

DU-05982-001_v03 | November 2011

User Guide

COMPUTE COMMAND LINE
PROFILER

www.nvidia.com

Compute Command Line Profiler DU-05982-001_v03 | ii

DOCUMENT CHANGE HISTORY

DU-05982-001_v03

Version Date Authors Description of Change

01 September 9, 2011 SS, VS Initial release.
Note: Some of this content was published as
part of the Compute Visual Profiler User
Guide DU-05162-001_v04.

v02 October 14, 2011 SS, VS Minor updates for CUDA 4.1 RC1 release:

 Removed list of counters.

 Added a reference to the CUPTI users guide.

 Updated sample output.

v03 November 14, 2011 SS, VS  Added new section, “Command Line Profiler
Default Output”.

 Updated command line profiler options
table, Table 2.

www.nvidia.com

Compute Command Line Profiler DU-05982-001_v03 | iii

TABLE OF CONTENTS

Compute Command Line Profiler ... 4

Overview ... 4

Command Line Profiler Control ... 4

Command Line Profiler Default Output .. 6

Command Line Profiler Configuration ... 7

Command Line Profiler Options ... 7

Command Line Profiler Counters .. 10

Command Line Profiler Output .. 11

LIST OF TABLES

Table 1. Command Line Profiler Default Columns .. 6

Table 2. Command Line Profiler Options .. 7

www.nvidia.com

Compute Command Line Profiler DU-05982-001_v03 | 4

COMPUTE COMMAND LINE PROFILER

OVERVIEW

This document is intended for users of Compute Command Line Profiler for NVIDIA®

CUDATM technology. Compute Command Line Profiler is a command line based profiling

tool that can be used to measure performance and find potential opportunities for

optimization in order to achieve maximum performance from NVIDIA® GPUs.

The command line profiler allows users to gather timing information about kernel

execution and memory transfer operations for CUDA and OpenCL applications. Profiling

options are controlled through environment variables and a profiler configuration file.

Profiler output is generated in text files either in Key-Value-Pair (KVP) or Comma

Separated (CSV) format.

COMMAND LINE PROFILER CONTROL

The command line profiler is controlled using the following environment variables:

COMPUTE_PROFILE: is set to either 1 or 0 (or unset) to enable or disable profiling.

COMPUTE_PROFILE_LOG: is set to the desired file path for profiling output. In case of

multiple contexts you can add ‘%d’ in the COMPUTE_PROFILE_LOG name. This will

generate separate profiler output files for each context - with ‘%d’ substituted by the

context number. Contexts are numbered starting with zero. In case of multiple processes

you can add ‘%p’ in the COMPUTE_PROFILE_LOG name. This will generate separate

profiler output files for each process - with ‘%p’ substituted by the process id. If there is no

log path specified, the profiler will log data to “cuda_profile_%d.log” in case of a CUDA

context and “opencl_profile_%d.log” in case of a OpenCL context (‘%d’ is substituted by

the context number).

Compute Command Line Profiler

www.nvidia.com

Compute Command Line Profiler DU-05982-001_v03 | 5

COMPUTE_PROFILE_CSV: is set to either 1 (set) or 0 (unset) to enable or disable a

comma separated version of the log output.

COMPUTE_PROFILE_CONFIG: is used to specify a config file for enabling performance

counters in the GPU.

Configuration details are covered in a subsequent section.

The old environment variables, which were used specifically for CUDA/OpenCL are still

supported. The old environment variables for the above functionalities are:

CUDA_PROFILE/OPENCL_PROFILE

CUDA_PROFILE_LOG/OPENCL_PROFILE_LOG

CUDA_PROFILE_CSV/OPENCL_PROFILE_CSV

CUDA_PROFILE_CONFIG/OPENCL_PROFILE_CONFIG

If CUDA_PROFILE or OPENCL_PROFILE are explicitly set and the

COMPUTE_PROFILE environment variable is not set, the profiler outputs only the

corresponding contexts. If both are set, the COMPUTE_PROFILE environment variables

take precedence over CUDA_PROFILE/OPENCL_PROFILE environment variable.

Compute Command Line Profiler

www.nvidia.com

Compute Command Line Profiler DU-05982-001_v03 | 6

COMMAND LINE PROFILER DEFAULT OUTPUT

Table 1 describes the columns that are output in the profiler log by default.

Table 1. Command Line Profiler Default Columns

Column Description

method This is character string which gives the name of the GPU kernel
or memory copy method. In case of kernels the method name
is the mangled name generated by the compiler.

gputime This column gives the execution time for the GPU kernel or
memory copy method. This value is calculated as
(gpuendtimestamp – gpustarttimestamp)/1000.0. The column
value is a single precision floating point value in microseconds.

cputime For non-blocking methods the cputime is only the CPU or host
side overhead to launch the method. In this case:

walltime = cputime + gputime

For blocking methods cputime is the sum of gputime and CPU
overhead. In this case:

walltime = cputime

Note all kernel launches by default are non-blocking. But if any
of the profiler counters are enabled kernel launches are
blocking. Also asynchronous memory copy requests in different
streams are non-blocking.

The column value is a single precision floating point value in
microseconds.

occupancy This column gives the multiprocessor occupancy which is the
ratio of number of active warps to the maximum number of
warps supported on a multiprocessor of the GPU. This is
helpful in determining how efficient the kernel will be on the
GPU. This column is output only for GPU kernels and the
column value is a single precision floating point value in the
range 0.0 to 1.0.

Compute Command Line Profiler

www.nvidia.com

Compute Command Line Profiler DU-05982-001_v03 | 7

COMMAND LINE PROFILER CONFIGURATION

The profiler configuration file is used to select the profiler options and counters which are

to be collected during application execution. The configuration file is a simple format text

file with one option on each line. Options can be commented out using the ‘#’ character at

the start of a line. The profiler configuration options are same for CUDA and OpenCL, but

the column names in the profiler output is different for some options. Refer the command

line profiler options table for the column names.

Command Line Profiler Options

Table 2 contains the options supported by the command line profiler. Note the following

regarding the profiler log that is produced from the different options:

 Typically, each profiler option corresponds to a single column is output. There are a

few exceptions in which case multiple columns are output; these are noted where

applicable in Table 2.

 In most cases the column name is the same as the option name; the exceptions are listed

in Table 2.

 In most cases the column values are 32-bit integers in decimal format; the exceptions

are listed in Table 2.

Table 2. Command Line Profiler Options

Option Description

gpustarttimestamp Time stamp when a kernel or memory transfer starts.

The column values are 64-bit unsigned value in nanoseconds in
hexadecimal format.

gpuendtimestamp Time stamp when a kernel or memory transfer completes.

The column values are 64-bit unsigned value in nanoseconds in
hexadecimal format.

timestamp Time stamp when a kernel or memory transfer starts. The
column values are single precision floating point value in
microseconds. Use of the gpustarttimestamp column is
recommended as this provides a more accurate time stamp.

Compute Command Line Profiler

www.nvidia.com

Compute Command Line Profiler DU-05982-001_v03 | 8

Option Description

gridsize Number of blocks in a grid along the X and Y dimensions for a
kernel launch.

This option outputs the following two columns:

CUDA:

 gridsizeX

 gridsizeY

OpenCL:

 ndrangesizeX

 ndrangesizeY

gridsize3d Number of blocks in a grid along the X, Y and Z dimensions for
a kernel launch.

This option outputs the following three columns:

CUDA:

 gridsizeX

 gridsizeY

 gridsizeZ

OpenCL:

 ndrangesizeX

 ndrangesizeY

 ndrangesizeZ

threadblocksize Number of threads in a block along the X, Y and Z dimensions
for a kernel launch.

This option outputs the following three columns:

CUDA:

 threadblocksizeX

 threadblocksizeY

 threadblocksizeZ

OpenCL:

 workgroupsizeX

 workgroupsizeY

 workgroupsizeZ

dynsmemperblock Size of dynamically allocated shared memory per block in bytes
for a kernel launch. (Only CUDA)

stasmemperblock Size of statically allocated shared memory per block in bytes
for a kernel launch.

This option outputs the following columns:

CUDA:

 stasmemperblock

OpenCL:

 Stasmemperworkgroup

Compute Command Line Profiler

www.nvidia.com

Compute Command Line Profiler DU-05982-001_v03 | 9

Option Description

regperthread Number of registers used per thread for a kernel launch.

This option outputs the following columns:

CUDA:

 regperthread

OpenCL:

 regperworkitem

memtransferdir Memory transfer direction, a direction value of 0 is used for
host to device memory copies and a value of 1 is used for
device to host memory copies.

memtransfersize Memory transfer size in bytes. This option shows the amount of
memory transferred between source (host/device) to
destination (host/device).

memtransferhostmemtype Host memory type (pageable or page-locked). This option
implies whether during a memory transfer, the host memory
type is pageable or page-locked.

streamid Stream Id for a kernel launch.

localblocksize If workgroupsize has been specified by the user, this option
would be 1, otherwise it would be 0.(Only OpenCL).

This option outputs the following column:

 localworkgroupsize

cacheconfigrequested Requested cache configuration option for a kernel launch:

0 CU_FUNC_CACHE_PREFER_NONE - no preference for shared
memory or L1 (default)

1 CU_FUNC_CACHE_PREFER_SHARED - prefer larger shared
memory and smaller L1 cache

2 CU_FUNC_CACHE_PREFER_L1 - prefer larger L1 cache and
smaller shared memory

3 CU_FUNC_CACHE_PREFER_EQUAL - prefer equal sized L1
cache and shared memory

cacheconfigexecuted Cache configuration which was used for the kernel launch. The
values are same as those listed under cacheconfigrequested.

cudadevice

<device_index>

This can be used to select different counters for different
CUDA devices. All counters after this option are selected only
for a CUDA device with index <device_index>.

<device_index> is an integer value specifying the CUDA device
index.

Example: To select counterA for all devices, counterB for CUDA
device 0 and counter for CUDA device 1:

counterA

cudadevice 0

counterB

cudadevice 1

counter

Compute Command Line Profiler

www.nvidia.com

Compute Command Line Profiler DU-05982-001_v03 | 10

Option Description

profilelogformat

[CSV|KVP]

Choose format for profiler log.

CSV: Comma separated format

KVP: Key Value Pair format

The default format is KVP.

This option will override the format selected using the
environment variable COMPUTE_PROFILE_CSV.

countermodeaggregate If this option is selected then aggregate counter values will be
output. For a SM counter the counter value is the sum of the
counter values from all SMs. For l1*, tex*, sm_cta_launched,
uncached_global_load_transaction and
global_store_transaction counters the counter value is
collected for 1 SM from each GPC and it is extrapolated for all
SMs. This option is supported only for CUDA devices with
compute capability 2.0 or higher.

conckerneltrace This option should be used to get gpu start and end timestamp
values in case of concurrent kernels. Without this option
execution of concurrent kernels is serialized and the
timestamps are not correct. Only CUDA devices with compute
capability 2.0 or higher support execution of multiple kernels
concurrently. Also if profiler counters are enabled than
execution of kernels is serialized. When this option is enabled
additional code is inserted for each kernel and this will result
in some additional execution overhead and also it will have an
impact on some profiler counter values such as “inst_issued”.

COMMAND LINE PROFILER COUNTERS

The command line profiler supports logging of counters during kernel execution. Refer

the CUPTI User’s Guide “Event Reference” sections for supported counters on GPU

devices with different compute capabilities. Note that CUPTI events are referred to as

profiler counters in the command line profiler. The event name listed in the name can be

used in the command line profiler configuration file. In every application run only a few

counter values can be collected. The number of counters depends on the specific counters

selected.

Compute Command Line Profiler

www.nvidia.com

Compute Command Line Profiler DU-05982-001_v03 | 11

COMMAND LINE PROFILER OUTPUT

If the COMPUTE_PROFILE environment variable is set to enable profiling, the profiler

log records timing information for every kernel launch and memory operation performed

by the driver. The profiler determines dynamically whether the context is CUDA or

OpenCL, and produces the output log accordingly.

The default log syntax shown in Example 1Example 1 is part of the profiler log for a

CUDA application with no profiler configuration file specified.

Example 1. CUDA Default Profiler Log- No Options or Counters Enabled
(File name: “cuda_profile_0.log”)

CUDA_PROFILE_LOG_VERSION 2.0

CUDA_DEVICE 0 Tesla C2075

CUDA_CONTEXT 1

TIMESTAMPFACTOR fffff6de60e24570

method,gputime,cputime,occupancy

method=[memcpyHtoD] gputime=[80.640] cputime=[278.000]

method=[memcpyHtoD] gputime=[79.552] cputime=[237.000]

method=[_Z6VecAddPKfS0_Pfi] gputime=[5.760] cputime=[18.000]

occupancy=[1.000]

method=[memcpyDtoH] gputime=[97.472] cputime=[647.000]

The log above in Example 1Example 1 shows data for memory copies and a kernel launch.

The ‘method’ label specifies the name of the memory copy method or kernel executed.

The ‘gputime’ and ‘cputime’ labels specify the actual chip execution time and the driver

execution time, respectively. Note that gputime and cputime are in microseconds. The

‘occupancy’ label gives the ratio of the number of active warps per multiprocessor to the

maximum number of active warps for a particular kernel launch. This is the theoretical

occupancy and is calculated using kernel block size, register usage and shared memory

usage.

Compute Command Line Profiler

www.nvidia.com

Compute Command Line Profiler DU-05982-001_v03 | 12

Example 2Example 2 shows the profiler log of a CUDA application. There are a few

options and counters enabled in this example using the profiler configuration file:

gpustarttimestamp

gridsize3d

threadblocksize

dynsmemperblock

stasmemperblock

regperthread

memtransfersize

memtransferdir

streamid

countermodeaggregate

active_warps

active_cycles

Example 2. CUDA Profiler Log- Options and Counters Enabled

CUDA_PROFILE_LOG_VERSION 2.0

CUDA_DEVICE 0 Tesla C2075

CUDA_CONTEXT 1

TIMESTAMPFACTOR fffff6de5e08e990

gpustarttimestamp,method,gputime,cputime,gridsizeX,gridsizeY,gridsizeZ,t

hreadblocksizeX,threadblocksizeY,threadblocksizeZ,dynsmemperblock,stasme

mperblock,regperthread,occupancy,streamid,active_warps,active_cycles,mem

transfersize,memtransferdir

gpustarttimestamp=[124b9e484b6f3f40] method=[memcpyHtoD] gputime=[

80.800] cputime=[280.000] streamid=[1] memtransfersize=[200000]

memtransferdir=[1]

gpustarttimestamp=[124b9e484b7517a0] method=[memcpyHtoD] gputime=[

79.744] cputime=[232.000] streamid=[1] memtransfersize=[200000]

memtransferdir=[1]

gpustarttimestamp=[124b9e484b8fd8e0] method=[_Z6VecAddPKfS0_Pfi]

gputime=[10.016] cputime=[57.000] gridsize=[196, 1, 1]

threadblocksize=[256, 1, 1] dynsmemperblock=[0] stasmemperblock=[0

] regperthread=[4] occupancy=[1.000] streamid=[1]active_warps=[

1545830] active_cycles=[40774]

gpustarttimestamp=[124b9e484bb5a2c0] method=[memcpyDtoH] gputime=[

98.528] cputime=[672.000] streamid=[1] memtransfersize=[200000]

memtransferdir=[2]

The default log syntax is easy to parse with a script, but for spreadsheet analysis it might

be easier to use the comma separated format.

Compute Command Line Profiler

www.nvidia.com

Compute Command Line Profiler DU-05982-001_v03 | 13

When COMPUTE_PROFILE_CSV is set to 1, this same test produces the output log

shown in Example 3Example 3.

Example 3. CUDA Profiler Log- Options and Counters Enabled in CSV
Format

CUDA_PROFILE_LOG_VERSION 2.0

CUDA_DEVICE 0 Tesla C2075

CUDA_CONTEXT 1

CUDA_PROFILE_CSV 1

TIMESTAMPFACTOR fffff6de5d77a1c0

gpustarttimestamp,method,gputime,cputime,gridsizeX,gridsizeY,gridsizeZ,t

hreadblocksizeX,threadblocksizeY,threadblocksizeZ,dynsmemperblock,stasme

mperblock,regperthread,occupancy,streamid,active_warps,active_cycles,mem

transfersize,memtransferdir

124b9e85038d1800,memcpyHtoD,80.352,286.000,,,,,,,,,,,1,,,200000,1

124b9e850392ee00,memcpyHtoD,79.776,232.000,,,,,,,,,,,1,,,200000,1

124b9e8503af7460,_Z6VecAddPKfS0_Pfi,10.048,59.000,196,1,1,256,1,1,0,0,4,

1.000,1,1532814,42030

124b9e8503d4f280,memcpyDtoH,97.888,672.000,,,,,,,,,,,1,,,200000,2

The following examples are for OpenCL applications. Example 4Example 4 is part of the

log from a test of the scan application without any counters enabled.

Example 4. OpenCL Default Profiler Log- No Options or Counters Enabled
(File name: “opencl_profile_0.log”)

OPENCL_PROFILE_LOG_VERSION 2.0

OPENCL_DEVICE 0 Tesla C2075

OPENCL_CONTEXT 1

TIMESTAMPFACTOR fffff6de5cc2c1d0

method,gputime,cputime,occupancy

method=[memcpyDtoHasync] gputime=[72409.602] cputime=[73403.000]

method=[memcpyDtoHasync] gputime=[72764.414] cputime=[73674.000]

method=[VectorAdd] gputime=[1256.480] cputime=[18.000] occupancy=[

1.000]

method=[memcpyHtoDasync] gputime=[124819.328] cputime=[129170.000]

The description of the output is same as that in Example 1.

Compute Command Line Profiler

www.nvidia.com

Compute Command Line Profiler DU-05982-001_v03 | 14

Example 5Example 5 shows the profiler log for a OpenCL application with some options

and counters enabled using the same configuration file as for Example 2:

Example 5. OpenCL Profiler Log- Options and Counters Enabled

OPENCL_PROFILE_LOG_VERSION 2.0

OPENCL_DEVICE 0 Tesla C2075

OPENCL_CONTEXT 1

TIMESTAMPFACTOR fffff6de5c479690

gpustarttimestamp,method,gputime,cputime,ndrangesizeX,ndrangesizeY,ndran

gesizeZ,workgroupsizeX,workgroupsizeY,workgroupsizeZ,stapmemperworkgroup

,regperworkitem,occupancy,streamid,active_warps,active_cycles,memtransfe

rsize,memtransferdir

gpustarttimestamp=[124b9f03b0a9c540] method=[memcpyDtoHasync]

gputime=[71607.328] cputime=[72573.000] streamid=[6]

memtransfersize=[45779968] memtransferdir=[2]

gpustarttimestamp=[124b9f03b51376a0] method=[memcpyDtoHasync]

gputime=[72692.258] cputime=[73589.000] streamid=[6]

memtransfersize=[45779968] memtransferdir=[2]

gpustarttimestamp=[124b9f03b9881940] method=[VectorAdd] gputime=[

1255.936] cputime=[1310.000] ndrangesize=[44707, 1, 1]

workgroupsize=[256, 1, 1] stapmemperworkgroup=[0] regperworkitem=[4

] occupancy=[1.000] streamid=[6]active_warps=[388164035]

active_cycles=[10046628]

gpustarttimestamp=[124b9f03b9c7ffa0] method=[memcpyHtoDasync]

gputime=[125990.852] cputime=[130365.000] streamid

=[6] memtransfersize=[45779968] memtransferdir=[1]

When COMPUTE_PROFILE_CSV is set to 1, this same test produces the following

output:

Example 6. OpenCL Profiler Log- Options and Counters Enabled in CSV
Format

OPENCL_PROFILE_LOG_VERSION 2.0

OPENCL_DEVICE 0 Tesla C2075

OPENCL_CONTEXT 1

OPENCL_PROFILE_CSV 1

TIMESTAMPFACTOR fffff6de5c12c270

gpustarttimestamp,method,gputime,cputime,ndrangesizeX,ndrangesizeY,ndran

gesizeZ,workgroupsizeX,workgroupsizeY,workgroupsizeZ,stapmemperworkgroup

,regperworkitem,occupancy,streamid,active_warps,active_cycles,memtransfe

rsize,memtransferdir

124b9f19a3d23840,memcpyDtoHasync,71908.961,72946.000,,,,,,,,,,6,,,457799

68,2

124b9f19a83f5be0,memcpyDtoHasync,72832.125,73732.000,,,,,,,,,,6,,,457799

68,2

124b9f19acb65a40,VectorAdd,1255.648,1311.000,44707,1,1,256,1,1,0,4,1.000

,6,387752953,10045923

124b9f19acf1a780,memcpyHtoDasync,126117.953,129953.000,,,,,,,,,,6,,,4577

9968,1

www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, and <add all the other product names listed in this document> are trademarks
and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

Copyright

© 20121 NVIDIA Corporation. All rights reserved.

