<3

NVIDIA.

CUDA Toolkit 4.1
CUBLAS Library

Contents

1 Introduction 4
1.1 Datalayout e 4
1.2 New and Legacy CUBLAS API 5
1.3 Example code 6

2 Using the CUBLAS API 9
2.1 Errorstatus e 9
2.2 CUBLAS context 9
2.3 Thread Safety L 10
2.4 Scalar Parameters L 10
2.5 Parallelism with Streams Lo o 10
2.6 Batching Kernels 11

3 CUBLAS Datatypes Reference 12
3.1 cublasHandle t 12
3.2 cublasStatus t 12
3.3 cublasOperation t 13
3.4 cublasFillMode t. 14
3.5 cublasDiagType t 14
3.6 cublasSideMode t 14
3.7 cublasPointerMode t o 14

4 CUBLAS Helper Function Reference 16
4.1 cublasCreate() 16
4.2 cublasDestroy() 16
4.3 cublasGetVersion() L 16
4.4 cublasSetStream()o 17
4.5 cublasGetStream() 17
4.6 cublasGetPointerMode() Lo 17
4.7 cublasSetPointerMode() Lo 18
4.8 cublasSetVector() 18
4.9 cublasGetVector() oL 18
4.10 cublasSetMatrix() 19

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_vO01 | ii

4.11 cublasGetMatrix() 19
4.12 cublasSetVectorAsync() 20
4.13 cublasGetVectorAsync() o 20
4.14 cublasSetMatrixAsync() 21
4.15 cublasGetMatrixAsync()o o o Lo Lo 21
5 CUBLAS Level-1 Function Reference 22
5.1 cublasl<t>amax() 22
5.2 cublasl<t>amin() 23
5.3 cublas<t=asum() 24
5.4 cublas<t>axpy() 25
5.5 cublas<t=>copy() 26
5.6 cublas<t>dot() 26
5.7 cublas<t>nrm2() 28
5.8 cublas<t>rot() 28
5.9 cublas<t>rotg() 30
5.10 cublas<t>rotm() 31
5.11 cublas<t>rotmg() 32
5.12 cublas<t>scal() 33
5.13 cublas<t>swap() 34
6 CUBLAS Level-2 Function Reference 36
6.1 cublas<t>gbmv(). 36
6.2 cublas<t>gemv() 38
6.3 cublas<<t>ger() 39
6.4 cublas<t>sbmv() 41
6.5 cublas<t>spmv() 43
6.6 cublas<t>spr() 44
6.7 cublas<t>spr2() 45
6.8 cublas<t>symv() 46
6.9 cublas<t>syr() 47
6.10 cublas<<t>syr2() 48
6.11 cublas<t>tbmv() 49
6.12 cublas<<t>tbsv() 51
6.13 cublas<t>tpmv() 53
6.14 cublas<t>tpsv() 54
6.15 cublas<t>trmv() 56
6.16 cublas<<t>trsv() 57
6.17 cublas<t>hemv() 58
6.18 cublas<t>hbmv() 59
6.19 cublas<t>hpmv() 61
6.20 cublas<t>her() 63
6.21 cublas<<t>her2() 64
6.22 cublas<t>hpr() 65

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_vO01 | iii

6.23 cublas<t>hpr2() 66

7 CUBLAS Level-3 Function Reference 68
7.1 cublas<t>gemm() 68
7.2 cublas<t>gemmBatched()o Lo 70
7.3 cublas<t>symm() 72
7.4 cublas<t>syrk() 74
7.5 cublas<t>syr2k() 76
7.6 cublas<t>trmm() 78
7.7 cublas<t>trsm() 81
7.8 cublas<t>hemm() 82
7.9 cublas<t>herk() 85
7.10 cublas<t>her2k() L 86

8 Appendix A: Using the CUBLAS Legacy API 89
81 Error Status. 89
8.2 Inmitialization and Shutdown L. 89
8.3 Thread Safety 90
8.4 Memory Management Lo 90
8.5 Scalar Parameters 90
8.6 Helper Functions 90
8.7 Level-1,23 Functions 91
8.8 Converting Legacy to the CUBLAS API 91
8.9 Examples 92

9 Appendix B: CUBLAS Fortran Bindings 95

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | iv

Contents

Published by
NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050
Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES,
DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND
SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS". NVIDIA MAKES
NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH
RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS
FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such information or
for any infringement of patents or other rights of third parties that may result from its use.
No license is granted by implication or otherwise under any patent or patent rights of
NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all information previously
supplied. NVIDIA Corporation products are not authorized for use as critical components
in life support devices or systems without express written approval of NVIDIA
Corporation.

Trademarks

NVIDIA, CUDA, and the NVIDIA logo are trademarks or registered trademarks of
NVIDIA Corporation in the United States and other countries. Other company and
product names may be trademarks of the respective companies with which they are
associated.

Copyright

Copyright (©2005-2012 by NVIDIA Corporation. All rights reserved.

Portions of the SGEMM, DGEMM, CGEMM and ZGEMM library routines were written

by Vasily Volkov and are subject to the Modified Berkeley Software Distribution License as
follows:

Copyright (©2007-2009, Regents of the University of California
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

» Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

» Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 1

Contents

» Neither the name of the University of California, Berkeley nor the names of its
contributors may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Portions of the SGEMM, DGEMM and ZGEMM library routines were written by Davide
Barbieri and are subject to the Modified Berkeley Software Distribution License as follows:

Copyright (©2008-2009 Davide Barbieri @ University of Rome Tor Vergata.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

» Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

» Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

» The name of the author may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 2

Contents

Portions of the DGEMM and SGEMM library routines optimized for Fermi architecture
were developed by the University of Tennessee. Subsequently, several other routines that
are optimized for the Fermi architecture have been derived from these initial DGEMM and
SGEMM implementations. Those portions of the source code are thus subject to the
Modified Berkeley Software Distribution License as follows:

Copyright (©2010 The University of Tennessee. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

» Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

» Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer listed in this license in the documentation
and /or other materials provided with the distribution.

» Neither the name of the copyright holders nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 3

Chapter 1

Introduction

The CUBLAS library is an implementation of BLAS (Basic Linear Algebra Subprograms)
on top of the NVIDIA®CUDA™ runtime. It allows the user to access the computational
resources of NVIDIA Graphics Processing Unit (GPU), but does not auto-parallelize
across multiple GPUs.

To use the CUBLAS library, the application must allocate the required matrices and
vectors in the GPU memory space, fill them with data, call the sequence of desired
CUBLAS functions, and then upload the results from the GPU memory space back to the
host. The CUBLAS library also provides helper functions for writing and retrieving data
from the GPU.

1.1 Data layout

For maximum compatibility with existing Fortran environments, the CUBLAS library uses
column-major storage, and 1-based indexing. Since C and C++ use row-major storage,
applications written in these languages can not use the native array semantics for
two-dimensional arrays. Instead, macros or inline functions should be defined to
implement matrices on top of one-dimensional arrays. For Fortran code ported to C in
mechanical fashion, one may chose to retain 1-based indexing to avoid the need to

(1553} [3555)

transform loops. In this case, the array index of a matrix element in row “i” and column *j
can be computed via the following macro

#define IDX2F(i,j,1d) ((((1)-1)*(1d))+((i)—1))

Here, 1d refers to the leading dimension of the matrix, which in the case of column-major
storage is the number of rows of the allocated matrix (even if only a submatrix of it is
being used). For natively written C and C++ code, one would most likely choose 0-based
indexing, in which case the array index of a matrix element in row “4”
be computed via the following macro

[4533)

and column “j” can

#define IDX2C(i,j,1d) (((j)*(1d))+(i))

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 4

Chapter 1. Introduction

1.2 New and Legacy CUBLAS API

Starting with version 4.0, the CUBLAS Library provides a new updated API, in addition
to the existing legacy API. This section discusses why a new API is provided, the
advantages of using it, and the differences with the existing legacy API.

The new CUBLAS library API can be used by including the header file “cublas v2.h”. It
has the following features that the legacy CUBLAS API does not have:

» the handle to the CUBLAS library context is initialized using the cublasCreate
function and is explicitly passed to every subsequent library function call. This

allows the user to have more control over the library setup when using multiple host
threads and multiple GPUs. This also allows the CUBLAS APIs to be reentrant.

» the scalars « and [can be passed by reference on the host or the device, instead of
only being allowed to be passed by value on the host. This change allows library
functions to execute asynchronously using streams even when « and (are generated
by a previous kernel.

» when a library routine returns a scalar result, it can be returned by reference on the
host or the device, instead of only being allowed to be returned by value only on the
host. This change allows library routines to be called asynchronously when the scalar
result is generated and returned by reference on the device resulting in maximum
parallelism.

» the error status cublasStatus_t is returned by all CUBLAS library function calls.
This change facilitates debugging and simplifies software development. Note that
cublasStatus was renamed cublasStatus_t to be more consistent with other types
in the CUBLAS library.

» the cublasAlloc() and cublasFree() functions have been deprecated. This change
removes these unnecessary wrappers around cudaMalloc() and cudaFree(),
respectively.

» the function cublasSetKernelStream() was renamed cublasSetStream() to be
more consistent with the other CUDA libraries.

The legacy CUBLAS API, explained in more detail in the Appendix A, can be used by
including the header file “cublas.h”. Since the legacy API is identical to the previously
released CUBLAS library API, existing applications will work out of the box and
automatically use this legacy API without any source code changes. In general, new
applications should not use the legacy CUBLAS API, and existing existing applications
should convert to using the new API if it requires sophisticated and optimal stream
parallelism or if it calls CUBLAS routines concurrently from multiple threads. For the rest
of the document, the new CUBLAS Library API will simply be referred to as the
CUBLAS Library API.

As mentioned earlier the interfaces to the legacy and the CUBLAS library APIs are the
header file “cublas.h” and “cublas_ v2.h”, respectively. In addition, applications using the

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 5

Chapter 1. Introduction

CUBLAS library need to link against the DSO cublas.so (Linux), the DLL cublas.dll
(Windows), or the dynamic library cublas.dylib (Mac OS X). Note: the same dynamic
library implements both the new and legacy CUBLAS APIs.

1.3 Example code

For sample code references please see the two examples below. They show an application
written in C using the CUBLAS library API with two indexing styles (Example 1.
"Application Using C and CUBLAS: 1-based indexing" and Example 2. "Application
Using C and CUBLAS: 0-based Indexing").

//Example 1. Application Using C and CUBLAS: 1—based indexing

#include <stdio.h>

#include <stdlib .h>

#include <math.h>

#include <cuda_ runtime.h>

#include "cublas v2.h"

#define M 6

#define N 5

#define IDX2F(i,j,1d) ((((j)—1)*(1d))+((i)~1))

static __inline__ void modify (cublasHandle_t handle, float *m, int ldm, int n, int<«
p, int q, float alpha, float beta){
cublasSscal (handle, n—p+1, &alpha, &m|[IDX2F(p,q,ldm)]|, 1ldm);
cublasSscal (handle, ldm—p+1, &beta, &m|[IDX2F(p,q,1ldm)|, 1);

}

int main (void){

cudaError_t cudaStat;

cublasStatus_t stat;

cublasHandle_t handle;

int i, j;

float* devPtrA;

float*x a = 0;

a = (float *)malloc (M x N % sizeof (xa));

if (la) {
printf ("host memory allocation failed");
return EXIT_FAILURE;

¥

for (j = 1; j <= N; j++4) {
for (i = 1; i <= M; i++) {

a[IDX2F(i,j,M)] = (float) ((i-1) = M + j);

}
cudaStat = cudaMalloc ((voidx*x)&devPtrA, MxNssizeof (xa));
if (cudaStat != cudaSuccess) {
printf ("device memory allocation failed");
return EXIT_FAILURE;
}
stat = cublasCreate(&handle);
if (stat != CUBLAS_STATUS_SUCCESS) {
printf ("CUBLAS initialization failed\n");
return EXIT_FAILURE;

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 6

Chapter 1. Introduction

stat = cublasSetMatrix (M, N, sizeof(*a), a, M, devPtrA, M);
if (stat != CUBLAS_STATUS_SUCCESS) {

printf ("data download failed");

cudaFree (devPtrA);

cublasDestroy (handle);

return EXIT_FAILURE;

modify (handle, devPtrA, M, N, 2, 3, 16.0f, 12.0f);
stat = cublasGetMatrix (M, N, sizeof(xa), devPtrA, M, a, M);
if (stat != CUBLAS_STATUS_SUCCESS) {

printf ("data upload failed");

cudaFree (devPtrA);

cublasDestroy (handle) ;

return EXIT_FAILURE;

cudaFree (devPtrA);
cublasDestroy (handle) ;
for (j = 1; j <= N; j++) {
for (i = 1; i <= M; it++) {
printf ("%7.0f", a[IDX2F(i,j,M)]);

printf ("\n");

}

return EXIT_SUCCESS;

//Example 2. Application Using C and CUBLAS: 0—based indexing

#include <stdio.h>

#include <stdlib .h>

#include <math.h>

#include <cuda_runtime.h>

#include "cublas v2.h"

#define M 6

#define N 5

#define IDX2C(i,j,1d) (((j)*(1d))+(i))

static __inline__ void modify (cublasHandle_t handle, float *m, int 1ldm, int n, int<«
p, int q, float alpha, float beta){
cublasSscal (handle, n—p, &alpha, &m|[IDX2C(p,q,1ldm)]|, 1ldm);
cublasSscal (handle, ldm—p, &beta, &m|[IDX2C(p,q,ldm)], 1);

int main (void){
cudaError_t cudaStat;
cublasStatus_t stat;
cublasHandle_t handle;
int i, j;
float*x devPtrA;
float*x a = 0;
a = (float *)malloc (M % N * sizeof (xa));
if (la) {
printf ("host memory allocation failed");
return EXIT_FAILURE;
}
for (j = 0; j < N; j++) {
for (i = 0; i < M; i++) {
a[IDX2C(i,j,M)] = (float)(i « M + j + 1);

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 7

cudaStat = cudaMalloc ((voidx*x)&devPtrA, MxNsxsizeof (xa));
if (cudaStat != cudaSuccess) {
printf ("device memory allocation failed");
return EXIT_FAILURE;
}
stat = cublasCreate(&handle);
if (stat != CUBLAS_STATUS_SUCCESS) {
printf ("CUBLAS initialization failed\n");
return EXIT_FAILURE;
}
stat = cublasSetMatrix (M, N, sizeof(*a), a, M, devPtrA, M);
if (stat != CUBLAS_STATUS_SUCCESS) {
printf ("data download failed");
cudaFree (devPtrA);
cublasDestroy (handle) ;
return EXIT_FAILURE;

modify (handle, devPtrA, M, N, 1, 2, 16.0f, 12.0f);
stat = cublasGetMatrix (M, N, sizeof(*a), devPtrA, M, a, M);
if (stat != CUBLAS_STATUS_SUCCESS) {

printf ("data upload failed");

cudaFree (devPtrA);

cublasDestroy (handle);

return EXIT_FAILURE;
}
cudaFree (devPtrA);
cublasDestroy (handle);
for (j = 0; j < N; j++) {

for (i = 0; i < M; i++) {

printf ("%7.0f", a[IDX2C(i,j,M)]);

printf ("\n");

}

return EXIT_SUCCESS;

Chapter 1. Introduction

CUDA Toolkit 4.1 CUBLAS Library

PG-05326-041_v01 | 8

Chapter 2
Using the CUBLAS API

This section describes how to use the CUBLAS library API. It does not contain a detailed
reference for all API datatypes and functions—those are provided in subsequent chapters.
The Legacy CUBLAS API is also not covered in this section-that is handled in an
Appendix.

2.1 Error status

All CUBLAS library function calls return the error status cublasStatus_t.

2.2 CUBLAS context

The application must initialize the handle to the CUBLAS library context by calling the
cublasCreate() function. Then, the handle is explicitly passed to every subsequent
library function call. Once the application finishes using the library, it must call the
cublasDestroy() function to release the resources associated with the CUBLAS library
context.

This approach allows the user to explicitly control the library setup when using multiple
host threads and multiple GPUs. For example, the application can use cudaSetDevice ()
to associate different devices with different host threads and in each of those host threads
it can initialize a unique handle to the CUBLAS library context, which will use the
particular device associated with that host thread. Then, the CUBLAS library function
calls made with different handle will automatically dispatch the computation to different
devices.

The device associated with a particular CUBLAS context is assumed to remain unchanged
between the corresponding cublasCreate() and cublasDestroy() calls. In order for the
CUBLAS library to use a different device in the same host thread, the application must set
the new device to be used by calling cudaSetDevice() and then create another CUBLAS
context, which will be associated with the new device, by calling cublasCreate().

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 9

Chapter 2. Using the CUBLAS API

2.3 Thread Safety

The library is thread safe and its functions can be called from multiple host threads, even
with the same handle.

2.4 Scalar Parameters

In the CUBLAS API the scalar parameters « and 8 can be passed by reference on the host
or the device

Also, the few functions that return a scalar result, such as amax (), amin(), asum(),
rotg(), rotmg(), dot () and nrm2(), return the resulting value by reference on the host or
the device. Notice that even though these functions return immediately, similarly to
matrix and vector results, the scalar result is ready only when execution of the routine on
the GPU completes. This requires proper synchronization in order to read the result from
the host.

These changes allow the library functions to execute completely asynchronously using
streams even when « and (8 are generated by a previous kernel. For example, this situation
can arise when iterative methods for solution of linear systems and eigenvalue problems are
implemented using the CUBLAS library.

2.5 Parallelism with Streams

If the application uses the results computed by multiple independent tasks, CUDA™
streams can be used to overlap the computation performed in these tasks.

The application can conceptually associate each stream with each task. In order to achieve
the overlap of computation between the tasks, the user should create CUDA™ streams
using the function cudaStreamCreate() and set the stream to be used by each individual
CUBLAS library routine by calling cublasSetStream() just before calling the actual
CUBLAS routine. Then, the computation performed in separate streams would be
overlapped automatically when possible on the GPU. This approach is especially useful
when the computation performed by a single task is relatively small and is not enough to
fill the GPU with work.

We recommend using the new CUBLAS API with scalar parameters and results passed by
reference in the device memory to achieve maximum overlap of the computation when
using streams.

A particular application of streams, batching of multiple small kernels, is described below.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 10

Chapter 2. Using the CUBLAS API

2.6 Batching Kernels

In this section we will explain how to use streams to batch the execution of small kernels.
For instance, suppose that we have an application where we need to make many small
independent matrix-matrix multiplications with dense matrices.

It is clear that even with millions of small independent matrices we will not be able to
achieve the same GFLOPS rate as with a one large matrix. For example, a single n x n
large matrix-matrix multiplication performs n3 operations for n? input size, while 1024
35 X 35 small matrix-matrix multiplications perform 1024 (3"—2)3 = ’g—; operations for the
same input size. However, it is also clear that we can achieve a significantly better
performance with many small independent matrices compared with a single small matrix.

The Fermi architecture family of GPUs allows us to execute multiple kernels
simultaneously. Hence, in order to batch the execution of independent kernels, we can run
each of them in a separate stream. In particular, in the above example we could create
1024 CUDA™ gtreams using the function cudaStreamCreate (), then preface each call to
cublas<t>gemm() with a call to cublasSetStream() with a different stream for each of
the matrix-matrix multiplications. This will ensure that when possible the different
computations will be executed concurrently. Although the user can create many streams,
in practice it is not possible to have more than 16 concurrent kernels executing at the same
time.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 11

Chapter 3
CUBLAS Datatypes Reference

3.1 cublasHandle t

The cublasHandle_t type is a pointer type to an opaque structure holding the CUBLAS
library context. The CUBLAS library context must be initialized using cublasCreate ()
and the returned handle must be passed to all subsequent library function calls. The
context should be destroyed at the end using cublasDestroy().

3.2 cublasStatus_t

The cublasStatus_t type is used for function status returns. All CUBLAS library
functions return their status, which can have the following values.

CUBLAS_STATUS_SUCCESS
The operation completed successfully.
CUBLAS_STATUS_NOT_INITIALIZED
The CUBLAS library was not initialized. This is usually caused
by the lack of a prior cublasCreate() call, an error in the CUDA
Runtime API called by the CUBLAS routine, or an error in the
hardware setup.
To correct: call cublasCreate() prior to the function call; and
check that the hardware, an appropriate version of the driver,
and the CUBLAS library are correctly installed.
CUBLAS_STATUS_ALLOC_FAILED
Resource allocation failed inside the CUBLAS library. This is
usually caused by a cudaMalloc() failure.
To correct: prior to the function call, deallocate previously al-
located memory as much as possible.
CUBLAS_STATUS_INVALID_VALUE

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 12

Chapter 3. CUBLAS Datatypes Reference

An unsupported value or parameter was passed to the function
(a negative vector size, for example).

To correct: ensure that all the parameters being passed have
valid values.

CUBLAS_STATUS_ARCH_MISMATCH
The function requires a feature absent from the device architec-
ture; usually caused by the lack of support for double precision.
To correct: compile and run the application on a device with
appropriate compute capability, which is 1.3 for double precision.

CUBLAS_STATUS_MAPPING_ERROR
An access to GPU memory space failed, which is usually caused
by a failure to bind a texture.
To correct: prior to the function call, unbind any previously
bound textures.

CUBLAS_STATUS_EXECUTION_FAILED
The GPU program failed to execute. This is often caused by a
launch failure of the kernel on the GPU, which can be caused by
multiple reasons.
To correct: check that the hardware, an appropriate version of
the driver, and the CUBLAS library are correctly installed.

CUBLAS_STATUS_INTERNAL_ERROR
An internal CUBLAS operation failed. This error is usually
caused by a cudaMemcpyAsync () failure.
To correct: check that the hardware, an appropriate version of
the driver, and the CUBLAS library are correctly installed. Also,
check that the memory passed as a parameter to the routine is
not being deallocated prior to the routine’s completion.

3.3 cublasOperation_t

The cublasOperation_t type indicates which operation needs to be performed with the
dense matrix. Its values correspond to Fortran characters ‘N’ or ‘n’ (non-transpose), ‘T’
or ‘t’ (transpose) and ‘C’ or ‘c’ (conjugate transpose) that are often used as parameters
to legacy BLAS implementations.

Value Meaning

CUBLAS_OP_N | the non-transpose operation is selected

CUBLAS_OP_T | the transpose operation is selected

CUBLAS_QOP_C | the conjugate transpose operation is selected

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 13

Chapter 3. CUBLAS Datatypes Reference

3.4 cublasFillMode_t

The cublasFillMode_t type indicates which part (lower or upper) of the dense matrix was
filled and consequently should be used by the function. Its values correspond to Fortran
characters ‘L’ or ‘1’ (lower) and ‘U’ or ‘u’ (upper) that are often used as parameters to
legacy BLAS implementations.

Value Meaning
CUBLAS_FILL_MODE_LOWER | the lower part of the matrix is filled
CUBLAS_FILL_MODE_UPPER | the upper part of the matrix is filled

3.5 cublasDiagType_t

The cublasDiagType_t type indicates whether the main diagonal of the dense matrix is
unity and consequently should not be touched or modified by the function. Its values
correspond to Fortran characters ‘N’ or ‘n’ (non-unit) and ‘U’ or ‘u’ (unit) that are
often used as parameters to legacy BLAS implementations.

Value Meaning
CUBLAS_DIAG_NON_UNIT | the matrix diagonal has non-unit elements
CUBLAS_DIAG_UNIT the matrix diagonal has unit elements

3.6 cublasSideMode_t

The cublasSideMode_t type indicates whether the dense matrix is on the left or right side
in the matrix equation solved by a particular function. Its values correspond to Fortran
characters ‘L’ or ‘1’ (left) and ‘R’ or ‘r’ (right) that are often used as parameters to
legacy BLAS implementations.

Value Meaning
CUBLAS_SIDE_LEFT | the matrix is on the left side in the equation
CUBLAS_SIDE_RIGHT | the matrix is on the right side in the equation

3.7 cublasPointerMode _t

The cublasPointerMode_t type indicates whether the scalar values are passed by
reference on the host or device. It is important to point out that if several scalar values are
present in the function call, all of them must conform to the same single pointer mode.
The pointer mode can be set and retrieved using cublasSetPointerMode () and
cublasGetPointerMode () routines, respectively.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 14

Chapter 3. CUBLAS Datatypes Reference

Value Meaning
CUBLAS_POINTER_MODE_HOST the scalars are passed by reference on the host
CUBLAS_POINTER_MODE_DEVICE | the scalars are passed by reference on the device

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 15

Chapter 4
CUBLAS Helper Function Reference

4.1 cublasCreate()

cublasStatus_t
cublasCreate(cublasHandle_t *handle)

This function initializes the CUBLAS library and creates a handle to an opaque structure
holding the CUBLAS library context. It allocates hardware resources on the host and
device and must be called prior to making any other CUBLAS library calls.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the initialization succeeded
CUBLAS_STATUS_NOT_INITIALIZED | the CUDA™ Runtime initialization failed
CUBLAS_STATUS_ALLOC_FAILED the resources could not be allocated

4.2 cublasDestroy()

cublasStatus_t
cublasDestroy(cublasHandle_t handle)

This function releases hardware resources used by the CUBLAS library. The release of
GPU resources may be deferred until the application exits. This function is usually the
last call with a particular handle to the CUBLAS library.

Return Value Meaning
CUBLAS_STATUS_SUCCESS the shut down succeeded
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

4.3 cublasGetVersion()

cublasStatus_t
cublasGetVersion(cublasHandle_t handle, int *version)

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 16

Chapter 4. CUBLAS Helper Function Reference

This function returns the version number of the CUBLAS library.

Return Value Meaning
CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

4.4 cublasSetStream()

cublasStatus_t
cublasSetStream(cublasHandle_t handle, cudaStream_t streamId)

This function sets the CUBLAS library stream, which will be used to execute all
subsequent calls to the CUBLAS library functions. If the CUBLAS library stream is not
set, all kernels use the default NULL stream. In particular, this routine can be used to
change the stream between kernel launches and then to reset the CUBLAS library stream
back to NULL.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the stream was set successfully

CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

4.5 cublasGetStream()

cublasStatus_t
cublasGetStream(cublasHandle_t handle, cudaStream_t *streamId)

This function gets the CUBLAS library stream, which is being used to execute all calls to
the CUBLAS library functions. If the CUBLAS library stream is not set, all kernels use
the default NULL stream.

Return Value Meaning
CUBLAS_STATUS_SUCCESS the stream was returned successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

4.6 cublasGetPointerMode()

cublasStatus_t
cublasGetPointerMode (cublasHandle_t handle, cublasPointerMode_t *mode)

This function obtains the pointer mode used by the CUBLAS library. Please see the
section on the cublasPointerMode_t type for more details.
Return Value Meaning

CUBLAS_STATUS_SUCCESS the pointer mode was obtained successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 17

Chapter 4. CUBLAS Helper Function Reference

4.7 cublasSetPointerMode()

cublasStatus_t
cublasSetPointerMode (cublasHandle_t handle, cublasPointerMode_t mode)

This function sets the pointer mode used by the CUBLAS library. The default is for the
values to be passed by reference on the host. Please see the section on the
cublasPointerMode_t type for more details.

Return Value Meaning
CUBLAS_STATUS_SUCCESS the pointer mode was set successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

4.8 cublasSetVector()

cublasStatus_t
cublasSetVector(int n, int elemSize,
const void *x, int incx, void *devicePtr, int incy)

This function copies n elements from a vector x in host memory space to a vector y in
GPU memory space. Elements in both vectors are assumed to have a size of elemSize
bytes. The storage spacing between consecutive elements is given by incx for the source
vector x and incy for the destination vector y.

In general, y points to an object, or part of an object, that was allocated via
cublasAlloc(). Since column-major format for two-dimensional matrices is assumed, if a
vector is part of a matrix, a vector increment equal to 1 accesses a (partial) column of that
matrix. Similarly, using an increment equal to the leading dimension of the matrix results
in accesses to a (partial) row of that matrix.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters incx,incy,elemSize<=0
CUBLAS_STATUS_MAPPING_ERROR there was an error accessing GPU memory

4.9 cublasGetVector()

cublasStatus_t
cublasGetVector(int n, int elemSize,
const void *x, int incx, void *y, int incy)

This function copies n elements from a vector x in GPU memory space to a vector y in
host memory space. Elements in both vectors are assumed to have a size of elemSize

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 18

Chapter 4. CUBLAS Helper Function Reference

bytes. The storage spacing between consecutive elements is given by incx for the source
vector x and incy for the destination vector y.

In general, x points to an object, or part of an object, that was allocated via
cublasAlloc(). Since column-major format for two-dimensional matrices is assumed, if a
vector is part of a matrix, a vector increment equal to 1 accesses a (partial) column of that
matrix. Similarly, using an increment equal to the leading dimension of the matrix results
in accesses to a (partial) row of that matrix.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters incx,incy,elemSize<=0
CUBLAS_STATUS_MAPPING_ERROR there was an error accessing GPU memory

4.10 cublasSetMatrix()

cublasStatus_t
cublasSetMatrix(int rows, int cols, int elemSize,
const void *A, int lda, void *B, int 1db)

This function copies a tile of rows x cols elements from a matrix A in host memory space
to a matrix B in GPU memory space. It is assumed that each element requires storage of
elemSize bytes and that both matrices are stored in column-major format, with the
leading dimension of the source matrix A and destination matrix B given in 1da and 1db,
respectively. The leading dimension indicates the number of rows of the allocated matrix,
even if only a submatrix of it is being used. In general, B is a device pointer that points to
an object, or part of an object, that was allocated in GPU memory space via
cublasAlloc().

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters rows,cols<0 or elemSize,1da,1db<=0

CUBLAS_STATUS_MAPPING_ERROR there was an error accessing GPU memory

4.11 cublasGetMatrix()

cublasStatus_t
cublasGetMatrix(int rows, int cols, int elemSize,
const void *A, int lda, void *B, int 1db)

This function copies a tile of rows X cols elements from a matrix A in GPU memory space
to a matrix B in host memory space. It is assumed that each element requires storage of

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 19

Chapter 4. CUBLAS Helper Function Reference

elemSize bytes and that both matrices are stored in column-major format, with the
leading dimension of the source matrix A and destination matrix B given in 1da and 1db,
respectively. The leading dimension indicates the number of rows of the allocated matrix,
even if only a submatrix of it is being used. In general, A is a device pointer that points to
an object, or part of an object, that was allocated in GPU memory space via
cublasAlloc().

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters rows,cols<0 or elemSize,1lda,1db<=0

CUBLAS_STATUS_MAPPING_ERROR there was an error accessing GPU memory

4.12 cublasSetVectorAsync()

cublasStatus_t
cublasSetVectorAsync(int n, int elemSize, const void *hostPtr, int incx,
void *devicePtr, int incy, cudaStream_t stream)

This function has the same functionality as cublasSetVector (), with the exception that
the data transfer is done asynchronously (with respect to the host) using the given
CUDA™ stream parameter.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters incx,incy,elemSize<=0
CUBLAS_STATUS_MAPPING_ERROR there was an error accessing GPU memory

4.13 cublasGetVectorAsync()

cublasStatus_t
cublasGetVectorAsync(int n, int elemSize, const void *devicePtr, int incx,
void *hostPtr, int incy, cudaStream_t stream)

This function has the same functionality as cublasGetVector (), with the exception that
the data transfer is done asynchronously (with respect to the host) using the given
CUDA™ gtream parameter.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters incx,incy,elemSize<=0
CUBLAS_STATUS_MAPPING_ERROR there was an error accessing GPU memory

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 20

Chapter 4. CUBLAS Helper Function Reference

4.14 cublasSetMatrixAsync()

cublasStatus_t
cublasSetMatrixAsync(int rows, int cols, int elemSize, const void *A,
int lda, void *B, int 1db, cudaStream_t stream)

This function has the same functionality as cublasSetMatrix (), with the exception that
the data transfer is done asynchronously (with respect to the host) using the given
CUDA™ gtream parameter.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters rows,cols<0 or elemSize,1da,1db<=0

CUBLAS_STATUS_MAPPING_ERROR there was an error accessing GPU memory

4.15 cublasGetMatrixAsync()

cublasStatus_t
cublasGetMatrixAsync(int rows, int cols, int elemSize, const void *A,
int lda, void *B, int 1ldb, cudaStream_t stream)

This function has the same functionality as cublasGetMatrix (), with the exception that
the data transfer is done asynchronously (with respect to the host) using the given
CUDA™ gstream parameter.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters rows,cols<0 or elemSize,1da,1db<=0

CUBLAS_STATUS_MAPPING_ERROR there was an error accessing GPU memory

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 21

Chapter 5
CUBLAS Level-1 Function Reference

In this chapter we describe the Level-1 Basic Linear Algebra Subprograms (BLAS1)
functions that perform scalar and vector based operations. We will use abbreviations
<type> for type and <t> for the corresponding short type to make a more concise and
clear presentation of the implemented functions. Unless otherwise specified <type> and
<t> have the following meanings:

<type> <t> Meaning

float ‘s’ or ‘S’ | real single-precision
double ‘d” or ‘D’ | real double-precision
cuComplex ‘¢’ or ‘C’ | complex single-precision
cuDoubleComplex | ‘z’ or ‘Z’ | complex double-precision

When the parameters and returned values of the function differ, which sometimes happens
for complex input, the <t> can also have the following meanings ‘Sc’, ‘Cs’, ‘Dz’ and ‘Zd’.

The abbreviation Re(.) and Im(.) will stand for the real and imaginary part of a number,
respectively. Since imaginary part of a real number does not exist, we will consider it to be
zero and can usually simply discard it from the equation where it is being used. Also, the

@ will denote the complex conjugate of a.

In general throughout the documentation, the lower case Greek symbols a and g will
denote scalars, lower case English letters in bold type x and y will denote vectors and
capital English letters A, B and C will denote matrices.

5.1 cublasl<t>amax()

cublasStatus_t cublasIsamax(cublasHandle_t handle, int n,

const float *x, int incx, int *result)
cublasStatus_t cublasIdamax(cublasHandle_t handle, int n,

const double *x, int incx, int *result)
cublasStatus_t cublasIcamax(cublasHandle_t handle, int n,

const cuComplex *x, int incx, int *result)
cublasStatus_t cublasIzamax(cublasHandle_t handle, int n,

const cuDoubleComplex *x, int incx, int *result)

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 22

Chapter 5. CUBLAS Level-1 Function Reference

This function finds the (smallest) index of the element of the maximum magnitude. Hence,
the result is the first ¢ such that |[Im(x[j])| + |Re(x[j])| is maximum for i = 1,...,n and

j =1+ (i—1)*incx. Notice that the last equation reflects 1-based indexing used for
compatibility with Fortran.

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

n input | number of elements in the vector x.

X device input | <type> vector with n elements.

incx input | stride between consecutive elements of x.
result host or device | output | the resulting index, which is 0 if n,incx<=0.

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_ALLOC_FAILED the reduction buffer could not be allocated
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
isamax, idamax, icamax, izamax

5.2 cublasl<t>amin()

cublasStatus_t cublasIsamin(cublasHandle_t handle, int n,

const float *x, int incx, int *result)
cublasStatus_t cublasIdamin(cublasHandle_t handle, int n,

const double *x, int incx, int *result)
cublasStatus_t cublasIcamin(cublasHandle_t handle, int n,

const cuComplex *x, int incx, int *result)
cublasStatus_t cublasIzamin(cublasHandle_t handle, int n,

const cuDoubleComplex *x, int incx, int *result)

This function finds the (smallest) index of the element of the minimum magnitude. Hence,
the result is the first ¢ such that |Im(x[j])| + |Re(x[j])| is minimum for i = 1,...,n and

j =1+ (i—1)*incx. Notice that the last equation reflects 1-based indexing used for
compatibility with Fortran.

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

n input | number of elements in the vector x.

X device input | <type> vector with n elements.

incx input | stride between consecutive elements of x.
result host or device | output | the resulting index, which is 0 if n,incx<=0.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 23

http://www.netlib.org/blas/isamax.f
http://www.netlib.org/blas/idamax.f
http://www.netlib.org/blas/icamax.f
http://www.netlib.org/blas/izamax.f

Chapter 5. CUBLAS Level-1 Function Reference

The possible error values returned by this function and their meanings are listed below.

Error Values

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_ALLOC_FAILED

the reduction buffer could not be allocated

CUBLAS_STATUS_ARCH_MISMATCH

the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU

For references please refer to:
isamin, idamin

5.3 cublas<t>asum()

cublasStatus_t cublasSasum(cubl

asHandle_t handle, int n,

const float *x, int incx, float *result)

cublasStatus_t cublasDasum(cubl

asHandle_t handle, int n,

const double *x, int incx, double *result)

cublasStatus_t cublasScasum(cub

lasHandle_t handle, int n,

const cuComplex *x, int incx, float =*result)

cublasStatus_t cublasDzasum(cub

lasHandle_t handle, int n,

const cuDoubleComplex *x, int incx, double *result)

This function computes the sum of the absolute values of the elements of vector x. Hence,
the result is Y ;" | ([Im(x[j])| + |Re(x[j])|) where j = 1+ (i — 1) * incx. Notice that the

last equation reflects 1-based indexin

g used for compatibility with Fortran.

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

n input | number of elements in the vector x.

X device input | <type> vector with n elements.

incx input | stride between consecutive elements of x.
result host or device | output | the resulting sum, which is 0.0 if n, incx<=0.

The possible error values returned by this function and their meanings are listed below.

Error Values

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_ALLOC_FAILED

the reduction buffer could not be allocated

CUBLAS_STATUS_ARCH_MISMATCH

the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU

CUDA Toolkit 4.1 CUBLAS Library

PG-05326-041_v01 | 24

http://www.netlib.org/scilib/blass.f
http://www.netlib.org/scilib/blasd.f

Chapter 5. CUBLAS Level-1 Function Reference

For references please refer to:
sasum, dasum, scasum, dzasum

5.4 cublas<t>axpy()

cublasStatus_t cublasSaxpy(cublasHandle_t handle, int n,

const float *alpha,

const float *x, int incx,

float xy, int incy)
cublasStatus_t cublasDaxpy(cublasHandle_t handle, int n,

const double *alpha,

const double *x, int incx,

double *y, int incy)
cublasStatus_t cublasCaxpy(cublasHandle_t handle, int n,

const cuComplex *alpha,

const cuComplex *x, int incx,

cuComplex *xy, int incy)

cublasStatus_t cublasZaxpy(cublasHandle_t handle, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *x, int incx,
cuDoubleComplex *xy, int incy)

This function multiplies the vector x by the scalar a and adds it to the vector y overwriting
the latest vector with the result. Hence, the performed operation is y[j] = o x x[k| 4+ y[J]
fori=1,...,n, k=14 (i —1)*incx and j =14 (i — 1) * incy. Notice that the last two
equations reflect 1-based indexing used for compatibility with Fortran.

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.
alpha host or device | input | <type> scalar used for multiplication.

n input | number of elements in the vector x and y.
b device input | <type> vector with n elements.

incx input | stride between consecutive elements of x.
y device in/out | <type> vector with n elements.

incy input | stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
saxpy, daxpy, caxpy, zaxpy

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 25

http://www.netlib.org/blas/sasum.f
http://www.netlib.org/blas/dasum.f
http://www.netlib.org/blas/scasum.f
http://www.netlib.org/blas/dzasum.f
http://www.netlib.org/blas/saxpy.f
http://www.netlib.org/blas/daxpy.f
http://www.netlib.org/blas/caxpy.f
http://www.netlib.org/blas/zaxpy.f

Chapter 5. CUBLAS Level-1 Function Reference

5.5 cublas<t>copy()

cublasStatus_t cublasScopy(cublasHandle_t handle, int n,

const float *x, int incx,

float xy, int incy)
cublasStatus_t cublasDcopy(cublasHandle_t handle, int n,

const double *x, int incx,

double xy, int incy)
cublasStatus_t cublasCcopy(cublasHandle_t handle, int n,

const cuComplex *xX, int incx,

cuComplex xy, int incy)

cublasStatus_t cublasZcopy(cublasHandle_t handle, int n,
const cuDoubleComplex *x, int incx,
cuDoubleComplex *xy, int incy)

This function copies the vector x into the vector y. Hence, the performed operation is
ylj]=x[k] fori=1,...,n, k=14 (i —1)*incx and j = 1+ (i — 1) *incy. Notice that the
last two equations reflect 1-based indexing used for compatibility with Fortran.

Param. | Memory | In/out | Meaning

handle input | handle to the CUBLAS library context.

n input | number of elements in the vector x and y.
b device input | <type> vector with n elements.

incx input | stride between consecutive elements of x.
y device | output | <type> vector with n elements.

incy input | stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
scopy, dcopy, ccopy, zcopy

5.6 cublas<t>dot()

cublasStatus_t cublasSdot (cublasHandle_t handle, int n,

const float *xX, int incx,
const float *y, int incy,
float *result)

cublasStatus_t cublasDdot (cublasHandle_t handle, int n,

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 26

http://www.netlib.org/blas/scopy.f
http://www.netlib.org/blas/dcopy.f
http://www.netlib.org/blas/ccopy.f
http://www.netlib.org/blas/zcopy.f

cublasStatus_t

cublasStatus_t

cublasStatus_t

cublasStatus_t

Chapter 5. CUBLAS Level-1 Function Reference

const double *x, int
const double *y, int
double xresult)
cublasCdotu(cublasHandle_t handle, int n,
const cuComplex *x, int
const cuComplex *y, int
cuComplex xresult)
cublasCdotc(cublasHandle_t handle, int n,
const cuComplex *x, int
const cuComplex *y, int
cuComplex xresult)

cublasZdotu(cublasHandle_t handle, int n,
const cuDoubleComplex *x, int
const cuDoubleComplex *y, int
cuDoubleComplex *result)

cublasZdotc(cublasHandle_t handle, int n,
const cuDoubleComplex *x, int
const cuDoubleComplex *y, int
cuDoubleComplex *result)

incx,
incy,

incx,
incy,

incx,
incy,

incx,
incy,

incx,
incy,

This function computes the dot product of vectors x and y. Hence, the result is

Yoy (x[k] x y[j]) where k =1+ (i — 1) *incx and j = 1+ (i — 1) *incy. Notice that in the
first equation the conjugate of the element of vector x should be used if the function name
ends in character ‘¢’ and that the last two equations reflect 1-based indexing used for
compatibility with Fortran.

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

n input | number of elements in the vectors x and y.
b device input | <type> vector with n elements.

incx input | stride between consecutive elements of x.
y device input | <type> vector with n elements.

incy input | stride between consecutive elements of y.

result host or device | output | the resulting dot product, which is 0.0 if n<=0.

The possible error values returned by this function and their meanings are listed below.

Error Values

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_ALLOC_FAILED

the reduction buffer could not be allocated

CUBLAS_STATUS_ARCH_MISMATCH

the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU

For references please refer to:
sdot, ddot, cdotu, cdotc, zdotu, zdotc

CUDA Toolkit 4.1 CUBLAS Library

PG-05326-041_v01 | 27

http://www.netlib.org/blas/sdot.f
http://www.netlib.org/blas/ddot.f
http://www.netlib.org/blas/cdotu.f
http://www.netlib.org/blas/cdotc.f
http://www.netlib.org/blas/zdotu.f
http://www.netlib.org/blas/zdotc.f

Chapter 5. CUBLAS Level-1 Function Reference

5.7 cublas<t>nrm2()

cublasStatus_t cublasSnrm2(cublasHandle_t handle, int n,

const float *x, int incx, float *result)
cublasStatus_t cublasDnrm2(cublasHandle_t handle, int n,

const double *x, int incx, double *result)
cublasStatus_t cublasScnrm2(cublasHandle_t handle, int n,

const cuComplex *x, int incx, float =*result)

cublasStatus_t cublasDznrm2(cublasHandle_t handle, int n,
const cuDoubleComplex *x, int incx, double *result)

This function computes the Euclidean norm of the vector x. The code uses a multiphase
model of accumulation to avoid intermediate underflow and overflow, with the result being
equivalent to />, (X[4] x x[j]) where j = 1+ (i — 1) x incx in exact arithmetic. Notice
that the last equation reflects 1-based indexing used for compatibility with Fortran.

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

n input | number of elements in the vector x.

b device input | <type> vector with n elements.

incx input | stride between consecutive elements of x.
result host or device | output | the resulting norm, which is 0.0 if n,incx<=0.

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_ALLOC_FAILED the reduction buffer could not be allocated
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
snrm?2, sntm2, dnrm2, dnrm2, scnrm?2, scnrm?2, dznrm?2

5.8 cublas<t>rot()

cublasStatus_t cublasSrot (cublasHandle_t handle, int n,
float *x, int incx,
float *y, int incy,

const float *c, const float *s)
cublasStatus_t cublasDrot (cublasHandle_t handle, int n,

double *x, int incx,

double *y, int incy,

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 28

http://www.netlib.org/blas/snrm2.f
http://www.netlib.org/slatec/lin/snrm2.f
http://www.netlib.org/blas/dnrm2.f
http://www.netlib.org/slatec/lin/dnrm2.f
http://www.netlib.org/blas/scnrm2.f
http://www.netlib.org/slatec/lin/scnrm2.f
http://www.netlib.org/blas/dznrm2.f

cublasStatus_t

cublasStatus_t

cublasStatus_t

cublasStatus_t

Chapter 5. CUBLAS Level-1 Function Reference

const double *c, const double

cublasCrot (cublasHandle_t handle, int n,
cuComplex *x, int incx,
cuComplex *y, int incy,
const float *c, const cuComplex

cublasCsrot (cublasHandle_t handle, int n,
cuComplex *x, int incx,
cuComplex *y, int incy,
const float *c, const float

cublasZrot (cublasHandle_t handle, int n,
cuDoubleComplex *x, int incx,
cuDoubleComplex *y, int incy,

*s)

*s)

*s)

const double *c, const cuDoubleComplex *s)

cublasZdrot (cublasHandle_t handle, int n,
cuDoubleComplex *x, int incx,
cuDoubleComplex *y, int incy,
const double *c, const double

This function applies Givens rotation matrix

=(=¢)

to vectors x and y.

*s)

Hence, the result is x[k] = ¢ x x[k] + s x y[j] and y[j] = —s x x[k] 4+ ¢ X y[j] where
k=1+(i—1)xincx and j = 1+ (i — 1) x incy. Notice that the last two equations reflect
1-based indexing used for compatibility with Fortran.

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

n input | number of elements in the vectors x and y.
X device in/out | <type> vector with n elements.

incx input | stride between consecutive elements of x.
y device in/out | <type> vector with n elements.

incy input | stride between consecutive elements of y.
C host or device | input | cosine element of the rotation matrix.

S host or device | input | sine element of the rotation matrix.

The possible error values returned by this function and their meanings are listed below.

Error Values

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

CUBLAS_STATUS_ARCH_MISMATCH

the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU

CUDA Toolkit 4.1 CUBLAS Library

PG-05326-041_v01 | 29

Chapter 5. CUBLAS Level-1 Function Reference

For references please refer to:
srot, drot, crot, csrot, zrot, zdrot

5.9 cublas<t>rotg()

cublasStatus_t cublasSrotg(cublasHandle_t handle,

float *a, float *b,

float *c, float *3)
cublasStatus_t cublasDrotg(cublasHandle_t handle,

double *a, double *b,

double *c, double *s)
cublasStatus_t cublasCrotg(cublasHandle_t handle,

cuComplex *a, cuComplex *b,

float *c, cuComplex *s)

cublasStatus_t cublasZrotg(cublasHandle_t handle,
cuDoubleComplex *a, cuDoubleComplex *b,
double *c, cuDoubleComplex *s)

This function constructs the Givens rotation matrix

=(=¢)

that zeros out the second entry of a 2 x 1 vector (a,b)?.

Then, for real numbers we can write

(=)0G)=(5)

where ¢ + s2 = 1 and r = a? + b%. The parameters a and b are overwritten with r and z,
respectively. The value of z is such that ¢ and s may be recovered using the following rules:

(V1—222) if |z] <1
(¢,s) =< (0.0,1.0) if [z| =1
(1/2,V/1—=2%) if|z| > 1

For complex numbers we can write

(=)0G)=(5)

where ¢ + (5 x s) = 1.and r= o X |(a,b)T || with ||(a,b)T||2 = \/]a|? + [b]? for a # 0
and r = b for a = 0. Finally, the parameter a is overwritten with r on exit.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 30

http://www.netlib.org/blas/srot.f
http://www.netlib.org/blas/drot.f
http://netlib.org/lapack/explore-html/crot.f.html
http://www.netlib.org/blas/csrot.f
http://netlib.org/lapack/explore-html/zrot.f.html
http://www.netlib.org/blas/zdrot.f

Chapter 5. CUBLAS Level-1 Function Reference

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.
a host or device | in/out | <type> scalar that is overwritten with 7.
b host or device | in/out | <type> scalar that is overwritten with z.
c host or device | output | cosine element of the rotation matrix.

S host or device | output | sine element of the rotation matrix.

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
srotg, drotg, crotg, zrotg

5.10 cublas<t>rotm()

cublasStatus_t cublasSrotm(cublasHandle_t handle, int n, float *x, int incx,
float *y, int incy, const float* param)

cublasStatus_t cublasDrotm(cublasHandle_t handle, int n, double *x, int incx,
double *y, int incy, const double* param)

This function applies the modified Givens transformation
hi1 hio >
o=
< ho1 haoy

Hence, the result is x[k] = hi1 X x[k] + h12 X y[j] and y[j] = ho1 X x[k] + hoa X y[j] where
k=1+(i—1)xincx and j = 1+ (i — 1) x incy. Notice that the last two equations reflect
1-based indexing used for compatibility with Fortran.

to vectors x and y.

The elements h11, ha1, h12 and heg of 2 x 2 matrix H are stored in param[1], param[2],
param[3] and param[4], respectively. The flag = param[0] defines the following
predefined values for the matrix H entries
flag=-1.0 | flag= 0.0 | flag= 1.0 | flag=-2.0
hi11 his 1.0 hio hi11 1.0 1.0 0.0
< ho1 hos > (hor 1.0) (—1.0 hoo) (0.0 1.0)

Notice that the values -1.0, 0.0 and 1.0 implied by the flag are not stored in param.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 31

http://www.netlib.org/blas/srotg.f
http://www.netlib.org/blas/drotg.f
http://www.netlib.org/blas/crotg.f
http://www.netlib.org/blas/zrotg.f

Chapter 5. CUBLAS Level-1 Function Reference

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

n input | number of elements in the vectors x and y.

X device in/out | <type> vector with n elements.

incx input | stride between consecutive elements of x.

y device in/out | <type> vector with n elements.

incy input | stride between consecutive elements of y.

param | host or device | input | <type> vector of 5 elements, where param[0]
and param[1-4] contain the flag and matrix H.

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
srotm, drotm

5.11 cublas<t>rotmg()

cublasStatus_t cublasSrotmg(cublasHandle_t handle, float *dl, float *d2,
float *x1, const float =*yl, float *param)

cublasStatus_t cublasDrotmg(cublasHandle_t handle, double *dl, double *d2,
double *x1, const double *yl, double *param)

This function constructs the modified Givens transformation
hi1 hia)
H p—
< ho1 haa
that zeros out the second entry of a 2 x 1 vector (vVdl * z1,vd2 * y1)T.

The flag = param[0] defines the following predefined values for the matrix H entries
flag=-1.0 | flag= 0.0 | flag= 1.0 | £lag=-2.0

hi1 hio 1.0 his hi1 1.0 1.0 0.0
hot hoo hor 1.0 —1.0 hoo 0.0 1.0

Notice that the values -1.0, 0.0 and 1.0 implied by the flag are not stored in param.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 32

http://www.netlib.org/blas/srotm.f
http://www.netlib.org/blas/drotm.f

Chapter 5. CUBLAS Level-1 Function Reference

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

dl host or device | in/out | <type> scalar that is overwritten on exit.

d2 host or device | in/out | <type> scalar that is overwritten on exit.

x1 host or device | in/out | <type> scalar that is overwritten on exit.

vl host or device | input | <type> scalar.

param | host or device | output | <type> vector of 5 elements, where param[0]
and param[1-4] contain the flag and matrix H.

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
srotmg, drotmg

5.12 cublas<t>scal()

cublasStatus_t cublasSscal (cublasHandle_t handle, int n,

const float *alpha,
float *x, int incx)
cublasStatus_t cublasDscal (cublasHandle_t handle, int n,
const double *alpha,
double *x, int incx)
cublasStatus_t cublasCscal (cublasHandle_t handle, int n,
const cuComplex *alpha,
cuComplex *x, int incx)
cublasStatus_t cublasCsscal (cublasHandle_t handle, int n,
const float *alpha,
cuComplex *x, int incx)

cublasStatus_t cublasZscal (cublasHandle_t handle, int n,
const cuDoubleComplex *alpha,
cuDoubleComplex *x, int incx)

cublasStatus_t cublasZdscal(cublasHandle_t handle, int n,
const double *alpha,
cuDoubleComplex *x, int incx)

This function scales the vector x by the scalar o and overwrites it with the result. Hence,
the performed operation is x[j] = a x x[j] for i =1,...,nand j =1+ (i — 1) * incx. Notice
that the last two equations reflect 1-based indexing used for compatibility with Fortran.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 33

http://www.netlib.org/blas/srotmg.f
http://www.netlib.org/blas/drotmg.f

Chapter 5. CUBLAS Level-1 Function Reference

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.
alpha host or device | input | <type> scalar used for multiplication.

n input | number of elements in the vector x.

b device in/out | <type> vector with n elements.

incx input | stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Error Values

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_ARCH_MISMATCH

the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU

For references please refer to:
sscal, dscal, csscal, cscal, zdscal, zscal

5.13 cublas<t>swap()

cublasStatus_t cublasSswap(cublasHandle_t handle, int n, float *X,
int incx, float *xy, int incy)

cublasStatus_t cublasDswap(cublasHandle_t handle, int n, double *X,
int incx, double xy, int incy)

cublasStatus_t cublasCswap(cublasHandle_t handle, int n, cuComplex *X,
int incx, cuComplex *xy, int incy)

cublasStatus_t cublasZswap(cublasHandle_t handle, int n, cuDoubleComplex *x,

int

incx, cuDoubleComplex *y, int incy)

This function interchanges the elements of vector x and y. Hence, the performed operation
isy[jl e x[k]fori=1,...,n, k=14 (i — 1) *incx and j = 1+ (i — 1) x incy. Notice that
the last two equations reflect 1-based indexing used for compatibility with Fortran.

Param. | Memory | In/out | Meaning

handle input | handle to the CUBLAS library context.

n input | number of elements in the vector x and y.
X device | in/out | <type> vector with n elements.

incx input | stride between consecutive elements of x.
y device | in/out | <type> vector with n elements.

incy input | stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

CUDA Toolkit 4.1 CUBLAS Library

PG-05326-041_v01 | 34

http://www.netlib.org/blas/sscal.f
http://www.netlib.org/blas/dscal.f
http://www.netlib.org/blas/csscal.f
http://www.netlib.org/blas/cscal.f
http://www.netlib.org/blas/zdscal.f
http://www.netlib.org/blas/zscal.f

Chapter 5. CUBLAS Level-1 Function Reference

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
sswap, dswap, cswap, zswap

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 35

http://www.netlib.org/blas/sswap.f
http://www.netlib.org/blas/dswap.f
http://www.netlib.org/blas/cswap.f
http://www.netlib.org/blas/zswap.f

Chapter 6
CUBLAS Level-2 Function Reference

In this chapter we describe the Level-2 Basic Linear Algebra Subprograms (BLAS2)
functions that perform matrix-vector operations.

6.1 cublas<t>gbmv()

cublasStatus_t cublasSgbmv(cublasHandle_t handle, cublasOperation_t trans,

int m, int n, int k1, int ku,
const float *alpha,
const float *A, int 1lda,
const float *x, int incx,
const float *beta,
float xy, int incy)

cublasStatus_t cublasDgbmv(cublasHandle_t handle, cublasOperation_t trans,

int m, int n, int k1, int ku,
const double *alpha,

const double *A, int 1lda,
const double *x, int incx,
const double *beta,

double

xy, int incy)

cublasStatus_t cublasCgbmv(cublasHandle_t handle, cublasOperation_t trans,
int m, int n, int k1, int ku,

const cuComplex *alpha,
const cuComplex *A, int 1lda,
const cuComplex *x, int incx,
const cuComplex *beta,

cuComplex xy, int incy)
cublasStatus_t cublasZgbmv(cublasHandle_t handle, cublasOperation_t tramns,
int m, int n, int k1, int ku,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *x, int incx,

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 36

Chapter 6. CUBLAS Level-2 Function Reference

const cuDoubleComplex *beta,
cuDoubleComplex *y, int incy)

This function performs the banded matrix-vector multiplication

y = aop(A)x + By

where A is a m x n banded matrix with kI subdiagonals and ku superdiagonals, x and y
are vectors, and « and [are scalars. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A) =< AT if transa == CUBLAS_OP_T
AH if transa == CUBLAS_0OP_C

The banded matrix A is stored column by column, with the main diagonal stored in row
ku + 1 (starting in first position), the first superdiagonal stored in row ku (starting in
second position), the first subdiagonal stored in row ku + 2 (starting in first position), etc.
So that in general, the element A(i, j) is stored in the memory location A(ku+1+i-j,j) for
j=1,...,nand ¢ € [max(1,j — ku), min(m, j + kl)]. Also, the elements in the array A
that do not conceptually correspond to the elements in the banded matrix (the top left

ku x ku and bottom right kl x kl triangles) are not referenced.

Param. Memory In/out | Meaning
handle input | handle to the CUBLAS library context.
trans input | operation op(A) that is non- or (conj.) transpose.
m input | number of rows of matrix A.
n input | number of columns of matrix A.
kl input | number of subdiagonals of matrix A.
ku input | number of superdiagonals of matrix A.
alpha host or device | input | <type> scalar used for multiplication.
A device input | <type> array of dimension 1da X n
with 1da > kl+ku+1.
lda input | leading dimension of two-dimensional array used
to store matrix A.
X device input | <type> vector with n elements if
transa == CUBLAS_OP_N and m elements otherwise.
incx input | stride between consecutive elements of x.
beta host or device | input | <type> scalar used for multiplication, if beta==0
then y does not have to be a valid input.
y device in/out | <type> vector with m elements if
transa == CUBLAS_OP_N and n elements otherwise.
incy input | stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 37

Error Values

Meaning

Chapter 6. CUBLAS Level-2 Function Reference

CUBLAS_STATUS_SUCCESS

the operat

ion completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

the param

eters m,n,k1,ku<0 or incx,incy=0

CUBLAS_STATUS_ARCH_MISMATCH

the device

does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU

For references please refer to:
sgbmv, dgbmv, cgbmv, zgbmv

6.2 cublas<t>gemv()

cublasStatus_t

cublasStatus_t

cublasStatus_t

cublasStatus_t

cublasSgemv (cublasHandle_t

int m, int n,
const float
const float
const float
const float
float

int m, int n,
const double
const double
const double
const double
double

int m, int n,
const cuComplex
const cuComplex
const cuComplex
const cuComplex
cuComplex

int m, int n,

const cuDoubleC
const cuDoubleC
const cuDoubleC
const cuDoubleC
cuDoubleComplex

handle, cublasOperation_t tramns,

*alpha,
*A, int 1lda,
*xX, int incx,
*beta,

*xy, int incy)

cublasDgemv (cublasHandle_t handle, cublasOperation_t trans,

*alpha,
*A, int lda,
*x, int incx,
*beta,

*xy, int incy)

cublasCgemv (cublasHandle_t handle, cublasOperation_t trans,

*alpha,
*A, int lda,
*x, int incx,
*beta,

xy, int incy)

cublasZgemv (cublasHandle_t handle, cublasOperation_t trans,

omplex *alpha,
omplex *A, int lda,
omplex *x, int incx,
omplex *beta,
xy, int incy)

This function performs the matrix-vector multiplication

CUDA Toolkit 4.1 CUBLAS Library

y = aop(A)x

+ By

PG-05326-041_v01 | 38

http://www.netlib.org/blas/sgbmv.f
http://www.netlib.org/blas/dgbmv.f
http://www.netlib.org/blas/cgbmv.f
http://www.netlib.org/blas/zgbmv.f

Chapter 6. CUBLAS Level-2 Function Reference

where A is a m X n matrix stored in column-major format, x and y are vectors, and « and
[are scalars. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A) = ¢ AT if transa == CUBLAS_QOP_T
AH if transa == CUBLAS_OP_C

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

trans input | operation op(A) that is non- or (conj.) transpose.
m input | number of rows of matrix A.

n input | number of columns of matrix A.

alpha host or device | input | <type> scalar used for multiplication.

A device input | <type> array of dimension 1da X n

with 1da > max(1,m) if transa==CUBLAS_OP_N
input | and 1da x m with 1da > max(1,n) otherwise.

lda input | leading dimension of two-dimensional array
used to store matrix A.

b device input | <type> vector with n elements if

input | transa==CUBLAS_OP_N and m elements otherwise.
incx input | stride between consecutive elements of x.
beta host or device | input | <type> scalar used for multiplication, if beta==0

input | then y does not have to be a valid input.
y device input | <type> vector with m elements if

in/out | transa==CUBLAS_OP_N and n elements otherwise.
incy input | stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0 or incx,incy=0
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
sgemv, dgemv, cgemv, zgemv

6.3 cublas<t>ger()

cublasStatus_t cublasSger (cublasHandle_t handle, int m, int n,
const float *alpha,

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 39

http://www.netlib.org/blas/sgemv.f
http://www.netlib.org/blas/dgemv.f
http://www.netlib.org/blas/cgemv.f
http://www.netlib.org/blas/zgemv.f

cublasStatus_t

cublasStatus_t

cublasStatus_t

cublasStatus_t

cublasStatus_t

Chapter 6. CUBLAS Level-2 Function Reference

const float *x, int
const float *y, int
float *A, int 1lda)
cublasDger (cublasHandle_t handle, int m,
const double *alpha,
const double *x, int
const double *y, int
double *A, int 1da)
cublasCgeru(cublasHandle_t handle, int m,
const cuComplex *alpha,
const cuComplex *x, int
const cuComplex *y, int
cuComplex xA, int 1lda)

cublasCgerc(cublasHandle_t handle, int m,
const cuComplex *alpha,
const cuComplex *x, int
const cuComplex *y, int
cuComplex xA, int lda)

cublasZgeru(cublasHandle_t handle, int m,
const cuDoubleComplex *alpha,
const cuDoubleComplex *x, int
const cuDoubleComplex *y, int
cuDoubleComplex *A, int lda)

cublasZgerc(cublasHandle_t handle, int m,
const cuDoubleComplex *alpha,
const cuDoubleComplex *x, int
const cuDoubleComplex *y, int
cuDoubleComplex *A, int 1lda)

This function performs the rank-1 update

A axyl + A
B axy? + A if gerc() is called

if ger () ,geru() is called

incx,
incy,

int n,

incx,
incy,

int n,

incx,
incy,

int n,

incx,
incy,

int n,

incx,
incy,

int n,

incx,
incy,

where A is a m X n matrix stored in column-major format, x and y are vectors, and « is a

scalar.

CUDA Toolkit 4.1 CUBLAS Library

PG-05326-041_v01 | 40

Chapter 6. CUBLAS Level-2 Function Reference

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

m input | number of rows of matrix A.

n input | number of columns of matrix A.

alpha host or device | input | <type> scalar used for multiplication.

X device input | <type> vector with m elements.

incx input | stride between consecutive elements of x.

y device input | <type> vector with n elements.

incy input | stride between consecutive elements of y.

A device in/out | <type> array of dimension 1lda X n
with 1da > max(1,m).

lda input | leading dimension of two-dimensional array used
to store matrix A.

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0 or incx,incy=0
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
sger, dger, cgeru, cgerc, zgeru, zgerc

6.4 cublas<t>sbmv()

cublasStatus_t cublasSsbmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, int k, const float *alpha,
const float *A, int 1lda,
const float *x, int incx,
const float #*beta, float *y, int incy)
cublasStatus_t cublasDsbmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, int k, const double *alpha,
const double *xA, int 1lda,
const double *x, int incx,
const double *beta, double *y, int incy)

This function performs the symmetric banded matrix-vector multiplication
y = aAx + By

where A is a n X n symmetric banded matrix with k subdiagonals and superdiagonals, x
and y are vectors, and « and (3 are scalars.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 41

http://www.netlib.org/blas/sger.f
http://www.netlib.org/blas/dger.f
http://www.netlib.org/blas/cgeru.f
http://www.netlib.org/blas/cgerc.f
http://www.netlib.org/blas/zgeru.f
http://www.netlib.org/blas/zgerc.f

Chapter 6. CUBLAS Level-2 Function Reference

If uplo == CUBLAS_FILL_MODE_LOWER then the symmetric banded matrix A is stored
column by column, with the main diagonal of the matrix stored in row 1, the first
subdiagonal in row 2 (starting at first position), the second subdiagonal in row 3 (starting
at first position), etc. So that in general, the element A(i, j) is stored in the memory
location A(1+i-j,j) for j =1,...,n and i € [j,min(m,j + k)]. Also, the elements in the
array A that do not conceptually correspond to the elements in the banded matrix (the
bottom right k x k triangle) are not referenced.

If uplo == CUBLAS_FILL_MODE_UPPER then the symmetric banded matrix A is stored
column by column, with the main diagonal of the matrix stored in row k+1, the first
superdiagonal in row k (starting at second position), the second superdiagonal in row k-1
(starting at third position), etc. So that in general, the element A(i, j) is stored in the
memory location A(1+k+i-j,j) for j =1,...,n and i € [max(1,j — k), j]. Also, the
elements in the array A that do not conceptually correspond to the elements in the banded
matrix (the top left k& x k triangle) are not referenced.

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

uplo input | indicates if matrix A lower or upper part
is stored, the other symmetric part is not referen-
ced and is inferred from the stored elements.

n input | number of rows and columns of matrix A.

k input | number of sub- and super-diagonals of matrix A.

alpha host or device | input | <type> scalar used for multiplication.

A device input | <type> array of dimension 1da X n
with 1da > k+1.

lda input | leading dimension of two-dimensional array used
to store matrix A.

b device input | <type> vector with n elements.

incx input | stride between consecutive elements of x.

beta host or device | input | <type> scalar used for multiplication, if beta==0
then y does not have to be a valid input.

y device in/out | <type> vector with n elements.

incy input | stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0 or incx,incy=0
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
ssbmv, dsbmv

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 42

http://www.netlib.org/blas/ssbmv.f
http://www.netlib.org/blas/dsbmv.f

Chapter 6. CUBLAS Level-2 Function Reference

6.5 cublas<t>spmv()

cublasStatus_t cublasSspmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const float =*alpha, const float *AP,
const float *x, int incx, const float x*beta,
float *y, int incy)

cublasStatus_t cublasDspmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const double *alpha, const double *AP,
const double *x, int incx, const double x*beta,
double *y, int incy)

This function performs the symmetric packed matrix-vector multiplication
y = aAx + By

where A is a n X n symmetric matrix stored in packed format, x and y are vectors, and «
and 3 are scalars.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the

symmetric matrix A are packed together column by column without gaps, so that the

element A(7, j) is stored in the memory location AP [i+((2*n-j+1)*j)/2] for j=1,...,n
n(n+1)

and i > j. Consequently, the packed format requires only == elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of
the symmetric matrix A are packed together column by column without gaps, so that the
element A(3, j) is stored in the memory location AP[i+(j*(j+1))/2] for j =1,...,n and

i < j. Consequently, the packed format requires only w elements for storage.

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

uplo input | indicates if matrix A lower or upper part
is stored, the other symmetric part is not referen-
ced and is inferred from the stored elements.

n input | number of rows and columns of matrix A.

k input | number of sub- and super-diagonals of matrix A.

alpha host or device | input | <type> scalar used for multiplication.

AP device input | <type> array with A stored in packed format.

X device input | <type> vector with n elements.

incx input | stride between consecutive elements of x.

beta host or device | input | <type> scalar used for multiplication, if beta==0
then y does not have to be a valid input.

y device input | <type> vector with n elements.

incy input | stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 43

Chapter 6. CUBLAS Level-2 Function Reference

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx,incy=0
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
sspmv, dspmv

6.6 cublas<t>spr()

cublasStatus_t cublasSspr(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const float *alpha,
const float *x, int incx, float *AP)
cublasStatus_t cublasDspr(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const double *alpha,
const double *x, int incx, double *AP)

This function performs the packed symmetric rank-1 update
A=axxl + A

where A is a n X n symmetric matrix stored in packed format, x is a vector, and « is a
scalar.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the
symmetric matrix A are packed together column by column without gaps, so that the

element A(7, j) is stored in the memory location AP[i+((2*n-j+1)*j)/2] for j=1,...,n
n(n+1)
2

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of
the symmetric matrix A are packed together column by column without gaps, so that the
element A(i, j) is stored in the memory location AP[i+(j*(j+1))/2] for j =1,...,n and

and ¢ > j. Consequently, the packed format requires only elements for storage.

1 < j. Consequently, the packed format requires only w elements for storage.
Param. Memory In/out | Meaning
handle input | handle to the CUBLAS library context.
uplo input | indicates if matrix A lower or upper part

is stored, the other symmetric part is not referen-
ced and is inferred from the stored elements.

n input | number of rows and columns of matrix A.
alpha host or device | input | <type> scalar used for multiplication.

X device input | <type> vector with n elements.

incx input | stride between consecutive elements of x.

AP device in/out | <type> array with A stored in packed format.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 44

http://www.netlib.org/blas/sspmv.f
http://www.netlib.org/blas/dspmv.f

Chapter 6. CUBLAS Level-2 Function Reference

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx,incy=0
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
sspr, dspr

6.7 cublas<t>spr2()

cublasStatus_t cublasSspr2(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const float *alpha,
const float *x, int incx,
const float *y, int incy, float *AP)
cublasStatus_t cublasDspr2(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const double *alpha,
const double *x, int incx,
const double *y, int incy, double *AP)

This function performs the packed symmetric rank-2 update
A=a(xy" +yx')+A

where A is a n X n symmetric matrix stored in packed format, x and y are vectors, and «
is a scalar.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the
symmetric matrix A are packed together column by column without gaps, so that the

element A(i, j) is stored in the memory location AP [i+((2*n-j+1)*j)/2] for j=1,...,n
n(n+1)
2

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of
the symmetric matrix A are packed together column by column without gaps, so that the
element A(4,j) is stored in the memory location AP [i+(j*(j+1))/2] for j =1,...,n and

1 < j. Consequently, the packed format requires only w

and ¢ > j. Consequently, the packed format requires only elements for storage.

elements for storage.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 45

http://www.netlib.org/blas/sspr.f
http://www.netlib.org/blas/dspr.f

Chapter 6. CUBLAS Level-2 Function Reference

Param. Memory In/out | Meaning
handle input | handle to the CUBLAS library context.
uplo input | indicates if matrix A lower or upper part

is stored, the other symmetric part is not referen-
ced and is inferred from the stored elements.

n input | number of rows and columns of matrix A.
alpha host or device | input | <type> scalar used for multiplication.

X device input | <type> vector with n elements.

incx input | stride between consecutive elements of x.

y device input | <type> vector with n elements.

incy input | stride between consecutive elements of y.

AP device in/out | <type> array with A stored in packed format.

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx,incy=0
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
sspr2, dspr2

6.8 cublas<t>symv()

cublasStatus_t cublasSsymv(cublasHandle_t handle, cublasFillMode_t

int n, const float

const float *A, int 1lda,
const float *x, int incx,

float *y, int incy)

cublasStatus_t cublasDsymv(cublasHandle_t handle, cublasFillMode_t
int n, const double *alpha,
const double *xA, int 1da,
const double *x, int incx, const double

double *y, int incy)

This function performs the symmetric matrix-vector multiplication

y = adx + By

const float

uplo,

*beta,

uplo,

*beta,

where A is a n X n symmetric matrix stored in lower or upper mode, x and y are vectors,

and « and [are scalars.

CUDA Toolkit 4.1 CUBLAS Library

PG-05326-041_v01 | 46

http://www.netlib.org/blas/sspr2.f
http://www.netlib.org/blas/dspr2.f

Chapter 6. CUBLAS Level-2 Function Reference

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

uplo input | indicates if matrix A lower or upper part
is stored, the other symmetric part is not referen-
ced and is inferred from the stored elements.

n input | number of rows and columns of matrix A.

alpha host or device | input | <type> scalar used for multiplication.

A device input | <type> array of dimension 1lda x n
with 1da > max(1,n).

lda input | leading dimension of two-dimensional array used
to store matrix A.

X device input | <type> vector with n elements.

incx input | stride between consecutive elements of x.

beta host or device | input | <type> scalar used for multiplication, if beta==0
then y does not have to be a valid input.

y device in/out | <type> vector with n elements.

incy input | stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Values

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

the parameters n<0 or incx,incy=0

CUBLAS_STATUS_ARCH_MISMATCH

the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:

ssymv, dsymv

6.9 cublas<t>syr()

cublasStatus_t cublasSsyr(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const float *alpha,

const

float *x, int incx, float *A, int 1lda)

cublasStatus_t cublasDsyr(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const double *alpha,

const

double *x, int incx, double *A, int 1da)

This function performs the symmetric rank-1 update

A=oaxxl + A

where A is a n X n symmetric matrix stored in column-major format, x is a vector, and «

is a scalar.

CUDA Toolkit 4.1 CUBLAS Library

PG-05326-041_v01 | 47

http://www.netlib.org/blas/ssymv.f
http://www.netlib.org/blas/dsymv.f

Chapter 6. CUBLAS Level-2 Function Reference

Param. Memory In/out | Meaning
handle input | handle to the CUBLAS library context.
uplo input | indicates if matrix A lower or upper part,

is stored, the other symmetric part is not referen-
input | ced and is inferred from the stored elements.

n input | number of rows and columns of matrix A.
alpha host or device | input | <type> scalar used for multiplication.
X device input | <type> vector with n elements.
incx input | stride between consecutive elements of x.
A device in/out | <type> array of dimensions 1lda X n,
with 1da > max(1,n).
lda input | leading dimension of two-dimensional array used

to store matrix A.

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx=0
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
ssyr, dsyr

6.10 cublas<t>syr2()

cublasStatus_t cublasSsyr2(cublasHandle_t handle, cublasFillMode_t uplo, int n,
const float =*alpha, const float *x, int incx,
const float *y, int incy, float *A, int 1lda)

cublasStatus_t cublasDsyr2(cublasHandle_t handle, cublasFillMode_t uplo, int n,
const double *alpha, const double *x, int incx,
const double *y, int incy, double *A, int 1lda)

This function performs the symmetric rank-2 update
A=a(xy" +yx')+A

where A is a n X n symmetric matrix stored in column-major format, x and y are vectors,
and « is a scalar.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 48

http://www.netlib.org/blas/ssyr.f
http://www.netlib.org/blas/dsyr.f

Chapter 6. CUBLAS Level-2 Function Reference

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

uplo input | indicates if matrix A lower or upper part
is stored, the other symmetric part is not referen-
ced and is inferred from the stored elements.

n input | number of rows and columns of matrix A.

alpha host or device | input | <type> scalar used for multiplication.

X device input | <type> vector with n elements.

incx input | stride between consecutive elements of x.

y device input | <type> vector with n elements.

incy input | stride between consecutive elements of y.

A device in/out | <type> array of dimensions 1lda X n,
with 1da > max(1,n).

lda input | leading dimension of two-dimensional array used
to store matrix A.

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx,incy=0
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references
ssyr2, dsyr2

6.11 cu

please refer to:

blas<t>tbmv()

cublasStatus_t cublasStbmv(cublasHandle_t handle, cublasFillMode_t uplo,

cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const float *A, int 1lda,
float *x, int incx)

cublasStatus_t cublasDtbmv(cublasHandle_t handle, cublasFillMode_t uplo,

cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const double *A, int 1lda,
double *x, int incx)

cublasStatus_t cublasCtbmv(cublasHandle_t handle, cublasFillMode_t uplo,

cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const cuComplex *A, int 1lda,
cuComplex xx, int incx)

cublasStatus_t cublasZtbmv(cublasHandle_t handle, cublasFillMode_t uplo,

cublasOperation_t trans, cublasDiagType_t diag,

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 49

http://www.netlib.org/blas/ssyr2.f
http://www.netlib.org/blas/dsyr2.f

Chapter 6. CUBLAS Level-2 Function Reference

int n, int k, const cuDoubleComplex *A, int lda,
cuDoubleComplex *x, int incx)

This function performs the triangular banded matrix-vector multiplication
x = op(A)x

where A is a triangular banded matrix, and x is a vector. Also, for matrix A

A if trans == CUBLAS_OP_N
op(A) = ¢ AT if trans == CUBLAS_OP_T
AH if trans == CUBLAS_OP_C

If uplo == CUBLAS_FILL_MODE_LOWER then the triangular banded matrix A is stored
column by column, with the main diagonal of the matrix stored in row 1, the first
subdiagonal in row 2 (starting at first position), the second subdiagonal in row 3 (starting
at first position), etc. So that in general, the element A(3, j) is stored in the memory
location A(1+i-j,j) for j=1,...,n and i € [j,min(m, j + k)]. Also, the elements in the
array A that do not conceptually correspond to the elements in the banded matrix (the
bottom right k x k triangle) are not referenced.

If uplo == CUBLAS_FILL_MODE_UPPER then the triangular banded matrix A is stored
column by column, with the main diagonal of the matrix stored in row k+1, the first
superdiagonal in row k (starting at second position), the second superdiagonal in row k-1
(starting at third position), etc. So that in general, the element A(i, j) is stored in the
memory location A(1+k+i-j,j) for j =1,...,n and ¢ € [max(1,j — k), j]. Also, the
elements in the array A that do not conceptually correspond to the elements in the banded
matrix (the top left k x k triangle) are not referenced.

Param. | Memory | In/out | Meaning

handle input | handle to the CUBLAS library context.

uplo input | indicates if matrix A lower or upper part

is stored, the other part is not referen-

ced and is inferred from the stored elements.
trans input | operation op(A) that is non- or (conj.) transpose.
diag input | indicates if the elements on the main diagonal of
matrix A are unity and should not be accessed.

n number of rows and columns of matrix A.

k input | number of sub- and super-diagonals of matrix A.

A device input | <type> array of dimension 1da X n,
with 1da > k+1.

Ida input | leading dimension of two-dimensional array used
to store matrix A.

b device | in/out | <type> vector with n elements.

incx input | stride between consecutive elements of x.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 50

Chapter 6. CUBLAS Level-2 Function Reference

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0 or incx=0
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_ALLOC_FAILED the allocation of internal scratch memory failed
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
stbmv, dtbmv, ctbmv, ztbmv

6.12 cublas<t>tbsv()

cublasStatus_t

cublasStatus_t

cublasStatus_t

cublasStatus_t

cublasStbsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const float *A, int 1lda,
float *x, int incx)

cublasDtbsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const double *A, int lda,
double *x, int incx)

cublasCtbsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const cuComplex *A, int 1lda,
cuComplex *x, int incx)

cublasZtbsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const cuDoubleComplex *A, int lda,
cuDoubleComplex *x, int incx)

This function solves the triangular banded linear system with a single right-hand-side

op(A)x=Db

where A is a triangular banded matrix, and x and b are vectors. Also, for matrix A

A if trans == CUBLAS_OP_N
op(A) = ¢ AT if trans == CUBLAS_OP_T
Af if trans == CUBLAS_OP_C

The solution x overwrites the right-hand-sides b on exit.

No test for singularity or near-singularity is included in this function.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 51

http://www.netlib.org/blas/stbmv.f
http://www.netlib.org/blas/dtbmv.f
http://www.netlib.org/blas/ctbmv.f
http://www.netlib.org/blas/ztbmv.f

Chapter 6. CUBLAS Level-2 Function Reference

If uplo == CUBLAS_FILL_MODE_LOWER then the triangular banded matrix A is stored
column by column, with the main diagonal of the matrix stored in row 1, the first
subdiagonal in row 2 (starting at first position), the second subdiagonal in row 3 (starting
at first position), etc. So that in general, the element A(i, j) is stored in the memory
location A(1+i-j,j) for j =1,...,n and i € [j,min(m,j + k)]. Also, the elements in the
array A that do not conceptually correspond to the elements in the banded matrix (the
bottom right k x k triangle) are not referenced.

If uplo == CUBLAS_FILL_MODE_UPPER then the triangular banded matrix A is stored
column by column, with the main diagonal of the matrix stored in row k+1, the first
superdiagonal in row k (starting at second position), the second superdiagonal in row k-1
(starting at third position), etc. So that in general, the element A(i, j) is stored in the
memory location A(1+k+i-j,j) for j =1,...,n and i € [max(1,j — k), j]. Also, the
elements in the array A that do not conceptually correspond to the elements in the banded
matrix (the top left k& x k triangle) are not referenced.

Param. | Memory | In/out | Meaning

handle input | handle to the CUBLAS library context.

uplo input | indicates if matrix A lower or upper part

is stored, the other part is not referen-

ced and is inferred from the stored elements.
trans input | operation op(A) that is non- or (conj.) transpose.
diag input | indicates if the elements on the main diagonal of
matrix A are unity and should not be accessed.

n number of rows and columns of matrix A.

k input | number of sub- and super-diagonals of matrix A.
A device input | <type> array of dimension 1da X n,

with 1da > k+1.

lda leading dimension of two-dimensional array used
to store matrix A.

X device | in/out | <type> vector with n elements.

incx input | stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx=0
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
stbsv, dtbsv, ctbsv, ztbsv

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 52

http://www.netlib.org/blas/stbsv.f
http://www.netlib.org/blas/dtbsv.f
http://www.netlib.org/blas/ctbsv.f
http://www.netlib.org/blas/ztbsv.f

Chapter 6. CUBLAS Level-2 Function Reference

6.13 cublas<t>tpmv()

cublasStatus_t cublasStpmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const float *AP,
float *x, int incx)

cublasStatus_t cublasDtpmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const double *AP,
double *x, int incx)

cublasStatus_t cublasCtpmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuComplex *AP,
cuComplex *x, int incx)

cublasStatus_t cublasZtpmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuDoubleComplex *AP,
cuDoubleComplex *x, int incx)

This function performs the triangular packed matrix-vector multiplication
x = op(A)x

where A is a triangular matrix stored in packed format, and x is a vector. Also, for matrix

A

A if trans == CUBLAS_OP_N
op(A) = ¢ AT if trans == CUBLAS_OP_T
AH if trans == CUBLAS_QOP_C

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the
triangular matrix A are packed together column by column without gaps, so that the
element A(7, j) is stored in the memory location AP[i+((2*n-j+1)*j)/2] for j=1,...,n

(n+1)

and i > j. Consequently, the packed format requires only “ 5 — elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of

the triangular matrix A are packed together column by column without gaps, so that the

element A(7, j) is stored in the memory location AP[i+(j*(j+1))/2] for j =1,...,n and
(n+1)

i < j. Consequently, the packed format requires only nT elements for storage.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 53

Chapter 6. CUBLAS Level-2 Function Reference

Param. | Memory | In/out | Meaning
handle input | handle to the CUBLAS library context.
uplo input | indicates if matrix A lower or upper part
is stored, the other part is not referen-
ced and is inferred from the stored elements.
trans input | operation op(A) that is non- or (conj.) transpose.
diag input | indicates if the elements on the main diagonal of
matrix A are unity and should not be accessed.
n input | number of rows and columns of matrix A.
AP device input | <type> array with A stored in packed format.
X device | in/out | <type> vector with n elements.
incx input | stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Error Values

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx=0
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_ALLOC_FAILED the allocation of internal scratch memory failed

CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
stpmv, dtpmv, ctpmv, ztpmv

6.14 cublas<t>tpsv()

cublasStatus_t

cublasStatus_t

cublasStatus_t

cublasStatus_t

CUDA Toolkit 4.1 CUBLAS Library

cublasStpsv(cublasHandle_t handle, cublasFillMode_t uplo,

cublasOperation_t trans, cublasDiagType_t diag,
int n, const float *AP,
float *x, int incx)

cublasDtpsv(cublasHandle_t handle, cublasFillMode_t uplo,

cublasOperation_t trans, cublasDiagType_t diag,
int n, const double *AP,
double *x, int incx)

cublasCtpsv(cublasHandle_t handle, cublasFillMode_t uplo,

cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuComplex *AP,
cuComplex *x, int incx)

cublasZtpsv(cublasHandle_t handle, cublasFillMode_t uplo,

cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuDoubleComplex *AP,
cuDoubleComplex *x, int incx)

PG-05326-041_v01 | 54

http://www.netlib.org/blas/stpmv.f
http://www.netlib.org/blas/dtpmv.f
http://www.netlib.org/blas/ctpmv.f
http://www.netlib.org/blas/ztpmv.f

Chapter 6. CUBLAS Level-2 Function Reference

This function solves the packed triangular linear system with a single right-hand-side
op(A)x=Db

where A is a triangular matrix stored in packed format, and x and b are vectors. Also, for
matrix A
A if trans == CUBLAS_OP_N
op(A) = ¢ AT if trans == CUBLAS_OP_T

A" if trans == CUBLAS_OP_C
The solution x overwrites the right-hand-sides b on exit.
No test for singularity or near-singularity is included in this function.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the
triangular matrix A are packed together column by column without gaps, so that the
element A(i, j) is stored in the memory location AP [i+((2*n-j+1)*j)/2] for j=1,...,n

and ¢ > j. Consequently, the packed format requires only n(nTH) elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of
the triangular matrix A are packed together column by column without gaps, so that the
element A(i, j) is stored in the memory location AP[i+(j*(j+1))/2] for j =1,...,n and
1 < j. Consequently, the packed format requires only % elements for storage.

Param. | Memory | In/out | Meaning

handle input | handle to the CUBLAS library context.

uplo input | indicates if matrix A lower or upper part
is stored, the other part is not referen-
ced and is inferred from the stored elements.

trans input | operation op(A) that is non- or (conj.) transpose.

diag input | indicates if the elements on the main diagonal of
input | matrix A are unity and should not be accessed.

n input | number of rows and columns of matrix A.

AP device input | <type> array with A stored in packed format.

X device | in/out | <type> vector with n elements.

incx input | stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx=0
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
stpsv, dtpsv, ctpsv, ztpsv

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 55

http://www.netlib.org/blas/stpsv.f
http://www.netlib.org/blas/dtpsv.f
http://www.netlib.org/blas/ctpsv.f
http://www.netlib.org/blas/ztpsv.f

Chapter 6. CUBLAS Level-2 Function Reference

6.15 cublas<t>trmv()

cublasStatus_t cublasStrmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const float *A, int 1lda,
float *x, int incx)

cublasStatus_t cublasDtrmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const double *A, int 1lda,
double *x, int incx)

cublasStatus_t cublasCtrmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuComplex *A, int 1lda,
cuComplex *x, int incx)

cublasStatus_t cublasZtrmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuDoubleComplex *A, int lda,
cuDoubleComplex *x, int incx)

This function performs the triangular matrix-vector multiplication
x = op(A)x

where A is a triangular matrix stored in lower or upper mode with or without the main
diagonal, and x is a vector. Also, for matrix A

A if trans == CUBLAS_OP_N
op(A) = AT if trans == CUBLAS_OP_T
AH if trans == CUBLAS_OP_C

Param. | Memory | In/out | Meaning

handle input | handle to the CUBLAS library context.

uplo input | indicates if matrix A lower or upper part

is stored, the other part is not referen-

ced and is inferred from the stored elements.
trans input | operation op(A) that is non- or (conj.) transpose.
diag input | indicates if the elements on the main diagonal of
matrix A are unity and should not be accessed.

n input | number of rows and columns of matrix A.

A device input | <type> array of dimensions 1da X n,
with 1da > max(1,n).

lda input | leading dimension of two-dimensional array used
to store matrix A.

X device | in/out | <type> vector with n elements.

incx input | stride between consecutive elements of x.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 56

Chapter 6. CUBLAS Level-2 Function Reference

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx=0
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_ALLOC_FAILED the allocation of internal scratch memory failed
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
strmv, dtrmv, ctrmv, ztrmv

6.16 cublas<t>trsv()

cublasStatus_t cublasStrsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const float *A, int 1lda,
float *x, int incx)

cublasStatus_t cublasDtrsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const double *A, int 1lda,
double *x, int incx)

cublasStatus_t cublasCtrsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuComplex *A, int 1lda,
cuComplex *x, int incx)

cublasStatus_t cublasZtrsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuDoubleComplex *A, int lda,
cuDoubleComplex *x, int incx)

This function solves the triangular linear system with a single right-hand-side
op(A)x=Db

where A is a triangular matrix stored in lower or upper mode with or without the main
diagonal, and x and b are vectors. Also, for matrix A

A if trans == CUBLAS_OP_N
op(A) = ¢ AT if trans == CUBLAS_OP_T
AH if trans == CUBLAS_OP_C

The solution x overwrites the right-hand-sides b on exit.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 57

http://www.netlib.org/blas/strmv.f
http://www.netlib.org/blas/dtrmv.f
http://www.netlib.org/blas/ctrmv.f
http://www.netlib.org/blas/ztrmv.f

Chapter 6. CUBLAS Level-2 Function Reference

No test for singularity or near-singularity is included in this function.

Param. | Memory | In/out | Meaning

handle input | handle to the CUBLAS library context.

uplo input | indicates if matrix A lower or upper part

is stored, the other part is not referen-

ced and is inferred from the stored elements.
trans input | operation op(A) that is non- or (conj.) transpose.
diag input | indicates if the elements on the main diagonal of
matrix A are unity and should not be accessed.

n input | number of rows and columns of matrix A.

A device input | <type> array of dimension 1da X n,
with 1da > max(1,n).

lda input | leading dimension of two-dimensional array used
to store matrix A.

X device | in/out | <type> vector with n elements.

incx input | stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx=0
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
strsv, dtrsv, ctrsv, ztrsv

6.17 cublas<t>hemv()

cublasStatus_t cublasChemv(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const cuComplex *alpha,
const cuComplex *A, int 1lda,
const cuComplex *x, int incx,
const cuComplex *beta,
cuComplex xy, int incy)

cublasStatus_t cublasZhemv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *beta,
cuDoubleComplex *y, int incy)

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 58

http://www.netlib.org/blas/strsv.f
http://www.netlib.org/blas/dtrsv.f
http://www.netlib.org/blas/ctrsv.f
http://www.netlib.org/blas/ztrsv.f

Chapter 6. CUBLAS Level-2 Function Reference

This function performs the Hermitian matrix-vector multiplication
y = aAx + By

where A is a n X n Hermitian matrix stored in lower or upper mode, x and y are vectors,
and « and [are scalars.

Param. Memory In/out | Meaning
handle input | handle to the CUBLAS library context.
uplo input | indicates if matrix A lower or upper part

is stored, the other Hermitian part is not referen-
ced and is inferred from the stored elements.

n input | number of rows and columns of matrix A.
alpha host or device | input | <type> scalar used for multiplication.
A device input | <type> array of dimension lda X n, with

1da > max(1,n) The imaginary parts of the
diagonal elements are assumed to be zero.

Ida input | leading dimension of two-dimensional array used
to store matrix A.

b device input | <type> vector with n elements.

incx input | stride between consecutive elements of x.

beta host or device | input | <type> scalar used for multiplication, if beta==0
then y does not have to be a valid input.

y device in/out | <type> vector with n elements.

incy input | stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx,incy=0
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
chemv, zhemv

6.18 cublas<t>hbmyv()

cublasStatus_t cublasChbmv(cublasHandle_t handle, cublasFillMode_t uplo,

int n, int k, const cuComplex *alpha,
const cuComplex *A, int 1lda,

const cuComplex *x, int incx,

const cuComplex *xbeta,

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 59

http://www.netlib.org/blas/chemv.f
http://www.netlib.org/blas/zhemv.f

Chapter 6. CUBLAS Level-2 Function Reference

cuComplex *xy, int incy)

cublasStatus_t cublasZhbmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, int k, const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int 1lda,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *beta,
cuDoubleComplex *y, int incy)

This function performs the Hermitian banded matrix-vector multiplication
y = aAx + By

where A is a n x n Hermitian banded matrix with k subdiagonals and superdiagonals, x
and y are vectors, and « and (are scalars.

If uplo == CUBLAS_FILL_MODE_LOWER then the Hermitian banded matrix A is stored
column by column, with the main diagonal of the matrix stored in row 1, the first
subdiagonal in row 2 (starting at first position), the second subdiagonal in row 3 (starting
at first position), etc. So that in general, the element A(i, j) is stored in the memory
location A(1+i-j,j) for j =1,...,n and i € [j,min(m, j + k)]. Also, the elements in the
array A that do not conceptually correspond to the elements in the banded matrix (the
bottom right k x k triangle) are not referenced.

If uplo == CUBLAS_FILL_MODE_UPPER then the Hermitian banded matrix A is stored
column by column, with the main diagonal of the matrix stored in row k+1, the first
superdiagonal in row k (starting at second position), the second superdiagonal in row k-1
(starting at third position), etc. So that in general, the element A(7,j) is stored in the
memory location A(1+k+i-j,j) for j =1,...,n and i € [max(1,j — k), j]. Also, the
elements in the array A that do not conceptually correspond to the elements in the banded
matrix (the top left k£ x k triangle) are not referenced.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 60

Chapter 6. CUBLAS Level-2 Function Reference

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

uplo input | indicates if matrix A lower or upper part
is stored, the other Hermitian part is not referen-
ced and is inferred from the stored elements.

n input | number of rows and columns of matrix A.

k input | number of sub- and super-diagonals of matrix A.

alpha host or device | input | <type> scalar used for multiplication.

A device input | <type> array of dimensions 1da x n, with
lda > k+1. The imaginary parts of the
diagonal elements are assumed to be zero.

lda input | leading dimension of two-dimensional array used
to store matrix A.

X device input | <type> vector with n elements.

incx input | stride between consecutive elements of x.

beta host or device | input | <type> scalar used for multiplication, if beta==0
then y does not have to be a valid input.

y device in/out | <type> vector with n elements.

incy input | stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Values

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

the parameters n,k<0 or incx,incy=0

CUBLAS_STATUS_ARCH_MISMATCH

the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU

For references please refer to:
chbmv, zhbmv

6.19 cublas<t>hpmv()

cublasStatus_t cublasChpmv(cublasHandle_t handle, cublasFillMode_t uplo,

const cuComplex
const cuComplex

int n, const cuComplex *alpha,
*AP,
*x, int incx,
*beta,

const cuComplex
cuComplex

*xy, int incy)

cublasStatus_t cublasZhpmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const cuDoubleComplex *alpha,
const cuDoubleComplex *AP,
const cuDoubleComplex *x, int incx,

CUDA Toolkit 4.1 CUBLAS Library

PG-05326-041_v01 | 61

http://www.netlib.org/blas/chbmv.f
http://www.netlib.org/blas/zhbmv.f

Chapter 6. CUBLAS Level-2 Function Reference

const cuDoubleComplex *beta,
cuDoubleComplex *y, int incy)

This function performs the Hermitian packed matrix-vector multiplication
y = aAx + By

where A is a n x n Hermitian matrix stored in packed format, x and y are vectors, and «
and 3 are scalars.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the

Hermitian matrix A are packed together column by column without gaps, so that the

element A(i, j) is stored in the memory location AP [i+((2*n-j+1)*j)/2] for j=1,...,n
n(n+1)

and ¢ > j. Consequently, the packed format requires only —=— elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of
the Hermitian matrix A are packed together column by column without gaps, so that the
element A(4, j) is stored in the memory location AP[i+(j*(j+1))/2] for j =1,...,n and

1 < j. Consequently, the packed format requires only w elements for storage.
Param. Memory In/out | Meaning
handle input | handle to the CUBLAS library context.
uplo input | indicates if matrix A lower or upper part

is stored, the other Hermitian part is not referen-
ced and is inferred from the stored elements.

n input | number of rows and columns of matrix A.

k input | number of sub- and super-diagonals of matrix A.
alpha host or device | input | <type> scalar used for multiplication.

AP device input | <type> array with A stored in packed format

The imaginary parts of the diagonal elements
are assumed to be zero.

X device input | <type> vector with n elements.

incx input | stride between consecutive elements of x.

beta host or device | input | <type> scalar used for multiplication, if beta==0
then y does not have to be a valid input.

y device in/out | <type> vector with n elements.

incy input | stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx, incy=0
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
chpmv, zhpmv

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 62

http://www.netlib.org/blas/chpmv.f
http://www.netlib.org/blas/zhpmv.f

Chapter 6. CUBLAS Level-2 Function Reference

6.20 cublas<t>her()

cublasStatus_t cublasCher(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const float *alpha,
const cuComplex *x, int incx,
cuComplex *A, int 1lda)

cublasStatus_t cublasZher(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const double *alpha,
const cuDoubleComplex *x, int incx,
cuDoubleComplex *A, int lda)

This function performs the Hermitian rank-1 update
A=oaxx+ A

where A is a n X n Hermitian matrix stored in column-major format, x is a vector, and «
is a scalar.

Param. Memory In/out | Meaning
handle input | handle to the CUBLAS library context.
uplo input | indicates if matrix A lower or upper part

is stored, the other Hermitian part is not referen-
ced and is inferred from the stored elements.

n input | number of rows and columns of matrix A.
alpha host or device | input | <type> scalar used for multiplication.

X device input | <type> vector with n elements.

incx input | stride between consecutive elements of x.
A device in/out | <type> array of dimensions 1lda X n, with

1da > max(1,n). The imaginary parts of the
diagonal elements are assumed and set to zero.
lda input | leading dimension of two-dimensional array used
to store matrix A.

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx=0
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
cher, zher

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 63

http://www.netlib.org/blas/cher.f
http://www.netlib.org/blas/zher.f

Chapter 6. CUBLAS Level-2 Function Reference

6.21 cublas<t>her2()

cublasStatus_t cublasCher2(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const cuComplex *alpha,
const cuComplex *x, int incx,
const cuComplex *y, int incy,
cuComplex xA, int lda)

cublasStatus_t cublasZher2(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const cuDoubleComplex *alpha,

const cuDoubleComplex *x, int incx,

const cuDoubleComplex *y, int incy,
cuDoubleComplex *A, int 1lda)

This function performs the Hermitian rank-2 update

where A is a n x n Hermitian matrix stored in column-major format, X and y are vectors,

and « is a scalar.

A=axy? +ayx + A

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

uplo input | indicates if matrix A lower or upper part
is stored, the other Hermitian part is not referen-
ced and is inferred from the stored elements.

n input | number of rows and columns of matrix A.

alpha host or device | input | <type> scalar used for multiplication.

X device input | <type> vector with n elements.

incx input | stride between consecutive elements of x.

y device input | <type> vector with n elements.

incy input | stride between consecutive elements of y.

A device in/out | <type> array of dimension 1da X n with
1lda > max(1,n). The imaginary parts of the
diagonal elements are assumed and set to zero.

lda input | leading dimension of two-dimensional array used
to store matrix A.

The possible error values returned by this function and their meanings are listed below.

Error Values

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

the parameters n<0 or incx,incy=0

CUBLAS_STATUS_ARCH_MISMATCH

the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:

cher2, zher2

CUDA Toolkit 4.1 CUBLAS Library

PG-05326-041_v01 | 64

http://www.netlib.org/blas/cher2.f
http://www.netlib.org/blas/zher2.f

Chapter 6. CUBLAS Level-2 Function Reference

6.22 cublas<t>hpr()

cublasStatus_t cublasChpr(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const float *alpha,
const cuComplex *x, int incx,
cuComplex *AP)

cublasStatus_t cublasZhpr(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const double *alpha,
const cuDoubleComplex *x, int incx,
cuDoubleComplex *AP)

This function performs the packed Hermitian rank-1 update
A=oaxx+ A

where A is a n x n Hermitian matrix stored in packed format, x is a vector, and « is a
scalar.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the

Hermitian matrix A are packed together column by column without gaps, so that the

element A(3, j) is stored in the memory location AP [i+((2*n-j+1)*j)/2] for j=1,...,n
n(n+1)

and i > j. Consequently, the packed format requires only == elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of
the Hermitian matrix A are packed together column by column without gaps, so that the
element A(7, j) is stored in the memory location AP[i+(j*(j+1))/2] for j =1,...,n and

i < j. Consequently, the packed format requires only w elements for storage.

Param. Memory In/out | Meaning
handle input | handle to the CUBLAS library context.
uplo input | indicates if matrix A lower or upper part

is stored, the other Hermitian part is not referen-
ced and is inferred from the stored elements.

n input | number of rows and columns of matrix A.
alpha host or device | input | <type> scalar used for multiplication.

X device input | <type> vector with n elements.

incx input | stride between consecutive elements of x.

AP device in/out | <type> array with A stored in packed format

The imaginary parts of the diagonal elements
are assumed and set to zero.

The possible error values returned by this function and their meanings are listed below.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 65

Chapter 6. CUBLAS Level-2 Function Reference

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx=0
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
chpr, zhpr

6.23 cublas<t>hpr2()

cublasStatus_t cublasChpr2(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const cuComplex *alpha,
const cuComplex *x, int incx,
const cuComplex *y, int incy,
cuComplex *AP)

cublasStatus_t cublasZhpr2(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const cuDoubleComplex *alpha,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *y, int incy,
cuDoubleComplex *AP)

This function performs the packed Hermitian rank-2 update
A=axy” +ayxf + A

where A is a n x n Hermitian matrix stored in packed format, x and y are vectors, and «
is a scalar.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the
Hermitian matrix A are packed together column by column without gaps, so that the
element A(i, j) is stored in the memory location AP [i+((2*n-j+1)*j)/2] for j=1,...,n

and 7 > j. Consequently, the packed format requires only w elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of
the Hermitian matrix A are packed together column by column without gaps, so that the
element A(i, j) is stored in the memory location AP[i+(j*(j+1))/2] for j =1,...,n and

1 < j. Consequently, the packed format requires only n(nTH) elements for storage.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 66

http://www.netlib.org/blas/chpr.f
http://www.netlib.org/blas/zhpr.f

Chapter 6. CUBLAS Level-2 Function Reference

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

uplo input | indicates if matrix A lower or upper part
is stored, the other Hermitian part is not referen-
ced and is inferred from the stored elements.

n input | number of rows and columns of matrix A.

alpha host or device | input | <type> scalar used for multiplication.

X device input | <type> vector with n elements.

incx input | stride between consecutive elements of x.

y device input | <type> vector with n elements.

incy input | stride between consecutive elements of y.

AP device in/out | <type> array with A stored in packed format
The imaginary parts of the diagonal elements
are assumed and set to zero.

The possible error values returned by this function and their meanings are listed below.

Error Values

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

the parameters n<0 or incx,incy=0

CUBLAS_STATUS_ARCH_MISMATCH

the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU

For references please refer to:

chpr2, zhpr2

CUDA Toolkit 4.1 CUBLAS Library

PG-05326-041_v01 | 67

http://www.netlib.org/blas/chpr2.f
http://www.netlib.org/blas/zhpr2.f

Chapter 7
CUBLAS Level-3 Function Reference

In this chapter we describe the Level-3 Basic Linear Algebra Subprograms (BLAS3)
functions that perform matrix-matrix operations.

7.1 cublas<t>gemm()

cublasStatus_t cublasSgemm(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int k,

const float *alpha,
const float *A, int 1lda,
const float *B, int 1db,
const float *beta,
float *C, int 1ldc)

cublasStatus_t cublasDgemm(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int k,

const double *alpha,
const double *A, int 1lda,
const double *B, int 1db,
const double *beta,
double *C, int 1ldc)

cublasStatus_t cublasCgemm(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,

int m, int n, int k,

const cuComplex *alpha,
const cuComplex *A, int lda,
const cuComplex *B, int 1db,
const cuComplex *beta,
cuComplex *C, int ldc)

cublasStatus_t cublasZgemm(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 68

Chapter 7. CUBLAS Level-3 Function Reference

int m, int n, int k,

const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *B, int 1db,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int 1ldc)

This function performs the matrix-matrix multiplication
C = aop(A)op(B) + pC

where o and 3 are scalars, and A, B and C are matrices stored in column-major format
with dimensions op(A) m x k, op(B) k x n and C' m x n, respectively. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A) = ¢ AT if transa == CUBLAS_OP_T
Afif transa == CUBLAS_OP_C

and op(B) is defined similarly for matrix B.

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

transa input | operation op(A) that is non- or (conj.) transpose.
transb input | operation op(B) that is non- or (conj.) transpose.
m input | number of rows of matrix op(A) and C.

n input | number of columns of matrix op(B) and C.

k input | number of columns of op(A) and rows of op(B).
alpha host or device | input | <type> scalar used for multiplication.

A device input | <type> array of dimensions 1lda x k with

lda > max(1l,m) if transa == CUBLAS_OP_N
and lda X m with 1da > max(1,k) otherwise.

lda input | leading dimension of two-dimensional array used
to store the matrix A.
B device input | <type> array of dimension 1db X n with

1db > max(1,k) if transa == CUBLAS_OP_N
and 1db x k with 1db > max(1,n) otherwise.

1db input | leading dimension of two-dimensional array used
to store matrix B.
beta host or device | input | <type> scalar used for multiplication.
If beta == 0, C does not have to be a valid input.
C device in/out | <type> array of dimensions ldc X n
with 1dc > max(1,m).
Ildc input | leading dimension of a two-dimensional array used

to store the matrix C.

The possible error values returned by this function and their meanings are listed below.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 69

Error Values

Chapter 7. CUBLAS Level-3 Function Reference

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n, k<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
sgemm, dgemm, cgemm, zgemm

7.2 cublas<t>gemmBatched()

cublasStatus_t cublasSgemmBatched(cublasHandle_t handle,

cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int k,

const float *alpha,

const float xAarray[], int 1da,

const float *Barray[], int 1db,

const float *beta,

float xCarray[], int 1ldc, int batchCount)

cublasStatus_t cublasDgemmBatched(cublasHandle_t handle,

cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int k,

const double *alpha,

const double xAarray[], int 1da,

const double *Barray[], int 1db,

const double *beta,

double xCarray[], int 1ldc, int batchCount)

cublasStatus_t cublasCgemmBatched(cublasHandle_t handle,

cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int k,

const cuComplex *alpha,

const cuComplex xAarray[], int 1da,

const cuComplex *Barray[], int 1db,

const cuComplex *beta,

cuComplex xCarray[], int 1ldc, int batchCount)

cublasStatus_t cublasZgemmBatched(cublasHandle_t handle,

CUDA Toolkit 4.1 CUBLAS Library

cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int k,

const cuDoubleComplex *alpha,

const cuDoubleComplex *Aarray[], int lda,

const cuDoubleComplex *Barray[], int 1db,

PG-05326-041_v01 | 70

http://www.netlib.org/blas/sgemm.f
http://www.netlib.org/blas/dgemm.f
http://www.netlib.org/blas/cgemm.f
http://www.netlib.org/blas/zgemm.f

Chapter 7. CUBLAS Level-3 Function Reference

const cuDoubleComplex *beta,
cuDoubleComplex *Carray[], int ldc, int batchCount)

This function performs the matrix-matrix multiplications of an array of matrices.

Cli] = aop(Ali])op(Bli]) + pCi], for i € [0, batchCount — 1]

where o and 3 are scalars, and A, B and C' are arrays of pointers to matrices stored in
column-major format with dimensions op(A[i]) m X k, op(B[i]) k x n and C[i] m x n,
respectively. Also, for matrix Ai]

Ali] if transa == CUBLAS_OP_N
op(A[i]) = ¢ AT[i] if transa == CUBLAS_OP_T
AH[i] if transa == CUBLAS_OP_C

and op(B(i]) is defined similarly for matrix Bli].

This function is intended to be used for matrices of small sizes where the launch overhead
is a significant factor. For small sizes, typically smaller than 100x100, this function
improves significantly performance compared to making calls to its corresponding
cublas<t>gemm routine. However, on GPU architectures that support concurrent kernels,
it might be advantageous to make multiple calls to cublas<t>gemm into different streams
as the matrix sizes increase.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 71

Chapter 7. CUBLAS Level-3 Function Reference

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

transa input | operation op(A[i]) that is non- or (conj.) transpose.
transb input | operation op(B[i]) that is non- or (conj.) transpose.
m input | number of rows of matrix op(A[il) and C[i].

n input | number of columns of op(B[i]) and C[i].

k input | number of columns of op(A[i]) and rows of op(B[i]).
alpha host or device | input | <type> scalar used for multiplication.

A device input | array of pointers to <type> array, with each array of

dim. ldaxk with 1da > max(1,m) if transa==CUBLAS_OP_N
and 1daxm with 1da > max(1,k) otherwise.

lda input | leading dimension of two-dimensional array used
to store each matrix Ali].
B device input | array of pointers to <type> array, with each array of

dim. 1dbxn with 1db > max(1,k) if transa==CUBLAS_QP_N
and 1db x k with 1db > max(1,n) otherwise.

1db input | leading dimension of two-dimensional array used
to store each matrix B[i].
beta host or device | input | <type> scalar used for multiplication
If beta == 0, C does not have to be a valid input.
C device in/out | array of pointers to <type> array
It has dimensions 1dc X n with 1dc > max(1,m).
ldc input | leading dimension of two-dimensional array used
to store each matrix C[i].
batchCount input | number of pointers contained in A, B and C.

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters m,n,k, batchCount<0
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

7.3 cublas<t>symm()

cublasStatus_t cublasSsymm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
int m, int n,

const float *alpha,
const float *A, int 1lda,
const float *B, int 1db,
const float *beta,

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 72

Chapter 7. CUBLAS Level-3 Function Reference

float *C, int 1ldc)

cublasStatus_t cublasDsymm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
int m, int n,

const double *alpha,
const double *A, int lda,
const double *B, int 1db,
const double *beta,
double *C, int 1dc)

cublasStatus_t cublasCsymm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
int m, int n,

const cuComplex *alpha,
const cuComplex *A, int 1lda,
const cuComplex *B, int 1db,
const cuComplex *beta,
cuComplex *C, int 1ldc)

cublasStatus_t cublasZsymm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
int m, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int 1lda,
const cuDoubleComplex *B, int 1db,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int 1ldc)

This function performs the symmetric matrix-matrix multiplication

CUBLAS_SIDE_LEFT
CUBLAS_SIDE_RIGHT

_ JaAB +BC if side =
"~ |aBA+BC if side =

where A is a symmetric matrix stored in lower or upper mode, B and C are m X n
matrices, and « and [are scalars.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 73

Chapter 7. CUBLAS Level-3 Function Reference

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

side input | indicates if matrix A is on the left or right of B.
uplo input | indicates if matrix A lower or upper part is

stored, the other symmetric part is not referen-
ced and is inferred from the stored elements.

m input | number of rows of matrix C and B, with
matrix A sized accordingly.
n input | number of columns of matrix C and B, with

matrix A sized accordingly.

alpha host or device | input | <type> scalar used for multiplication.

A device input | <type> array of dimension 1da X m with

lda > max(1l,m) if side == CUBLAS_SIDE_LEFT
and lda X n with 1da > max(1,n) otherwise.

lda leading dimension of two-dimensional array used
to store matrix A.

B device <type> array of dimension 1db X n
with 1db > max(1,m).

1db leading dimension of two-dimensional array used
to store matrix B.

beta host or device | input | <type> scalar used for multiplication, if beta==0
then C does not have to be a valid input.

C device in/out | <type> array of dimension 1ldc X n
with 1dc > max(1,m).

Idc input | leading dimension of two-dimensional array used

to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
ssymm, dsymm, csymm, zsymm

7.4 cublas<t>syrk()

cublasStatus_t cublasSsyrk(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 74

http://www.netlib.org/blas/ssymm.f
http://www.netlib.org/blas/dsymm.f
http://www.netlib.org/blas/csymm.f
http://www.netlib.org/blas/zsymm.f

Chapter 7. CUBLAS Level-3 Function Reference

const float *alpha,
const float *A, int 1lda,
const float *beta,
float *C, int 1ldc)

cublasStatus_t cublasDsyrk(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,

const double *alpha,
const double *A, int 1lda,
const double *beta,
double *C, int 1dc)

cublasStatus_t cublasCsyrk(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,

const cuComplex *alpha,
const cuComplex *A, int 1lda,
const cuComplex *beta,
cuComplex *xC, int 1ldc)

cublasStatus_t cublasZsyrk(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int 1ldc)

This function performs the symmetric rank-k update
C = aop(A)op(A)T + BC

where « and 8 are scalars, C is a symmetric matrix stored in lower or upper mode, and A
is a matrix with dimensions op(A) n x k. Also, for matrix A

A if trans
op(4) = {

CUBLAS_OP_N
CUBLAS_OP_T

AT if trans

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 75

Chapter 7. CUBLAS Level-3 Function Reference

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

uplo input | indicates if matrix A lower or upper part is
stored, the other symmetric part is not referen-
ced and is inferred from the stored elements.

trans input | operation op(A) that is non- or transpose.

n input | number of rows of matrix op(A) and C.

k input | number of columns of matrix op(4).

alpha host or device | input | <type> scalar used for multiplication.

A device input | <type> array of dimension 1da x k with
1lda > max(1,n) if transa == CUBLAS_OP_N
and 1da X n with 1da > max(1,k) otherwise.

lda input | leading dimension of two-dimensional array used
to store matrix A.

beta host or device | input | <type> scalar used for multiplication, if beta==0
then C does not have to be a valid input.

C device in/out | <type> array of dimension 1dc X n,
with 1dc > max(1,n).

Ildc input | leading dimension of two-dimensional array used
to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Values

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

the parameters n,k<0

CUBLAS_STATUS_ARCH_MISMATCH

the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
ssyrk, dsyrk, csyrk, zsyrk

7.5 cublas<t>syr2k()

cublasStatus_t cublasSsyr2k(cublasHandle_t handle,

cublasFillMode_t uplo, cublasOperation_t trans,
int n, int Kk,

const float *alpha,
const float *A, int 1lda,
const float *B, int 1db,
const float *beta,
float *C, int 1ldc)

cublasStatus_t cublasDsyr2k(cublasHandle_t handle,

CUDA Toolkit 4.1 CUBLAS Library

PG-05326-041_v01 | 76

http://www.netlib.org/blas/ssyrk.f
http://www.netlib.org/blas/dsyrk.f
http://www.netlib.org/blas/csyrk.f
http://www.netlib.org/blas/zsyrk.f

Chapter 7. CUBLAS Level-3 Function Reference

cublasFillMode_t uplo, cublasOperation_t trams,
int n, int k,

const double *alpha,
const double *A, int 1lda,
const double *B, int 1db,
const double *beta,
double *C, int 1ldc)

cublasStatus_t cublasCsyr2k(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,

const cuComplex *alpha,
const cuComplex *A, int 1lda,
const cuComplex *B, int 1db,
const cuComplex *beta,
cuComplex *C, int 1ldc)

cublasStatus_t cublasZsyr2k(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int Kk,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *B, int 1ldb,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int 1ldc)

This function performs the symmetric rank-2k update
C = a (op(A)op(B)" + op(B)op(4)") + BC

where o and 3 are scalars, C' is a symmetric matrix stored in lower or upper mode, and A
and B are matrices with dimensions op(A) n x k and op(B) n x k, respectively. Also, for
matrix A and B

op(A) and op(B) =

A and B if trans == CUBLAS_OP_N
AT and BT if trans == CUBLAS_QP_T

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 77

Chapter 7. CUBLAS Level-3 Function Reference

Param. Memory In/out | Meaning
handle input | handle to the CUBLAS library context.
uplo input | indicates if matrix A lower or upper part, is

stored, the other symmetric part is not referen-
ced and is inferred from the stored elements.

trans input | operation op(A) that is non- or transpose.

n input | number of rows of matrix op(A), op(B) and C.
k input | number of columns of matrix op(A) and op(B).
alpha host or device | input | <type> scalar used for multiplication.

A device input | <type> array of dimension lda x k

with 1da > max(1,n) if transa == CUBLAS_OP_N
and 1da X n with 1da > max(1,k) otherwise.

lda input | leading dimension of two-dimensional array used
to store matrix A.
B device input | <type> array of dimensions 1db x k

with 1db > max(1,n) if transa == CUBLAS_OP_N
and 1db x n with 1db > max(1,k) otherwise.

1db input | leading dimension of two-dimensional array used
to store matrix B.

beta host or device | input | <type> scalar used for multiplication, if beta==0,
then C does not have to be a valid input.

C device in/out | <type> array of dimensions 1ldc X n
with 1dc > max(1,n).

Idc input | leading dimension of two-dimensional array used

to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
ssyr2k, dsyr2k, csyr2k, zsyr2k

7.6 cublas<t>trmm()

cublasStatus_t cublasStrmm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int m, int n,

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 78

http://www.netlib.org/blas/ssyr2k.f
http://www.netlib.org/blas/dsyr2k.f
http://www.netlib.org/blas/csyr2k.f
http://www.netlib.org/blas/zsyr2k.f

Chapter 7. CUBLAS Level-3 Function Reference

const float *alpha,

const float *A, int 1lda,
const float *B, int 1db,
float *C, int 1ldc)

cublasStatus_t cublasDtrmm(cublasHandle_t handle,

cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int m, int n,

const double *alpha,

const double *A, int lda,
const double *B, int 1db,
double *C, int 1ldc)

cublasStatus_t cublasCtrmm(cublasHandle_t handle,

cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int m, int n,

const cuComplex *alpha,

const cuComplex *A, int 1lda,
const cuComplex *B, int 1db,
cuComplex *C, int 1ldc)

cublasStatus_t cublasZtrmm(cublasHandle_t handle,

cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int m, int n, const

cuDoubleComplex *alpha,

const cuDoubleComplex *A, int 1lda,

const cuDoubleComplex *B, int 1db,
cuDoubleComplex *C, int 1ldc)

This function performs the triangular matrix-matrix multiplication

o {aop(A)B
aBop(A)

CUBLAS_SIDE_LEFT
CUBLAS_SIDE_RIGHT

if side ==

if side ==

where A is a triangular matrix stored in lower or upper mode with or without the main
diagonal, B and C are m X n matrix, and « is a scalar. Also, for matrix A

op(A)

A if trans == CUBLAS_OP_N
if trans == CUBLAS_OP_T

A" if trans == CUBLAS_OP_C

Notice that in order to achieve better parallelism CUBLAS differs from the BLAS API
only for this routine. The BLAS API assumes an in-place implementation (with results
written back to B), while the CUBLAS API assumes an out-of-place implementation (with

CUDA Toolkit 4.1 CUBLAS Library

PG-05326-041_v01 | 79

Chapter 7. CUBLAS Level-3 Function Reference

results written into C). The application can obtain the in-place functionality of BLAS in
the CUBLAS API by passing the address of the matrix B in place of the matrix C. No
other overlapping in the input parameters is supported.

Param. Memory In/out | Meaning
handle input | handle to the CUBLAS library context.
side input | indicates if matrix A is on the left or right of B.
uplo input | indicates if matrix A lower or upper part
is stored, the other part is not referen-
ced and is inferred from the stored elements.
trans input | operation op(A) that is non- or (conj.) transpose.
diag input | indicates if the elements on the main diagonal of
matrix A are unity and should not be accessed.
m input | number of rows of matrix B, with
matrix A sized accordingly.
n input | number of columns of matrix B, with
matrix A sized accordingly.
alpha host or device | input | <type> scalar used for multiplication, if alpha==0
then A is not referenced and B does not have to be
a valid input.
A device input | <type> array of dimension 1da X m with
lda > max(1l,m) if side == CUBLAS_SIDE_LEFT
and lda X n with 1da > max(1,n) otherwise.
lda input | leading dimension of two-dimensional array used
to store matrix A.
B device input | <type> array of dimension 1db X n
with 1db > max(1,m).
1db input | leading dimension of two-dimensional array used
to store matrix B.
C device in/out | <type> array of dimension 1ldc X n
with 1dc > max(1,m).
ldc input | leading dimension of two-dimensional array used
to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Values

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

the parameters m,n<0

CUBLAS_STATUS_ARCH_MISMATCH

the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
strmm, dtrmm, ctrmm, ztrmm

CUDA Toolkit 4.1 CUBLAS Library

PG-05326-041_v01 | 80

http://www.netlib.org/blas/strmm.f
http://www.netlib.org/blas/dtrmm.f
http://www.netlib.org/blas/ctrmm.f
http://www.netlib.org/blas/ztrmm.f

Chapter 7. CUBLAS Level-3 Function Reference

7.7 cublas<t>trsm()

cublasStatus_t cublasStrsm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int m, int n,

const float *alpha,
const float *A, int 1lda,
float *B, int 1db)

cublasStatus_t cublasDtrsm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int m, int n,

const double *alpha,
const double *A, int 1lda,
double *B, int 1db)

cublasStatus_t cublasCtrsm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int m, int n,

const cuComplex *alpha,
const cuComplex *A, int 1lda,
cuComplex *B, int 1db)

cublasStatus_t cublasZtrsm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int m, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
cuDoubleComplex *B, int 1db)

This function solves the triangular linear system with multiple right-hand-sides

op(A)X = aB if side == CUBLAS_SIDE_LEFT
Xop(A) =aB if side == CUBLAS_SIDE_RIGHT

where A is a triangular matrix stored in lower or upper mode with or without the main
diagonal, X and B are m X n matrices, and « is a scalar. Also, for matrix A

A if trans == CUBLAS_OP_N
op(A) =< AT if trans == CUBLAS_OP_T
AH if trans == CUBLAS_QOP_C

The solution X overwrites the right-hand-sides B on exit.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 81

Chapter 7. CUBLAS Level-3 Function Reference

No test for singularity or near-singularity is included in this function.

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

side input | indicates if matrix A is on the left or right of X.
uplo input | indicates if matrix A lower or upper part

is stored, the other part is not referen-
ced and is inferred from the stored elements.

trans input | operation op(A) that is non- or (conj.) transpose.
diag input | indicates if the elements on the main diagonal of
matrix A are unity and should not be accessed.
m input | number of rows of matrix B, with
matrix A sized accordingly.
n input | number of columns of matrix B, with

matrix A is sized accordingly.

alpha host or device | input | <type> scalar used for multiplication, if alpha==0
then A is not referenced and B does not have to be
a valid input.

A device input | <type> array of dimension 1da x m with

lda > max(1l,m) if side == CUBLAS_SIDE_LEFT
and 1da x n with 1da > max(1,n) otherwise.

lda input | leading dimension of two-dimensional array used
to store matrix A.
B device in/out | <type> array
It has dimensions 1db x n with 1db > max(1,m).
1db input | leading dimension of two-dimensional array used

to store matrix B.

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
strsm, dtrsm, ctrsm, ztrsm

7.8 cublas<t>hemm()

cublasStatus_t cublasChemm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
int m, int n,

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 82

http://www.netlib.org/blas/strsm.f
http://www.netlib.org/blas/dtrsm.f
http://www.netlib.org/blas/ctrsm.f
http://www.netlib.org/blas/ztrsm.f

Chapter 7. CUBLAS Level-3 Function Reference

const cuComplex *alpha,
const cuComplex *A, int 1lda,
const cuComplex *B, int 1db,
const cuComplex *beta,
cuComplex *C, int ldc)

cublasStatus_t cublasZhemm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
int m, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *B, int 1db,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int 1ldc)

This function performs the Hermitian matrix-matrix multiplication

aAB + C if side == CUBLAS_SIDE_LEFT
aBA+ BC if side == CUBLAS_SIDE_RIGHT

where A is a Hermitian matrix stored in lower or upper mode, B and C are m X n
matrices, and « and S are scalars.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 83

Chapter 7. CUBLAS Level-3 Function Reference

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

side input | indicates if matrix A is on the left or right of B.
uplo input | indicates if matrix A lower or upper part is

stored, the other Hermitian part is not referen-
ced and is inferred from the stored elements.

m input | number of rows of matrix C and B,
with matrix A sized accordingly.
n input | number of columns of matrix C and B,

with matrix A sized accordingly.

alpha host or device | input | <type> scalar used for multiplication.

A device input | <type> array of dimension 1da x m

with 1da > max(1,m) if side==CUBLAS_SIDE_LEFT
and lda X n with 1da > max(1,n) otherwise.

The imaginary parts of the diagonal elements are
assumed to be zero.

lda input | leading dimension of two-dimensional array used
to store matrix A.

B device input | <type> array of dimension 1db X n
with 1db > max(1,m).

1db input | leading dimension of two-dimensional array used
to store matrix B.

beta input | <type> scalar used for multiplication, if beta==0
then C does not have to be a valid input.

C device in/out | <type> array of dimensions 1ldc X n
with 1dc > max(1,m).

Idc input | leading dimension of two-dimensional array used

to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
chemm, zhemm

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 84

http://www.netlib.org/blas/chemm.f
http://www.netlib.org/blas/zhemm.f

Chapter 7. CUBLAS Level-3 Function Reference

7.9 cublas<t>herk()

cublasStatus_t cublasCherk(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,

int n, int k,
const float *alpha,

const cuComplex *A, int 1lda,
const float *beta,
cuComplex *C, int 1ldc)

cublasStatus_t cublasZherk(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const double *alpha,
const cuDoubleComplex *A, int 1lda,
const double *beta,
cuDoubleComplex *C, int 1ldc)

This function performs the Hermitian rank-k update
C = aop(A)op(A)H + sC

where a and § are scalars, C is a Hermitian matrix stored in lower or upper mode, and A
is a matrix with dimensions op(A4) n x k. Also, for matrix A

A if trans == CUBLAS_QOP_N
AH if trans == CUBLAS_QOP_C

op(A) = {

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 85

Chapter 7. CUBLAS Level-3 Function Reference

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

uplo input | indicates if matrix A lower or upper part is
stored, the other Hermitian part is not referen-
ced and is inferred from the stored elements.

trans input | operation op(A) that is non- or (conj.) transpose.

n input | number of rows of matrix op(A) and C.

k input | number of columns of matrix op(4).

alpha host or device | input | <type> scalar used for multiplication.

A device input | <type> array of dimension lda x k
with 1da > max(1,n) if transa == CUBLAS_OP_N
and 1da X n with 1da > max(1,k) otherwise.

lda input | leading dimension of two-dimensional array used
to store matrix A.

beta input | <type> scalar used for multiplication, if beta==0
then C does not have to be a valid input.

C device in/out | <type> array of dimension 1ldc X n, with
ldc > max(1,n). The imaginary parts of the
diagonal elements are assumed and set to zero.

Idc input | leading dimension of two-dimensional array used
to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Values

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

the parameters n,k<0

CUBLAS_STATUS_ARCH_MISMATCH

the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:

cherk, zherk

7.10 cublas<t>her2k()

cublasStatus_t cublasCher2k(cublasHandle_t handle,

CUDA Toolkit 4.1 CUBLAS Library

cublasFillMode_t uplo, cublasOperation_t tranms,
int n, int k,

const cuComplex *alpha,
const cuComplex *A, int 1lda,
const cuComplex *B, int 1db,
const float *beta,

cuComplex *C, int 1ldc)

PG-05326-041_v01 | 86

http://www.netlib.org/blas/cherk.f
http://www.netlib.org/blas/zherk.f

Chapter 7. CUBLAS Level-3 Function Reference

cublasStatus_t cublasZher2k(cublasHandle_t handle,

cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,

const cuDoubleComplex *alpha,

const cuDoubleComplex *A, int lda,

const cuDoubleComplex *B, int 1db,

const double x*beta,

cuDoubleComplex *C, int 1ldc)

This function performs the Hermitian rank-2k update

C = aop(A)op(B)H + aop(B)op(A)H + pC

where a and § are scalars, C is a Hermitian matrix stored in lower or upper mode, and A
and B are matrices with dimensions op(A) n x k and op(B) n x k, respectively. Also, for
matrix A and B

op(4) and op(B) = {A and B if trans == CUBLAS_OP_N

AH and BH if trans == CUBLAS_QP_C

Param. Memory In/out | Meaning

handle input | handle to the CUBLAS library context.

uplo input | indicates if matrix A lower or upper part is
stored, the other Hermitian part is not referen-
ced and is inferred from the stored elements.

trans input | operation op(A) that is non- or (conj.) transpose.

n input | number of rows of matrix op(A), op(B) and C.

k input | number of columns of matrix op(A) and op(B).

alpha host or device | input | <type> scalar used for multiplication.

A device input | <type> array of dimension 1da x k
with 1da > max(1,n) if transa == CUBLAS_OP_N
and 1da x n with 1da > max(1,k) otherwise.

lda input | leading dimension of two-dimensional array used
to store matrix A.

B device input | <type> array of dimension 1db X k
with 1db > max(1,n) if transa==CUBLAS_OP_N
and 1db X n with 1db > max(1,k) otherwise.

1db input | leading dimension of two-dimensional array used
to store matrix B.

beta host or device | input | <type> scalar used for multiplication, if beta==0
then C does not have to be a valid input.

C device in/out | <type> array of dimension 1ldc X n, with
ldc > max(1,n). The imaginary parts of the
diagonal elements are assumed and set to zero.

ldc input | leading dimension of two-dimensional array used

to store matrix C.

CUDA Toolkit 4.1 CUBLAS Library

PG-05326-041_v01 | 87

Chapter 7. CUBLAS Level-3 Function Reference

The possible error values returned by this function and their meanings are listed below.

Error Values Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0
CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:
cher2k, zher2k

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 88

http://www.netlib.org/blas/cher2k.f
http://www.netlib.org/blas/zher2k.f

Chapter 8
Appendix A: Using the CUBLAS Legacy API

This appendix does not provide a full reference of each Legacy API datatype and entry
point. Instead, it describes how to use the API, especially where this is different from the
regular CUBLAS API.

Note that in this section, all references to the “CUBLAS Library” refer to the Legacy
CUBLAS API only.

8.1 Error Status

The cublasStatus type is used for function status returns. The CUBLAS Library helper
functions return status directly, while the status of core functions can be retrieved using
cublasGetError (). Notice that reading the error status via cublasGetError (), resets the
internal error state to CUBLAS_STATUS_SUCCESS. Currently, the following values for
cublasStatus are defined:

Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_ALLOC_FAILED the resource allocation failed
CUBLAS_STATUS_INVALID_VALUE an invalid numerical value was used as an argument
CUBLAS_STATUS_ARCH_MISMATCH an absent device architectural feature is required
CUBLAS_STATUS_MAPPING_ERROR an access to GPU memory space failed
CUBLAS_STATUS_EXECUTION_FAILED | the GPU program failed to execute
CUBLAS_STATUS_INTERNAL_ERROR an internal operation failed

This legacy type corresponds to type cublasStatus_t in the CUBLAS library API.

8.2 Initialization and Shutdown

The functions cublasInit() and cublasShutdown() are used to initialize and shutdown
the CUBLAS library. It is recommended for cublasInit() to be called before any other

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 89

Chapter 8. Appendix A: Using the CUBLAS Legacy API

function is invoked. It allocates hardware resources on the GPU device that is currently
bound to the host thread from which it was invoked.

The legacy initialization and shutdown functions are similar to the CUBLAS library API
routines cublasCreate() and cublasDestroy().

8.3 Thread Safety

The legacy API is not thread safe when used with multiple host threads and devices. It is
recommended to be used only when utmost compatibility with Fortran is required and
when a single host thread is used to setup the library and make all the functions calls.

8.4 Memory Management

The memory used by the legacy CUBLAS library API is allocated and released using
functions cublasAlloc() and cublasFree(), respectively. These functions create and
destroy an object in the GPU memory space capable of holding an array of n elements,
where each element requires elemSize bytes of storage. Please see the legacy CUBLAS
API header file “cublas.h” for the prototypes of these functions.

The function cublasAlloc() is a wrapper around the function cudaMalloc(), therefore
device pointers returned by cublasAlloc() can be passed to any CUDA™ device kernel
functions. However, these device pointers can not be dereferenced in the host code. The
function cublasFree() is a wrapper around the function cudaFree().

8.5 Scalar Parameters

In the legacy CUBLAS API, scalar parameters are passed by value from the host. Also,
the few functions that do return a scalar result, such as dot () and nrm2(), return the
resulting value on the host, and hence these routines will wait for kernel execution on the
device to complete before returning, which makes parallelism with streams impractical.
However, the majority of functions do not return any value, in order to be more
compatible with Fortran and the existing BLAS libraries.

8.6 Helper Functions

In this section we list the helper functions provided by the legacy CUBLAS API and their
functionality. For the exact prototypes of these functions please refer to the legacy
CUBLAS API header file “cublas.h”.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 90

Chapter 8. Appendix A: Using the CUBLAS Legacy API

Helper function Meaning

cublasInit () initialize the library

cublasShutdown () shuts down the library

cublasGetError () retrieves the error status of the library
cublasSetKernelStream() | sets the stream to be used by the library

cublasAlloc() allocates the device memory for the library

cublasFree() releases the device memory allocated for the library
cublasSetVector () copies a vector x on the host to a vector y on the GPU
cublasGetVector () copies a vector x on the GPU to a vector y on the host
cublasSetMatrix () copies a m X n tile from a matrix on the host to the GPU
cublasGetMatrix() copies a m X n tile from a matrix on the GPU to the host

cublasSetVectorAsync() similar to cublasSetVector(), but the copy is asynchronous

cublasGetVectorAsync() similar to cublasGetVector(), but the copy is asynchronous

cublasSetMatrixAsync() similar to cublasSetMatrix (), but the copy is asynchronous

cublasGetMatrixAsync () similar to cublasGetMatrix (), but the copy is asynchronous

8.7 Level-1,2,3 Functions

The Level-1,2,3 CUBLAS functions (also called core functions) have the same name and
behavior as the ones listed in the chapters 3, 4 and 5 in this document. Please refer to the
legacy CUBLAS API header file “cublas.h” for their exact prototype. Also, the next
section talks a bit more about the differences between the legacy and the CUBLAS API
prototypes, more specifically how to convert the function calls from one API to another.

8.8 Converting Legacy to the CUBLAS API

There are a few general rules that can be used to convert from legacy to the CUBLAS API.

1.

Exchange the header file “cublas.h” for “cublas_v2.h".

2. Exchange the type cublasStatus for cublasStatus_t.
3.
4

Exchange the function cublasSetKernelStream() for cublasSetStream().

. Exchange the function cublasAlloc() and cublasFree() for cudaMalloc() and

cudaFree (), respectively. Notice that cudaMalloc() expects the size of the allocated
memory to be provided in bytes (usually simply provide n x elemSize to allocate n
elements, each of size elemSize bytes).

. Declare the cublasHandle_t CUBLAS library handle.

. Initialize the handle using cublasCreate(). Also, release the handle once finished

using cublasDestroy().

Add the handle as the first parameter to all the CUBLAS library function calls.

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 91

Chapter 8. Appendix A: Using the CUBLAS Legacy API

8. Change the scalar parameters to be passed by reference, instead of by value (usually
simply adding “&” symbol in C/C++ is enough, because the parameters are passed
by reference on the host by default). However, note that if the routine is running
asynchronously, then the variable holding the scalar parameter cannot be changed
until the kernels that the routine dispatches are completed. See the CUDA C
Programming Guide for a detailed discussion of how to use streams.

9. Change the parameter characters ‘N’ or ‘n’ (non-transpose operation), ‘T’ or ‘t’
(transpose operation) and ‘C’ or ‘c’ (conjugate transpose operation) to
CUBLAS_OP_N, CUBLAS_OP_T and CUBLAS_0OP_C, respectively.

10. Change the parameter characters ‘L’ or ‘1’ (lower part filled) and ‘U’ or ‘u’ (upper
part ﬁlled) to CUBLAS_FILL_MODE_LOWER and CUBLAS_FILL_MODE_UPPER, respectively.

11. Change the parameter characters ‘N’ or ‘n’ (non-unit diagonal) and ‘U’ or ‘u’
(unit diagonal) to CUBLAS_DIAG_NON_UNIT and CUBLAS_DIAG_UNIT, respectively.

12. Change the parameter characters ‘L’ or ‘1’ (left side) and ‘R’ or ‘r’ (right side) to
CUBLAS_SIDE_LEFT and CUBLAS_SIDE_RIGHT, respectively.

13. If the legacy API function returns a scalar value, add an extra scalar parameter of
the same type passed by reference, as the last parameter to the same function.

14. Instead of using cublasGetError (), use the return value of the function itself to
check for errors.

Finally, please use the function prototypes in the header files “cublas.h” and “cublas_v2.h”
to check the code for correctness.

8.9 Examples

For sample code references that use the legacy CUBLAS API please see the two examples
below. They show an application written in C using the legacy CUBLAS library API with
two indexing styles (Example A.1. "Application Using C and CUBLAS: 1-based indexing"
and Example A.2. "Application Using C and CUBLAS: 0-based Indexing"). This
application is analogous to the one using the CUBLAS library API that is shown in the
Introduction chapter.

//Example A.1. Application Using C and CUBLAS: 1—based indexing

#include <stdio.h>

#include <stdlib .h>

#include <math.h>

#include "cublas.h"

#define M 6

#define N 5

Ydefine IDX2F(i,j,1d) ((((J)=1)*(1d))+((i)—1))

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 92

Chapter 8. Appendix A: Using the CUBLAS Legacy API

static __inline void modify (float *m, int ldm, int n, int p,

int

float beta){
cublasSscal (n—p+1, alpha, &m|[IDX2F(p,q,1ldm)]|, ldm);
cublasSscal (ldm—p+1, beta, &m[IDX2F(p,q,1ldm)], 1);

main (void){
int i, j;
cublasStatus stat;
float* devPtrA;
float*x a = 0;
a = (float *)malloc (M % N * sizeof (xa));
if (la) {
printf ("host memory allocation failed");
return EXIT_FAILURE;
}
for (j = 1; j <= N; j++) {
for (1 = 1; i <= M; i++) {
a[IDX2F (i,j,M)] = (float) ((i-1) * M + j);
}

cublasInit () ;
stat = cublasAlloc (M*N, sizeof(*xa), (voidxx)&devPtrA);
if (stat != CUBLAS_STATUS_SUCCESS) {
printf ("device memory allocation failed");
cublasShutdown () ;
return EXIT_FAILURE;

}
stat = cublasSetMatrix (M, N, sizeof(xa), a, M, devPtrA, M);
if (stat != CUBLAS_STATUS_SUCCESS) {

printf ("data download failed");
cublasFree (devPtrA);
cublasShutdown () ;

return EXIT_FAILURE;

modify (devPtrA, M, N, 2, 3, 16.0f, 12.0f);
stat = cublasGetMatrix (M, N, sizeof(xa), devPtrA, M, a, M);
if (stat != CUBLAS_STATUS_SUCCESS) {

printf ("data upload failed");

cublasFree (devPtrA);

cublasShutdown () ;

return EXIT_FAILURE;

cublasFree (devPtrA);
cublasShutdown () ;
for (j = 1; j <= N; j++) {
for (i = 1; i <= M; it++) {
printf ("%7.0f", a[IDX2F(i,j,M)]);
}

printf ("\n");

}

return EXIT_SUCCESS;

int q, float alpha,<+

//Example A.2. Application Using C and CUBLAS: 0—based indexing

#include <stdio.h>
#include <stdlib .h>
#include <math.h>

#include "cublas.h"

CUDA Toolkit 4.1 CUBLAS Library

PG-05326-041_v01 | 93

Chapter 8. Appendix A: Using the CUBLAS Legacy API

#define M 6
#define N 5
#define IDX2C(i,j,1d) (((j)*=(1d))-+(i))

static __inline__ void modify (float *m, int ldm, int n, int p, int q, float alpha,<+
float beta){
cublasSscal (n—p, alpha, &m[IDX2C(p,q,1ldm)]|, ldm);
cublasSscal (ldm—p, beta, &m|[IDX2C(p,q,ldm)]|, 1);

int main (void){
int i, j;
cublasStatus stat;
float* devPtrA;
float* a = 0;
a = (float x)malloc (M * N * sizeof (xa));
if (la) {
printf ("host memory allocation failed");
return EXIT_FAILURE;
}
for (j = 0; j < N; j++) {
for (i = 0; i < M; i++)
a[IDX2C(i,j,M)] = (float)(i * M + j + 1);

cublasInit () ;
stat = cublasAlloc (M*N, sizeof(*a), (voids**)&devPtrA);
if (stat != CUBLAS_STATUS_SUCCESS) {
printf ("device memory allocation failed");
cublasShutdown () ;
return EXIT_FAILURE;

}
stat = cublasSetMatrix (M, N, sizeof(*a), a, M, devPtrA, M);
if (stat != CUBLAS_STATUS_SUCCESS) {
printf ("data download failed");
cublasFree (devPtrA);
cublasShutdown () ;
return EXIT_FAILURE;
}

modify (devPtrA, M, N, 1, 2, 16.0f, 12.0f);
stat = cublasGetMatrix (M, N, sizeof(*a), devPtrA, M, a, M);
if (stat != CUBLAS_STATUS_SUCCESS) {
printf ("data upload failed");
cublasFree (devPtrA);
cublasShutdown () ;
return EXIT_FAILURE;
}
cublasFree (devPtrA);
cublasShutdown () ;
for (j = 0; j < N; j++) {
for (i = 0; i < M; i++) {
printf ("%7.0f", a[IDX2C(i,j,M)]);

printf ("\n");

}

return EXIT_SUCCESS;

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 94

Chapter 9
Appendix B: CUBLAS Fortran Bindings

The CUBLAS library is implemented using the C-based CUDA toolchain, and thus
provides a C-style API. This makes interfacing to applications written in C and C++
trivial, but the library can also be used by applications written in Fortran. In particular,
the CUBLAS library uses 1-based indexing and Fortran-style column-major storage for
multidimensional data to simplify interfacing to Fortran applications. Unfortunately,
Fortran-to-C calling conventions are not standardized and differ by platform and toolchain.
In particular, differences may exist in the following areas:

» symbol names (capitalization, name decoration)
» argument passing (by value or reference)

» passing of string arguments (length information)

» passing of pointer arguments (size of the pointer)

» returning floating-point or compound data types (for example single-precision or
complex data types)

To provide maximum flexibility in addressing those differences, the CUBLAS Fortran
interface is provided in the form of wrapper functions. These wrapper functions, written in
C, are provided in two forms:

1. the thunking wrapper interface located in the file fortran thunking.c

2. the direct wrapper interface located in the file fortran.c

The code of one of those 2 files needs to be compiled into an application for it to call the
CUBLAS API functions. Providing source code allows users to make any changes
necessary for a particular platform and toolchain.

The code in those two C files has been used to demonstrate interoperability with the
compilers g77 3.2.3 and g95 0.91 on 32-bit Linux, g77 3.4.5 and g95 0.91 on 64-bit Linux,
Intel Fortran 9.0 and Intel Fortran 10.0 on 32-bit and 64-bit Microsoft Windows XP, and
g77 3.4.0 and g95 0.92 on Mac OS X.

Note that for g77, use of the compiler flag -fno-second-underscore is required to use these
wrappers as provided. Also, the use of the default calling conventions with regard to

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 95

Chapter 9. Appendix B: CUBLAS Fortran Bindings

argument and return value passing is expected. Using the flag -fno-f2c changes the default
calling convention with respect to these two items.

The thunking wrappers allow interfacing to existing Fortran applications without any
changes to the application. During each call, the wrappers allocate GPU memory, copy
source data from CPU memory space to GPU memory space, call CUBLAS, and finally
copy back the results to CPU memory space and deallocate the GPU memory. As this
process causes very significant call overhead, these wrappers are intended for light testing,
not for production code. To use the thunking wrappers, the application needs to be
compiled with the file fortran _thunking.c

The direct wrappers, intended for production code, substitute device pointers for vector
and matrix arguments in all BLAS functions. To use these interfaces, existing applications
need to be modified slightly to allocate and deallocate data structures in GPU memory
space (using CUBLAS ALLOC and CUBLAS FREE) and to copy data between GPU
and CPU memory spaces (using CUBLAS SET VECTOR, CUBLAS GET VECTOR,
CUBLAS_SET MATRIX, and CUBLAS GET MATRIX). The sample wrappers
provided in fortran.c map device pointers to the OS-dependent type size t, which is 32-bit
wide on 32-bit platforms and 64-bit wide on a 64-bit platforms.

!Example B.1. Fortran 77 Application Executing on the Host
!

subroutine modify (m, ldm, n, p, q, alpha, beta)
implicit none

integer ldm, n, p, q

real*4 m(ldm,*), alpha, beta

external cublas_sscal

call cublas_sscal (n—p+1, alpha, m(p,q), ldm)
call cublas_sscal (ldm—p-+1, beta, m(p,q), 1)
return

end

program matrixmod
implicit none

integer M, N

parameter (M=6, N=5)
real*4 a(M,N)

integer i, j

external cublas_init
external cublas_shutdown

call cublas_init
call modify (a, M, N, 2, 3, 16.0, 12.0)
call cublas_shutdown
do j =1, N

do i =1, M

write (x," (F7.08)") a(i,j)

enddo

write (x,%)
enddo

nn

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 96

Chapter 9. Appendix B: CUBLAS Fortran Bindings

stop
end

One approach to deal with index arithmetic on device pointers in Fortran code is to use
C-style macros, and use the C preprocessor to expand these, as shown in the example
below. On Linux and Mac OS X, one way of pre-processing is to use the option -E -x
f77-cpp-input’ when using g77 compiler, or simply the option -cpp’ when using g95 or
gfortran. On Windows platforms with Microsoft Visual C/C++, using ’cl -EP’ achieves
similar results.

When traditional fixed-form Fortran 77 code is ported to use the CUBLAS library, line
length often increases when the BLAS calls are exchanged for CUBLAS calls. Longer
function names and possible macro expansion are contributing factors. Inadvertently
exceeding the maximum line length can lead to run-time errors that are difficult to find, so
care should be taken not to exceed the 72-column limit if fixed form is retained.

The examples in this chapter show a small application implemented in Fortran 77 on the
host and the same application with the non-thunking wrappers after it has been ported to
use the CUBLAS library.

The second example should be compiled with ARCH 64 defined as 1 on 64-bit OS system
and as 0 on 32-bit OS system. For example for g95 or gfortran, this can be done directly
on the command line by using the option -cpp -DARCH 64=1".

| Example B.2. Same Application Using Non—thunking CUBLAS Calls
!

#define IDX2F (i,j,1d) ((((j)—=1)*(1d))+((i)-1))

subroutine modify (devPtrM, ldm, n, p, q, alpha, beta)
implicit none
integer sizeof_real
parameter (sizeof_real=4)
integer ldm, n, p, q
#if ARCH_64
integer *8 devPtrM
#else
integer x4 devPtrM
#endif
real*4 alpha, beta
call cublas_sscal (n—p+1, alpha,

1 devPtrM+IDX2F (p,q,ldm)*sizeof _real,
2 1dm)

call cublas_sscal (ldm—p-1, beta,
1 devPtrM+IDX2F (p,q,ldm)*sizeof _real,
2 1)

return

end

program matrixmod

implicit none

integer M, N, sizeof_real
#if ARCH_64

integer *8 devPtrA

#else

CUDA Toolkit 4.1 CUBLAS Library PG-05326-041_v01 | 97

#endif

Chapter 9. Appendix B: CUBLAS Fortran Bindings

integer*4 devPtrA

parameter (M=6, N=5, sizeof_real=4)
real+4 a(M,N)
integer i, j, stat
external cublas_init, cublas_set_matrix, cublas_get_matrix
external cublas_shutdown, cublas_alloc
integer cublas_alloc, cublas_set_matrix, cublas_get_matrix
do j=1, N
do i =1, M
a(i,j) — (i-1) + M + j
enddo
enddo
call cublas_init
stat = cublas_alloc (M*N, sizeof_real, devPtrA)
if (stat .NE. 0) then
write (x,%x) "device memory allocation failed'
call cublas_shutdown
stop
endif
stat = cublas_set_matrix (M, N, sizeof_real, a, M, devPtrA, M)
if (stat .NE. 0) then
call cublas_free (devPtrA)
write (x,%x) "data download failed'
call cublas_shutdown
stop
endif
call modify (devPtrA, M, N, 2, 3, 16.0, 12.0)
stat = cublas_get_matrix (M, N, sizeof_real, devPtrA, M, a, M)
if (stat .NE. 0) then
call cublas_free (devPtrA)
write (x,+x) "data upload failed"
call cublas_shutdown
stop
endif
call cublas_free (devPtrA)
call cublas_shutdown
do j =1, N
do i =1, M
write (x,"(F7.0%)") a(i,j)
enddo
write (*,x)
enddo
stop
end

nn

CUDA To

olkit 4.1 CUBLAS Library PG-05326-041_v01 | 98

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S.
and other countries. Other company and product names may be trademarks of the respective companies with
which they are associated.

Copyright
© 2012 NVIDIA Corporation. All rights reserved.

www.nvidia.com nVIBIA-

	Contents
	1 Introduction
	1.1 Data layout
	1.2 New and Legacy CUBLAS API
	1.3 Example code

	2 Using the CUBLAS API
	2.1 Error status
	2.2 CUBLAS context
	2.3 Thread Safety
	2.4 Scalar Parameters
	2.5 Parallelism with Streams
	2.6 Batching Kernels

	3 CUBLAS Datatypes Reference
	3.1 cublasHandle_t
	3.2 cublasStatus_t
	3.3 cublasOperation_t
	3.4 cublasFillMode_t
	3.5 cublasDiagType_t
	3.6 cublasSideMode_t
	3.7 cublasPointerMode_t

	4 CUBLAS Helper Function Reference
	4.1 cublasCreate()
	4.2 cublasDestroy()
	4.3 cublasGetVersion()
	4.4 cublasSetStream()
	4.5 cublasGetStream()
	4.6 cublasGetPointerMode()
	4.7 cublasSetPointerMode()
	4.8 cublasSetVector()
	4.9 cublasGetVector()
	4.10 cublasSetMatrix()
	4.11 cublasGetMatrix()
	4.12 cublasSetVectorAsync()
	4.13 cublasGetVectorAsync()
	4.14 cublasSetMatrixAsync()
	4.15 cublasGetMatrixAsync()

	5 CUBLAS Level-1 Function Reference
	5.1 cublasI<t>amax()
	5.2 cublasI<t>amin()
	5.3 cublas<t>asum()
	5.4 cublas<t>axpy()
	5.5 cublas<t>copy()
	5.6 cublas<t>dot()
	5.7 cublas<t>nrm2()
	5.8 cublas<t>rot()
	5.9 cublas<t>rotg()
	5.10 cublas<t>rotm()
	5.11 cublas<t>rotmg()
	5.12 cublas<t>scal()
	5.13 cublas<t>swap()

	6 CUBLAS Level-2 Function Reference
	6.1 cublas<t>gbmv()
	6.2 cublas<t>gemv()
	6.3 cublas<t>ger()
	6.4 cublas<t>sbmv()
	6.5 cublas<t>spmv()
	6.6 cublas<t>spr()
	6.7 cublas<t>spr2()
	6.8 cublas<t>symv()
	6.9 cublas<t>syr()
	6.10 cublas<t>syr2()
	6.11 cublas<t>tbmv()
	6.12 cublas<t>tbsv()
	6.13 cublas<t>tpmv()
	6.14 cublas<t>tpsv()
	6.15 cublas<t>trmv()
	6.16 cublas<t>trsv()
	6.17 cublas<t>hemv()
	6.18 cublas<t>hbmv()
	6.19 cublas<t>hpmv()
	6.20 cublas<t>her()
	6.21 cublas<t>her2()
	6.22 cublas<t>hpr()
	6.23 cublas<t>hpr2()

	7 CUBLAS Level-3 Function Reference
	7.1 cublas<t>gemm()
	7.2 cublas<t>gemmBatched()
	7.3 cublas<t>symm()
	7.4 cublas<t>syrk()
	7.5 cublas<t>syr2k()
	7.6 cublas<t>trmm()
	7.7 cublas<t>trsm()
	7.8 cublas<t>hemm()
	7.9 cublas<t>herk()
	7.10 cublas<t>her2k()

	8 Appendix A: Using the CUBLAS Legacy API
	8.1 Error Status
	8.2 Initialization and Shutdown
	8.3 Thread Safety
	8.4 Memory Management
	8.5 Scalar Parameters
	8.6 Helper Functions
	8.7 Level-1,2,3 Functions
	8.8 Converting Legacy to the CUBLAS API
	8.9 Examples

	9 Appendix B: CUBLAS Fortran Bindings

