUS: Where to Get Help
	Slide 98: BONUS: Where to Get Help
	Slide 99: BONUS: Where to Get Help
	Slide 100: BONUS: Where to Get Help

	Conclusion
	Slide 101: Conclusion
	Slide 102: Conclusion
	Slide 103: Contact us

