
CUDA Toolkit 4.1
CURAND Guide

PG-05328-041_v01 | January 2012

Published by
NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES,
DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND
SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS". NVIDIA MAKES
NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH
RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS
FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such information or
for any infringement of patents or other rights of third parties that may result from its use.
No license is granted by implication or otherwise under any patent or patent rights of
NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all information previously
supplied. NVIDIA Corporation products are not authorized for use as critical components
in life support devices or systems without express written approval of NVIDIA
Corporation.

Trademarks

NVIDIA, CUDA, and the NVIDIA logo are trademarks or registered trademarks of
NVIDIA Corporation in the United States and other countries. Other company and
product names may be trademarks of the respective companies with which they are
associated.

Copyright

Copyright ©2005-2012 by NVIDIA Corporation. All rights reserved.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 1

Portions of the MTGP32 (Mersenne Twister for GPU) library routines are subject to the
following copyright:

Copyright ©2009, 2010 Mutsuo Saito, Makoto Matsumoto and Hiroshima University. All
rights reserved. Copyright ©2011 Mutsuo Saito, Makoto Matsumoto, Hiroshima
University and University of Tokyo. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither the name of the Hiroshima University nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 2

CURAND Library

The CURAND library provides facilities that focus on the simple and efficient generation
of high-quality pseudorandom and quasirandom numbers. A pseudorandom sequence of
numbers satisfies most of the statistical properties of a truly random sequence but is
generated by a deterministic algorithm. A quasirandom sequence of n-dimensional points
is generated by a deterministic algorithm designed to fill an n-dimensional space evenly.

CURAND consists of two pieces: a library on the host (CPU) side and a device (GPU)
header file. The host-side library is treated like any other CPU library: users include the
header file, /include/curand.h, to get function declarations and then link against the
library. Random numbers can be generated on the device or on the host CPU. For device
generation, calls to the library happen on the host, but the actual work of random number
generation occurs on the device. The resulting random numbers are stored in global
memory on the device. Users can then call their own kernels to use the random numbers,
or they can copy the random numbers back to the host for further processing. For host
CPU generation, all of the work is done on the host, and the random numbers are stored
in host memory.

The second piece of CURAND is the device header file, /include/curand_kernel.h. This
file defines device functions for setting up random number generator states and generating
sequences of random numbers. User code may include this header file, and user-written
kernels may then call the device functions defined in the header file. This allows random
numbers to be generated and immediately consumed by user kernels without requiring the
random numbers to be written to and then read from global memory.

Compatibility and Versioning
The host API of CURAND is intended to be backward compatible at the source level with
future releases (unless stated otherwise in the release notes of a specific future release). In
other words, if a program uses CURAND, it should continue to compile and work correctly
with newer versions of CURAND without source code changes.

CURAND is not guaranteed to be backward compatible at the binary level. Using a
different version of the curand.h header file and the shared library is not supported. Using

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 4

different versions of CURAND and the CUDA runtime is not supported.

The device API should be backward compatible at the source level for public functions in
most cases.

Host API Overview
To use the host API, user code should include the library header file curand.h and
dynamically link against the CURAND library. The library uses the CUDA runtime, so
user code must also use the runtime. The CUDA driver API is not supported by
CURAND.

Random numbers are produced by generators. A generator in CURAND encapsulates all
the internal state necessary to produce a sequence of pseudorandom or quasirandom
numbers. The normal sequence of operations is as follows:

1. Create a new generator of the desired type (see Generator Types) with
curandCreateGenerator().

2. Set the generator options (see Generator Options); for example, use
curandSetPseudoRandomGeneratorSeed() to set the seed.

3. Allocate memory on the device with cudaMalloc().

4. Generate random numbers with curandGenerate() or another generation function.

5. Use the results.

6. If desired, generate more random numbers with more calls to curandGenerate().

7. Clean up with curandDestroyGenerator().

To generate random numbers on the host CPU, in step one above call
curandCreateGeneratorHost(), and in step three, allocate a host memory buffer to
receive the results. All other calls work identically whether you are generating random
numbers on the device or on the host CPU.

It is legal to create several generators at the same time. Each generator encapsulates a
separate state and is independent of all other generators. The sequence of numbers
produced by each generator is deterministic. Given the same set-up parameters, the same
sequence will be generated with every run of the program. Generating random numbers on
the device will result in the same sequence as generating them on the host CPU.

Note that curandGenerate() in step 4 above launches a kernel and returns
asynchronously. If you launch another kernel in a different stream, and that kernel needs
to use the results of curandGenerate(), you must either call cudaThreadSynchronize() or
use the stream management/event management routines, to ensure that the random
generation kernel has finished execution before the new kernel is launched.

Note that it is not valid to pass a host memory pointer to a generator that is running on

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 5

the device, and it is not valid to pass a device memory pointer to a generator that is
running on the CPU. Behavior in these cases is undefined.

Generator Types
Random number generators are created by passing a type to curandCreateGenerator().
There are five types of random number generators in CURAND, that fall into two
categories. CURAND_RNG_PSEUDO_XORWOW, CURAND_RNG_PSEUDO_MRG32K3A, and
CURAND_RNG_PSEUDO_MTGP32 are pseudorandom number generators.
CURAND_RNG_PSEUDO_XORWOW is implemented using the XORWOW algorithm, a member of
the xor-shift family of pseudorandom number generators. CURAND_RNG_PSEUDO_MRG32K3A
is a member of the Combined Multiple Recursive family of pseudorandom number
generators. CURAND_RNG_PSEUDO_MTGP32 is a member of the Mersenne Twister family of
pseudorandom number generators, with parameters customized for operation on the GPU.
There are 4 variants of the basic SOBOL’ quasi random number generator. All of the
variants generate sequences in up to 20,000 dimensions. CURAND_RNG_QUASI_SOBOL32,
CURAND_RNG_QUASI_SCRAMBLED_SOBOL32, CURAND_RNG_QUASI_SOBOL64, and
CURAND_RNG_QUASI_SCRAMBLED_SOBOL64 are quasirandom number generator types.
CURAND_RNG_QUASI_SOBOL32 is a Sobol’ generator of 32-bit sequences.
CURAND_RNG_QUASI_SCRAMBLED_SOBOL32 is a scrambled Sobol’ generator of 32-bit
sequences. CURAND_RNG_QUASI_SOBOL64 is a Sobol’ generator of 64-bit sequences.
CURAND_RNG_QUASI_SCRAMBLED_SOBOL64 is a scrambled Sobol’ generator of 64-bit
sequences.

Generator Options
Once created, random number generators can be defined using the general options seed,
offset, and order.

Seed

The seed parameter is a 64-bit integer that initializes the starting state of a pseudorandom
number generator. The same seed always produces the same sequence of results.

Offset

The offset parameter is used to skip ahead in the sequence. If offset = 100, the first random
number generated will be the 100th in the sequence. This allows multiple runs of the same
program to continue generating results from the same sequence without overlap. Note that
the skip ahead function is not available for the CURAND_RNG_PSEUDO_MTGP32 generator.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 6

Order

The order parameter is used to choose how the results are ordered in global memory.
There are three ordering choices for pseudorandom sequences:
CURAND_ORDERING_PSEUDO_DEFAULT, CURAND_ORDERING_PSEUDO_BEST, and
CURAND_ORDERING_PSEUDO_SEEDED. There is one ordering choice for quasirandom numbers,
CURAND_ORDERING_QUASI_DEFAULT. The default ordering for pseudorandom number
generators is CURAND_ORDERING_PSEUDO_DEFAULT, while the default ordering for
quasirandom number generators is CURAND_ORDERING_QUASI_DEFAULT.

Currently, the two pseudorandom orderings CURAND_ORDERING_PSEUDO_DEFAULT and
CURAND_ORDERING_PSEUDO_BEST produce the same output ordering for all pseudo-random
generators. However, future releases of CURAND may change the ordering associated with
CURAND_ORDERING_PSEUDO_BEST to improve either performance or the quality of the
results. It will always be the case that the ordering obtained with
CURAND_ORDERING_PSEUDO_BEST is deterministic and is the same for each run of the
program. The ordering returned by CURAND_ORDERING_PSEUDO_DEFAULT is guaranteed to
remain the same for all CURAND releases. In the current release, only the XORWOW
generator has more than one ordering.

The behavior of the ordering parameters for each generator type is outlined below:

I XORWOW pseudorandom generator

• CURAND_ORDERING_PSEUDO_BEST

The output ordering of CURAND_ORDERING_PSEUDO_BEST is the same as
CURAND_ORDERING_PSEUDO_DEFAULT in the current release.

• CURAND_ORDERING_PSEUDO_DEFAULT

The result at offset n in global memory is from position

(n mod 4096) · 267 + bn/4096c

in the original XORWOW sequence.

• CURAND_ORDERING_PSEUDO_SEEDED

The result at offset n in global memory is from position bn/4096c in the
XORWOW sequence seeded with a combination of the user seed and the
number n mod 4096. In other words, each of 4096 threads uses a different seed.
This seeding method reduces state setup time but may result in statistical
weaknesses of the pseudorandom output for some user seed values.

I MRG32k3a pseudorandom generator

• CURAND_ORDERING_PSEUDO_BEST

The output ordering of CURAND_ORDERING_PSEUDO_BEST is the same as
CURAND_ORDERING_PSEUDO_DEFAULT in the current release.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 7

• CURAND_ORDERING_PSEUDO_DEFAULT

The result at offset n in global memory is from position

(n mod 4096) · 276 + bn/4096c

in the original MRG32k3a sequence. (Note that the stride between subsequent
samples for MRG32k3a is not the same as for XORWOW)

I MTGP32 pseudorandom generator

• CURAND_ORDERING_PSEUDO_BEST

The output ordering of CURAND_ORDERING_PSEUDO_BEST is the same as
CURAND_ORDERING_PSEUDO_DEFAULT in the current release.

• CURAND_ORDERING_PSEUDO_DEFAULT

The MTGP32 generator actually generates 64 distinct sequences based on
different parameter sets for the basic algorithm. Let S(p) be the sequence for
parmeter set p.

The result at offset n in global memory is from position (n mod 256) from the
sequence

S(bn/256c mod 64)

In other words 256 samples from S(0) are followed by 256 samples from S(1)
and so-on, up to S(63). This pattern repeats, so the subsequent 256 samples are
from S(0), followed by 256 samples from S(1), ands so on.

I 32 and 64 bit SOBOL and Scrambled SOBOL quasirandom generators

• CURAND_ORDERING_QUASI_DEFAULT

When generating n results in d dimensions, the output will consist of n/d
results from dimension 1, followed by n/d results from dimension 2, and so on
up to dimension d. Only exact multiples of the dimension size may be
generated. The dimension parameter d is set with
curandSetQuasiRandomGeneratorDimensions() and defaults to 1.

Return Values
All CURAND host library calls have a return value of curandStatus_t. Calls that succeed
without errors return CURAND_STATUS_SUCCESS. If errors occur, other values are returned
depending on the error. Because CUDA allows kernels to execute asynchronously from
CPU code, it is possible that errors in a non-CURAND kernel will be detected during a
call to a library function. In this case, CURAND_STATUS_PREEXISTING_ERROR is returned.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 8

Generation Functions
curandStatus_t
curandGenerate(

curandGenerator_t generator,
unsigned int *outputPtr, size_t num)

The curandGenerate() function is used to generate pseudo- or quasirandom bits of
output. For XORWOW, MRG32k3a, MTGP32, and SOBOL32 generators, each output
element is a 32-bit unsigned int where all bits are random. For SOBOL64 generators, each
output element is a 64-bit unsigned long long where all bits are random.

curandStatus_t
curandGenerateUniform(

curandGenerator_t generator,
float *outputPtr, size_t num)

The curandGenerateUniform() function is used to generate uniformly distributed floating
point values between 0.0 and 1.0, where 0.0 is excluded and 1.0 is included.

curandStatus_t
curandGenerateNormal(

curandGenerator_t generator,
float *outputPtr, size_t n,
float mean, float stddev)

The curandGenerateNormal() function is used to generate normally distributed floating
point values with the given mean and standard deviation.

curandStatus_t
curandGenerateLogNormal(

curandGenerator_t generator,
float *outputPtr, size_t n,
float mean, float stddev)

The curandGenerateLogNormal() function is used to generate log-normally distributed
floating point values based on a normal distribution with the given mean and standard
deviation.

curandStatus_t
curandGenerateUniformDouble(

curandGenerator_t generator,
double *outputPtr, size_t num)

The function curandGenerateUniformDouble() generates uniformly distributed random
numbers in double precision. The function

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 9

curandStatus_t
curandGenerateNormalDouble(

curandGenerator_t generator,
double *outputPtr, size_t n,
double mean, double stddev)

curandGenerateNormalDouble() generates normally distributed results in double
precision with the given mean and standard deviation. Double precision results can only
be generated on devices of compute capability 1.3 or above, and the host.

curandStatus_t
curandGenerateLogNormalDouble(

curandGenerator_t generator,
double *outputPtr, size_t n,
double mean, double stddev)

curandGenerateLogNormalDouble() generates log-normally distributed results in double
precision, based on a normal distribution with the given mean and standard deviation.

For quasirandom generation, the number of results returned must be a multiple of the
dimension of the generator.

Generation functions can be called multiple times on the same generator to generate
successive blocks of results. For pseudorandom generators, multiple calls to generation
functions will yield the same result as a single call with a large size. For quasirandom
generators, because of the ordering of dimensions in memory, many shorter calls will not
produce the same results in memory as one larger call; however the generated
n-dimensional vectors will be the same.

Double precision results can only be generated on devices of compute capability 1.3 or
above, and the host.

Host API Example

/*
* This program uses the host CURAND API to generate 100
* pseudorandom floats.
*/

#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>
#include <curand.h>

#define CUDA_CALL(x) do { if((x)!= cudaSuccess) { \

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 10

printf ("Error at %s:%d\n",__FILE__ ,__LINE__);\
return EXIT_FAILURE ;}} while (0)

#define CURAND_CALL(x) do { if((x)!= CURAND_STATUS_SUCCESS) { \
printf ("Error at %s:%d\n",__FILE__ ,__LINE__);\
return EXIT_FAILURE ;}} while (0)

int main(int argc , char *argv [])
{

size_t n = 100;
size_t i;
curandGenerator_t gen;
float *devData , *hostData;

/* Allocate n floats on host */
hostData = (float *) calloc(n, sizeof(float));

/* Allocate n floats on device */
CUDA_CALL(cudaMalloc ((void **)&devData , n*sizeof(float)));

/* Create pseudo -random number generator */
CURAND_CALL(curandCreateGenerator (&gen ,

CURAND_RNG_PSEUDO_DEFAULT));

/* Set seed */
CURAND_CALL(curandSetPseudoRandomGeneratorSeed(gen ,

1234 ULL));

/* Generate n floats on device */
CURAND_CALL(curandGenerateUniform(gen , devData , n));

/* Copy device memory to host */
CUDA_CALL(cudaMemcpy(hostData , devData , n * sizeof(float),

cudaMemcpyDeviceToHost));

/* Show result */
for(i = 0; i < n; i++) {

printf ("%1.4f ", hostData[i]);
}
printf ("\n");

/* Cleanup */
CURAND_CALL(curandDestroyGenerator(gen));
CUDA_CALL(cudaFree(devData));
free(hostData);

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 11

return EXIT_SUCCESS;
}

Performance Notes
In general you will get the best performance from the CURAND library by generating
blocks of random numbers that are as large as possible. Fewer calls to generate many
random numbers is more efficient than many calls generating only a few random numbers.
The default pseudorandom generator, XORWOW, with the default ordering takes some
time to setup the first time it is called. Subsequent generation calls do not require this
setup. To avoid this setup time, use the CURAND_ORDERING_PSEUDO_SEEDED ordering.

The MTGP32 Mersenne Twister algorithm is closely tied to the thread and block count.
The state structure for MTGP32 actually contains the state for 256 consecutive samples
from a given sequence, as determined by a specific parameter set. Each of 64 blocks uses a
different parameter set and each of 256 threads generates one sample from the state, and
updates the state. Hence the most efficient use of MTGP32 is to generate a multiple of
16384 samples.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 12

Device API Overview
To use the device API, include the file curand_kernel.h in files that define kernels that
use CURAND device functions. The device API includes functions for pseudorandom
generation and quasirandom generation.

Pseudorandom Sequences
The functions for pseudorandom sequences support bit generation and generation from
distributions.

Bit Generation with XORWOW and MRG32k3a generators

__device__ unsigned int
curand (curandState_t *state)

Following a call to curand_init(), curand() returns a sequence of pseudorandom
numbers with a period greater than 2190. If curand() is called with the same initial state
each time, and the state is not modified between the calls to curand(), the same sequence
is always generated.

__device__ void
curand_init (

unsigned long long seed, unsigned long long sequence,
unsigned long long offset, curandState_t *state)

The curand_init() function sets up an initial state allocated by the caller using the given
seed, sequence number, and offset within the sequence. Different seeds are guaranteed to
produce different starting states and different sequences. The same seed always produces
the same state and the same sequence. The state set up will be the state after
267 · sequence+ offset calls to curand() from the seed state.

Sequences generated with different seeds usually do not have statistically correlated values,
but some choices of seeds may give statistically correlated sequences. Sequences generated
with the same seed and different sequence numbers will not have statistically correlated
values.

For the highest quality parallel pseudorandom number generation, each experiment should
be assigned a unique seed. Within an experiment, each thread of computation should be
assigned a unique sequence number. If an experiment spans multiple kernel launches, it is
recommended that threads between kernel launches be given the same seed, and sequence
numbers be assigned in a monotonically increasing way. If the same configuration of
threads is launched, random state can be preserved in global memory between launches to
avoid state setup time.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 13

Bit Generation with the MTGP32 generator

The MTGP32 generator is an adaptation of code developed at Hiroshima University
(see [1]). In this algorithm, samples are generated for multiple sequences, each sequence
based on a set of computed parameters. CURAND uses the 200 parameter sets that have
been pre-generated for the 32-bit generator with period 211213. It would be possible to
generate other parameter sets, as described in [1], and use those instead. There is one state
structure for each parameter set (sequence), and the algorithm allows thread-safe
generation and state update for up to 256 concurrent threads (within a single block) for
each of the 200 sequences.

Note that two different blocks can not operate on the same state safely. Also note that,
within a block, at most 256 threads may operate on a given state.

For the MTGP32 generator, two host functions are provided to help set up parameters for
the different sequences in device memory, and to set up the initial state.

__host__ curandStatus_t
curandMakeMTGP32Constants(mtgp32_params_fast_t params[], mtgp32_kernel_params_t * p)

This function re-organizes the paramter set data from the pre-generated format
(mtgp32_params_fast_t) into the format used by the kernel functions
(mtgp32_kernel_params_t), and copies them to device memory.

__host__ curandStatus_t
curandMakeMTGP32KernelState(curandStateMtgp32_t *s,

mtgp32_params_fast_t params[],
mtgp32_kernel_params_t *k,
int n,
unsigned long long seed)

This function initializes n states, based on the specified parameter set and seed, and copies
them to device memory indicated by s. Note that if you are using the pre-generated
states, the maximum value of n is 200.

The CURAND MTGP32 generator provides two kernel functions to generate random bits.

__device__ unsigned int
curand (curandStateMtgp32_t *state)

This function computes a thread index, and for that index generates a result and updates
state. The thread index t is computed as:

t = (blockDim.z * blockDim.y * threadIdx.z) + (blockDim.x * threadIdx.y) +
threadIdx.x

This function may be called repeatedly from a single kernel launch, with the following
constraints:

It may only be called safely from a block that has 256 or fewer threads.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 14

A given state may not be used by more than one block.

A given block may generate randoms using multiple states.

__device__ unsigned int
curand_mtgp32_specific(curandStateMtgp32_t *state, unsigned char index, unsigned char n)

This function generates a result and updates state for the position specified by a
thread-specific index, and advances the offset in the state by n positions.
curand_mtgp32_specific may be called multiple times within a kernel launch, with the
following constraints:

At most 256 threads may call this function for a given state.

Within a block, for a given state, if n threads are calling the function, the indices must run
from 0...n-1. The indices do not have to match the thread numbers, and may be
distributed among the threads as required by the calling program.

A given state may not be used by more than one block.

A given block may generate randoms using multiple states.

Figure 1 is an illustration of how blocks and threads in MTGP32 operate on the generator
states. Each row represents a circular state array of 32-bit integers s(n). Threads
operating on the array are identified as T(m). The specific case shown matches the internal
implementation of the host API, which launches 64 blocks of 256 threads. Each block
operates on a different sequence, determined by a unique set of paramters, P(n). One
complete state of an MTGP32 sequence is defined by 351 32-bit integers. Each thread T(m)
operates on one of these integers, s(n+m) combining it with s(n+m+1) and a pickup element
s(n+m+p), where p <= 95. It stores the new state at position s(n+m+351) in the state
array. After thread synchronization, the base index n is advanced by the number of threads
that have updated the state. To avoid being overwritten, the array itself must be at least
256 + 351 integers in length. In fact it is sized at 1024 integers for efficiency of indexing.

The limitation on the number of threads in a block, which can operate on a given state
array, arises from the need to ensure that state s(n+351) has been updated before it is
needed as a pickup state. If there were a thread T(256), it could use s(n+256+95) i.e.
s(n+351) before thread zero has updated s(n+351). If an application requires that more
than 256 threads in a block invoke an MTGP32 generator function, it must use multiple
MTGP32 states, either by using multiple parameter sets, or by using multiple generators
with different seeds. Also note that the generator functions synchronize threads at the end
of each call, so it is most efficient for 256 threads in a block to invoke the generator.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 15

s(n) s(n+351)s(n+2)s(n+1) s(n+352)

T(0) T(1)

s(n+p)

s(n) s(n+351)s(n+2)s(n+1) s(n+352)

T(0) T(1)

s(n+p) . . .

Block(63) using P(63)

Block(2) using P(2)

Block(1) using P(1)

Block(0) using P(0)

. . .

. . .

. . .

Figure 1: MTGP32 Block and Thread Operation

Distributions

__device__ float
curand_uniform (curandState_t *state)

This function returns a sequence of pseudorandom floats uniformly distributed between 0.0
and 1.0. It may return from 0.0 to 1.0, where 1.0 is included and 0.0 is excluded.
Distribution functions may use any number of unsigned integer values from a basic
generator. The number of values consumed is not guaranteed to be fixed.

__device__ float
curand_normal (curandState_t *state)

This function returns a single normally distributed float with mean 0.0 and standard
deviation 1.0. This result can be scaled and shifted to produce normally distributed values
with any mean and standard deviation.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 16

__device__ float
curand_log_normal (curandState_t *state, float mean, float stddev)

This function returns a single log-normally distributed float based on a normal distribution
with the given mean and standard deviation.

__device__ double
curand_uniform_double (curandState_t *state)

__device__ double
curand_normal_double (curandState_t *state)

__device__ double
curand_log_normal_double (curandState_t *state, double mean, double stddev)

The three functions above are the double precision versions of curand_uniform(),
curand_normal(), and curand_log_normal().

For pseudorandom generators, the double precision functions use multiple calls to
curand() to generate 53 random bits.

__device__ float2
curand_normal2 (curandState_t *state)

__device__ float2
curand_log_normal2 (curandState_t *state)

__device__ double2
curand_normal2_double (curandState_t *state)

__device__ double2
curand_log_normal2_double (curandState_t *state)

The above functions generate two normally or log normally distributed pseudorandom
results with each call. Because the underlying implementation uses the Box-Muller
transform, this is generally more efficient than generating a single result with each call.

Quasirandom Sequences
Although the default generator type is pseudorandom numbers from XORWOW, Sobol’
sequences based on Sobol’ 32-bit integers can be generated using the following functions:

__device__ void
curand_init (

unsigned int *direction_vectors,
unsigned int offset,
curandStateSobol32_t *state)

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 17

__device__ void
curand_init (

unsigned int *direction_vectors,
unsigned int scramble_c,
unsigned int offset,
curandStateScrambledSobol32_t *state)

__device__ unsigned int
curand (curandStateSobol32_t *state)

__device__ float
curand_uniform (curandStateSobol32_t *state)

__device__ float
curand_normal (curandStateSobol32_t *state)

__device__ float
curand_log_normal (

curandStateSobol32_t *state,
float mean,
float stddev)

__device__ double
curand_uniform_double (curandStateSobol32_t *state)

__device__ double
curand_normal_double (curandStateSobol32_t *state)

__device__ double
curand_log_normal_double (

curandStateSobol32_t *state,
double mean,
double stddev)

The curand_init() function initializes the quasirandom number generator state. There is
no seed parameter, only direction vectors and offset. For scrambled Sobol’ generators,
there is an additional parameter scramble_c, which is the initial value of the scrambled
sequence. For the curandStateSobol32_t type and the curandStateScrambledSobol32_t
type the direction vectors are an array of 32 unsigned integer values. For the
curandStateSobol64_t type and the curandStateScrambledSobol64_t type the direction
vectors are an array of 64 unsigned long long values. Offsets and initial constants for the
scrambled sequence are of type unsigned int for 32-bit Sobol’ generators. These parameters
are of type unsigned long long for 64-bit Soblol’ generators. For the
curandStateSobol32_t type and the curandStateScrambledSobol32_t type the sequence
is exactly 232 elements long where each element is 32 bits. For the curandStateSobol64_t
type and the curandStateScrambledSobol64_t type the sequence is exactly 264 elements
long where each element is 64 bits. Each call to curand() returns the next quasirandom

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 18

element. Calls to curand_uniform() return quasirandom floats or doubles from 0.0 to 1.0,
where 1.0 is included and 0.0 is excluded. Similarly, calls to curand_normal() return
normally distributed floats or doubles with mean 0.0 and standard deviation 1.0. Calls to
curand_log_normal() return log-normally distributed floats or doubles, derived from the
normal distribution with the specified mean and standard deviation. All of the generation
functions may be called with any type of Sobol’ generator.

As an example, generating quasirandom coordinates that fill a unit cube requires keeping
track of three quasirandom generators. All three would start at offset = 0 and would
have dimensions 0, 1, and 2, respectively. A single call to curand_uniform() for each
generator state would generate the x, y, and z coordinates. Tables of direction vectors are
accessible on the host through the curandGetDirectionVectors32() and
curandGetDirectionVectors64() functions. The direction vectors needed should be
copied into device memory before use.

The normal distribution functions for quasirandom generation use the inverse cumulative
density function to preserve the dimensionality of the quasirandom sequence. Therefore
there are no functions that generate more than one result at a time as there are with the
pseudorandom generators.

The double precision Sobol32 functions return results in double precision that use 32 bits
of internal precision from the underlying generator.

The double precision Sobol64 functions return results in double precision that use 53 bits
of internal precision from the underlying generator. These bits are taken from the high
order 53 bits of the 64 bit samples.

Skip-Ahead
There are several functions to skip ahead from a generator state.

__device__ void
skipahead (unsigned long long n, curandState_t *state)

__device__ void
skipahead (unsigned int n, curandStateSobol32_t *state)

Using this function is equivalent to calling curand() n times without using the return
value, but it is much faster.

__device__ void
skipahead_sequence (unsigned long long n, curandState_t *state)

This function is the equivalent of calling curand() n · 267 times without using the return
value and is much faster.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 19

Performance Notes
Calls to curand_init() are slower than calls to curand() or curand_uniform(). Large
offsets to curand_init() take more time than smaller offsets. It is much faster to save and
restore random generator state than to recalculate the starting state repeatedly.

As shown below, generator state can be stored in global memory between kernel launches,
used in local memory for fast generation, and then stored back into global memory.

__global__ void example(curandState *global_state)
{

curandState local_state;
local_state = global_state[threadIdx.x];
for(int i = 0; i < 10000; i++) {

unsigned int x = curand (& local_state);
...

}
global_state[threadIdx.x] = local_state;

}

Initialization of the random generator state generally requires more registers and local
memory than random number generation. It may be beneficial to separate calls to
curand_init() and curand() into separate kernels for maximum performance.

State setup can be an expensive operation. One way to speed up the setup is to use
different seeds for each thread and a constant sequence number of 0. This can be especially
helpful if many generators need to be created. While faster to set up, this method provides
less guarantees about the mathematical properties of the generated sequences. If there
happens to be a bad interaction between the hash function that initializes the generator
state from the seed and the periodicity of the generators, there might be threads with
highly correlated outputs for some seed values. We do not know of any problem values; if
they do exist they are likely to be rare.

Device API Example
This example uses the device API to calculate the proportion of pseudorandom integers
that have the low bit set.

/*
* This program uses the device CURAND API to calculate what
* proportion of pseudo -random ints have low bit set.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 20

*/
#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>
#include <curand_kernel.h>

#define CUDA_CALL(x) do { if((x) != cudaSuccess) { \
printf ("Error at %s:%d\n",__FILE__ ,__LINE__); \
return EXIT_FAILURE ;}} while (0)

__global__ void setup_kernel(curandState *state)
{

int id = threadIdx.x + blockIdx.x * 64;
/* Each thread gets same seed , a different sequence

number , no offset */
curand_init (1234 , id, 0, &state[id]);

}

__global__ void generate_kernel(curandState *state ,
int *result)

{
int id = threadIdx.x + blockIdx.x * 64;
int count = 0;
unsigned int x;
/* Copy state to local memory for efficiency */
curandState localState = state[id];
/* Generate pseudo -random unsigned ints */
for(int n = 0; n < 100000; n++) {

x = curand (& localState);
/* Check if low bit set */
if(x & 1) {

count ++;
}

}
/* Copy state back to global memory */
state[id] = localState;
/* Store results */
result[id] += count;

}

int main(int argc , char *argv [])
{

int i, total;
curandState *devStates;

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 21

int *devResults , *hostResults;

/* Allocate space for results on host */
hostResults = (int *) calloc (64 * 64, sizeof(int));

/* Allocate space for results on device */
CUDA_CALL(cudaMalloc ((void **)&devResults , 64 * 64 *

sizeof(int)));

/* Set results to 0 */
CUDA_CALL(cudaMemset(devResults , 0, 64 * 64 *

sizeof(int)));

/* Allocate space for prng states on device */
CUDA_CALL(cudaMalloc ((void **)&devStates , 64 * 64 *

sizeof(curandState)));

/* Setup prng states */
setup_kernel <<<64, 64>>>(devStates);

/* Generate and use pseudo -random */
for(i = 0; i < 10; i++) {

generate_kernel <<<64, 64>>>(devStates , devResults);
}

/* Copy device memory to host */
CUDA_CALL(cudaMemcpy(hostResults , devResults , 64 * 64 *

sizeof(int), cudaMemcpyDeviceToHost));

/* Show result */
total = 0;
for(i = 0; i < 64 * 64; i++) {

total += hostResults[i];
}
printf (" Fraction with low bit set was %10.13f\n",

(float)total / (64.0f * 64.0f * 100000.0f * 10.0f));

/* Cleanup */
CUDA_CALL(cudaFree(devStates));
CUDA_CALL(cudaFree(devResults));
free(hostResults);
return EXIT_SUCCESS;

}

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 22

Thrust and CURAND Example
The following example demonstrates mixing CURAND and Thrust. It is a minimally
modified version of monte_carlo.cu, one of the standard Thrust examples. The example
estimates π by randomly picking points in the unit square and calculating the distance to
the origin to see if the points are in the quarter unit circle.

#include <thrust/iterator/counting_iterator.h>
#include <thrust/functional.h>
#include <thrust/transform_reduce.h>
#include <curand_kernel.h>

#include <iostream >
#include <iomanip >

// we could vary M & N to find the perf sweet spot

struct estimate_pi :
public thrust :: unary_function <unsigned int , float >

{
__device__
float operator ()(unsigned int thread_id)
{

float sum = 0;
unsigned int N = 10000; // samples per thread

unsigned int seed = thread_id;

curandState s;

// seed a random number generator
curand_init(seed , 0, 0, &s);

// take N samples in a quarter circle
for(unsigned int i = 0; i < N; ++i)
{

// draw a sample from the unit square
float x = curand_uniform (&s);
float y = curand_uniform (&s);

// measure distance from the origin
float dist = sqrtf(x*x + y*y);

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 23

// add 1.0f if (u0,u1) is inside the quarter circle
if(dist <= 1.0f)

sum += 1.0f;
}

// multiply by 4 to get the area of the whole circle
sum *= 4.0f;

// divide by N
return sum / N;

}
};

int main(void)
{

// use 30K independent seeds
int M = 30000;

float estimate = thrust :: transform_reduce(
thrust :: counting_iterator <int >(0),
thrust :: counting_iterator <int >(M),
estimate_pi (),
0.0f,
thrust ::plus <float >());

estimate /= M;

std::cout << std:: setprecision (3);
std::cout << "pi is approximately ";
std::cout << estimate << std::endl;
return 0;

}

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 24

Testing
Sobol’ sequences are generated using the direction vectors recommended by Joe and
Kuo [2]. The scrambled Sobol’ method is described in [3] and [4].

The XORWOW generator was proposed by Marsaglia [5] and has been tested using the
TestU01 "Crush" framework of tests [6]. The full suite of NIST pseudorandomness tests [7]
has also been run, though the focus has been on TestU01. The most rigorous the the
TestU01 batteries is "BigCrush", which executes 106 statistical tests over the course of
approximately 5 hours on a high-end CPU/GPU. The XORWOW generator passes all of
the tests on most runs, but does produce occasional suspect statistics. Below is an
examples of the summary output from a run that did not pass all tests, with the detail of
the specific failure.

========= Summary results of BigCrush =========

Version: TestU01 1.2.3
Generator: curandXORWOW
Number of statistics: 160
Total CPU time: 05:17:59.63
The following tests gave p-values outside [0.001, 0.9990]:
(eps means a value < 1.0e-300):
(eps1 means a value < 1.0e-15):

Test p-value
--
81 LinearComp, r = 29 1 - 7.1e-11
--
All other tests were passed

Detail from test 81:

scomp_LinearComp test:

N = 1, n = 400020, r = 29, s = 1

Number of degrees of freedom : 12
Chi2 statistic for size of jumps : 7.11
p-value of test : 0.85

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 25

Normal statistic for number of jumps : -6.41
p-value of test : 1 - 7.1e-11 *****

To put this into perspective, there is a table in [6] that gives the results of running various
levels of the "Crush" tests on a broad selection of generators. Only a small number of
generators pass all of the BigCrush tests. For example the widely-respected Mersenne
twister [8] consistently fails two of the linear complexity tests.

The MRG32k3a generator was proposed in [9], with a specific implementation suggested
in [10]. This generator passes all "BigCrush" tests frequently, with occasional marginal
results similar to those shown below.

========= Summary results of BigCrush =========

Version: TestU01 1.2.3
Generator: curandMRG32k3a
Number of statistics: 160
Total CPU time: 07:14:55.41
The following tests gave p-values outside [0.001, 0.9990]:
(eps means a value < 1.0e-300):
(eps1 means a value < 1.0e-15):

Test p-value
--
59 WeightDistrib, r = 0 5.2e-4
--
All other tests were passed

Detail from test 59:

svaria_WeightDistrib test:

N = 1, n = 20000000, r = 0, k = 256, Alpha = 0, Beta = 0.25

Number of degrees of freedom : 67
Chi-square statistic : 111.55
p-value of test : 5.2e-4 *****

CPU time used : 00:02:56.25

The MTGP32 generator is an adaptation of the work outlined in [1]. The MTGP32

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 26

generator exhibits some marginal results on "BigCrush". Below is an example.

========= Summary results of BigCrush =========

Version: TestU01 1.2.3
Generator: curandMtgp32Int
Number of statistics: 160
Total CPU time: 05:45:29.49
The following tests gave p-values outside [0.001, 0.9990]:
(eps means a value < 1.0e-300):
(eps1 means a value < 1.0e-15):

Test p-value
--
12 CollisionOver, t = 21 0.9993
--
All other tests were passed

Detail from test 12:

smultin_MultinomialOver test:

N = 30, n = 20000000, r = 28, d = 4, t = 21,
Sparse = TRUE

GenerCell = smultin_GenerCellSerial
Number of cells = d^t = 4398046511104
Expected number per cell = 1 / 219902.33
EColl = n^2 / (2k) = 45.47473509
Hashing = TRUE

Collision test

CollisionOver: density = n / k = 1 / 219902.33
Expected number of collisions = Mu = 45.47

Results of CollisionOver test:

POISSON approximation :
Expected number of collisions = N*Mu : 1364.24
Observed number of collisions : 1248
p-value of test : 0.9993 *****

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 27

Total number of cells containing j balls

j = 0 : 131940795334368
j = 1 : 599997504
j = 2 : 1248
j = 3 : 0
j = 4 : 0
j = 5 : 0

CPU time used : 00:04:32.52

Testing of the normal distribution, with the each of the generators, has been done using
the Pearson chi-squared test [11], [12], the Jarque-Bera test [13], the Kolmogorov-Smirnov
test [14], [15], and the Anderson-Darling test [16].

Tests are run over the range +/- 6 standard deviations. Three Pearson tests are run, with
cell counts 1000, 100, and 25. The test output has columns labeled PK for Pearson with
1000 cells, PC for Pearson with 100 cells, P25 for Pearson with 25 cells, JB for
Jarque-Bera, KS for Kolmogorov-Smirnov, and AD for Anderson-Darling. The rejection
criterion for each test is printed below the label.

The following tables are representative of the test output for statistical testing of the
normal distribution for XORWOW, MRG32k3a, MTGP32, Sobol’ 32-bit, and scrambled
Sobol’ 32-bit generators. The rows of each table represent the statistical results computed
over successive sequences of 10000 samples.

XORWOW Generator:

PK PC P25 JB KS AD
<1058 <118 <33 <4.6 <0.0122 <.632

--
684.48120 58.97784 20.44693 2.84152 0.00540 0.32829
686.37925 54.84938 7.79583 0.55109 0.00900 0.25832
673.21437 69.15825 15.46540 0.30335 0.00872 0.26772
568.26999 49.99519 8.85046 0.66624 0.00870 0.22939
639.10690 84.23040 10.19753 0.19844 0.00542 0.27939

MRg32k3a Generator:

PK PC P25 JB KS AD
<1058 <118 <33 <4.6 <0.0122 <.632

--

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 28

764.38500 74.48157 19.32716 1.50118 0.01103 0.60351
795.31006 74.15086 11.78414 1.15159 0.00821 0.35343
741.85426 91.88692 20.67103 2.34232 0.00900 0.61787
644.62093 70.68369 17.18277 0.32870 0.01243* 0.34630
806.02693 93.50691 23.10548 2.67340 0.00978 0.51466

MTGP32 Generator:

PK PC P25 JB KS AD
<1058 <118 <33 <4.6 <0.0122 <.632

--

924.62604 110.19868 23.45811 0.86919 0.00519 0.33411
708.76047 79.42919 20.67913 1.13427 0.01142 0.54632
674.17713 65.80415 13.09834 1.07799 0.01040 0.23860
733.35915 57.13829 17.66337 3.17017 0.01188 0.30864
620.17297 50.39043 14.75682 0.57970 0.00845 0.28916

Sobol’ 32-bit generator:

PK PC P25 JB KS AD
<1058 <118 <33 <4.6 <0.0122 <.632

--

157.04578 6.47398 1.45802 0.19007 0.00024 0.00188
243.82767 11.98164 1.34982 0.00668 0.00030 0.00086
229.87234 10.40206 2.73912 0.04165 0.00036 0.00137
290.29451 17.09013 3.25717 0.02583 0.00042 0.00172
327.32072 19.22832 5.09510 0.00335 0.00036 0.00127

Scrambled Sobol’ 32-bit generator:

PK PC P25 JB KS AD
<1058 <118 <33 <4.6 <0.0122 <.632

--

255.80606 10.93180 1.33766 0.01226 0.00036 0.00112
258.84244 8.45589 1.56766 0.04164 0.00036 0.00170
585.34346 49.33610 5.32037 0.04069 0.00043 0.00208
337.50312 27.64720 3.38925 0.01953 0.00041 0.00211
729.56687 56.89682 32.89772 0.00911 0.00040 0.00204

Even though the log-normal distribution is closely derived from the normal distribution, it
has also been tested using the Pearson chi-squared test and the Kolmogorov-Smirnov test.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 29

The following tables are representative of the test output for statistical testing of the log
normal distribution for XORWOW, MRG32k3a, MTGP32, Sobol’ 32-bit, and scrambled
Sobol’ 32-bit generators.

XORWOW generator:

PK PC P25 KS
<1058 <118 <33 <0.0122

--

1019.57936 105.63667 13.15820 0.00540
991.93663 91.95369 20.46549 0.00900
983.09678 115.34978 20.50434 0.00872
966.45604 113.30013 24.54060 0.00870
996.35262 111.50026 21.01332 0.00542

MRG32k3a generator:

PK PC P25 KS
<1058 <118 <33 <0.0122

--

1000.00359 90.12428 22.82709 0.00826
942.17843 81.16259 16.13670 0.00739

1005.62148 102.29924 23.62705 0.00697
1053.68391 98.75565 28.65422 0.01107
998.38936 103.43649 19.26568 0.00803

MTGP32 generator:

PK PC P25 KS
<1058 <118 <33 <0.0122

--

1010.18903 94.51850 17.98126 0.00771
993.78319 76.86543 12.48859 0.00831

1010.22068 63.76027 11.65743 0.00677
963.33103 89.44369 17.96636 0.01200
927.15616 75.85515 13.64221 0.00566

Sobol’ 32-bit generator:

PK PC P25 KS
<1058 <118 <33 <0.0122

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 30

--

289.42589 5.03327 0.48858 0.00024
386.79860 6.57783 0.76902 0.00030
355.04631 8.54472 1.12228 0.00036
434.19211 9.54021 2.07006 0.00042
343.57507 10.71571 0.42503 0.00036

Scrambled Sobol- 32-bit generator:

PK PC P25 KS
<1058 <118 <33 <0.0122

--

354.55037 8.20727 0.24592 0.00036
506.45280 12.93848 0.73323 0.00036
451.96949 18.18903 0.69465 0.00043
593.25666 16.55782 0.54769 0.00041
423.05263 12.06600 0.53472 0.00040

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 31

Bibliography

[1] Mutsuo Saito. A variant of mersenne twister suitable for graphic processors.
arXiv:1005.4973v2 [cs.MS], Jun 2010.

[2] S. Joe and F. Y. Kuo. Remark on algorithm 659: Implementing sobol’s quasirandom
sequence generator. ACM Transactions on Mathematical Software, 29:49–57, March
2003.

[3] Jiri Matousek. Journal of complexity. ACM Transactions on Mathematical Software,
14(4):527–556, December 1998.

[4] Art B. Owen. Local antithetic sampling with scrambled nets. The Annals of
Statistics, 36(5):2319–2343, 2008.

[5] George Marsaglia. Xorshift RNGs. Journal of Statistical Software, 8(14), 2003.
Available at http://www.jstatsoft.org/v08/i14/paper.

[6] Pierre L’Ecuyer and Richard Simard. TestU01: A C library for empirical testing of
random number generators. ACM Transactions on Mathematical Software, 33(4),
August 2007. Available at
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf.

[7] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker, Stefan
Leigh, Mark Levenson, Mark Vangel, David Banks, Alan Heckert, James Dray, and
San Vo. A statistical test suite for the validation of random number generators and
pseudorandom number generators for cryptographic applications. Special Publication
800-22 Revision 1a, National Institute of Standards and Technology, April 2010.
Available at http://csrc.nist.gov/groups/ST/toolkit/rng/index.html.

[8] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator. ACM Transactions on
Modeling and Computer Simulation, 8(1):3–30, January 1998.

[9] Pierre L’Ecuyer. Good parameters and implementations for combined multiple
recursive random number generators. Operations Research, 47(1), Jan-Feb 1999.

[10] Pierre L’Ecuyer, Richard Simard, E. Jack Chen, and W. David Kelton. An
object-oriented random-number package with many long streams and substreams.
Operations Research, 50(6), Nov-Dec 2002.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 32

http://www.jstatsoft.org/v08/i14/paper
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html

[11] Karl Pearson. On the criterion that a given system of deviations from the probable in
the case of a correlated system of variables is such that it can be reasonably supposed
to have arisen from random sampling. Philosophical Magazine, 50(302):157–175, July
1900.

[12] R. L. Placket. Karl Pearson and the chi-squared test. International Statistics Review,
51:59–72, 1983.

[13] Carlos M. Jarque and Anil K. Bera. Efficient tests for normality, homoscedasticity and
serial independence of regression residuals. Economics Letters, 6(3):255–259, 1980.

[14] A. Kolmogorov. Sulla determinazione empirica di una legge di distribuzione. G. Inst.
Ital. Attuari, 4(83), 1933.

[15] Frank J. Massey. The Kolmogorov-Smirnov test for goodness of fit. Journal of the
American Statistical Association, 46(253):68–78, 1951.

[16] T. W. Anderson and D. A. Darling. Asymptotic theory of certain "goodness-of-fit"
criteria based on stochastic processes. Annals of Mathematical Statistics,
23(2):193–212, 1952.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 33

CURAND Reference

Host API
Functions

I curandStatus_t curandCreateGenerator (curandGenerator_t ∗generator,
curandRngType_t rng_type)

Create new random number generator.

I curandStatus_t curandCreateGeneratorHost (curandGenerator_t ∗generator,
curandRngType_t rng_type)

Create new host CPU random number generator.

I curandStatus_t curandDestroyGenerator (curandGenerator_t generator)

Destroy an existing generator.

I curandStatus_t curandGenerate (curandGenerator_t generator, unsigned int
∗outputPtr, size_t num)

Generate 32-bit pseudo or quasirandom numbers.

I curandStatus_t curandGenerateLogNormal (curandGenerator_t generator, float
∗outputPtr, size_t n, float mean, float stddev)

Generate log-normally distributed floats.

I curandStatus_t curandGenerateLogNormalDouble (curandGenerator_t generator,
double ∗outputPtr, size_t n, double mean, double stddev)

Generate log-normally distributed doubles.

I curandStatus_t curandGenerateLongLong (curandGenerator_t generator, unsigned
long long ∗outputPtr, size_t num)

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 34

Generate 64-bit quasirandom numbers.

I curandStatus_t curandGenerateNormal (curandGenerator_t generator, float
∗outputPtr, size_t n, float mean, float stddev)

Generate normally distributed floats.

I curandStatus_t curandGenerateNormalDouble (curandGenerator_t generator,
double ∗outputPtr, size_t n, double mean, double stddev)

Generate normally distributed doubles.

I curandStatus_t curandGenerateSeeds (curandGenerator_t generator)

Setup starting states.

I curandStatus_t curandGenerateUniform (curandGenerator_t generator, float
∗outputPtr, size_t num)

Generate uniformly distributed floats.

I curandStatus_t curandGenerateUniformDouble (curandGenerator_t generator,
double ∗outputPtr, size_t num)

Generate uniformly distributed doubles.

I curandStatus_t curandGetDirectionVectors32 (curandDirectionVectors32_t
∗vectors[], curandDirectionVectorSet_t set)

Get direction vectors for 32-bit quasirandom number generation.

I curandStatus_t curandGetDirectionVectors64 (curandDirectionVectors64_t
∗vectors[], curandDirectionVectorSet_t set)

Get direction vectors for 64-bit quasirandom number generation.

I curandStatus_t curandGetScrambleConstants32 (unsigned int ∗∗constants)
Get scramble constants for 32-bit scrambled Sobol’ .

I curandStatus_t curandGetScrambleConstants64 (unsigned long long ∗∗constants)
Get scramble constants for 64-bit scrambled Sobol’ .

I curandStatus_t curandGetVersion (int ∗version)
Return the version number of the library.

I curandStatus_t curandSetGeneratorOffset (curandGenerator_t generator, unsigned
long long offset)

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 35

Set the absolute offset of the pseudo or quasirandom number generator.

I curandStatus_t curandSetGeneratorOrdering (curandGenerator_t generator,
curandOrdering_t order)

Set the ordering of results of the pseudo or quasirandom number generator.

I curandStatus_t curandSetPseudoRandomGeneratorSeed (curandGenerator_t
generator, unsigned long long seed)

Set the seed value of the pseudo-random number generator.

I curandStatus_t curandSetQuasiRandomGeneratorDimensions (curandGenerator_t
generator, unsigned int num_dimensions)

Set the number of dimensions.

I curandStatus_t curandSetStream (curandGenerator_t generator, cudaStream_t
stream)

Set the current stream for CURAND kernel launches.

I enum curandDirectionVectorSet {

CURAND_DIRECTION_VECTORS_32_JOEKUO6 = 101,

CURAND_SCRAMBLED_DIRECTION_VECTORS_32_JOEKUO6 = 102,

CURAND_DIRECTION_VECTORS_64_JOEKUO6 = 103,

CURAND_SCRAMBLED_DIRECTION_VECTORS_64_JOEKUO6 = 104 }
I enum curandOrdering {

CURAND_ORDERING_PSEUDO_BEST = 100,

CURAND_ORDERING_PSEUDO_DEFAULT = 101,

CURAND_ORDERING_PSEUDO_SEEDED = 102,

CURAND_ORDERING_QUASI_DEFAULT = 201 }
I enum curandRngType { ,

CURAND_RNG_PSEUDO_DEFAULT = 100,

CURAND_RNG_PSEUDO_XORWOW = 101,

CURAND_RNG_PSEUDO_MRG32K3A = 121,

CURAND_RNG_PSEUDO_MTGP32 = 141,

CURAND_RNG_QUASI_DEFAULT = 200,

CURAND_RNG_QUASI_SOBOL32 = 201,

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 36

CURAND_RNG_QUASI_SCRAMBLED_SOBOL32 = 202,

CURAND_RNG_QUASI_SOBOL64 = 203,

CURAND_RNG_QUASI_SCRAMBLED_SOBOL64 = 204 }
I enum curandStatus {

CURAND_STATUS_SUCCESS = 0,

CURAND_STATUS_VERSION_MISMATCH = 100,

CURAND_STATUS_NOT_INITIALIZED = 101,

CURAND_STATUS_ALLOCATION_FAILED = 102,

CURAND_STATUS_TYPE_ERROR = 103,

CURAND_STATUS_OUT_OF_RANGE = 104,

CURAND_STATUS_LENGTH_NOT_MULTIPLE = 105,

CURAND_STATUS_DOUBLE_PRECISION_REQUIRED = 106,

CURAND_STATUS_LAUNCH_FAILURE = 201,

CURAND_STATUS_PREEXISTING_FAILURE = 202,

CURAND_STATUS_INITIALIZATION_FAILED = 203,

CURAND_STATUS_ARCH_MISMATCH = 204,

CURAND_STATUS_INTERNAL_ERROR = 999 }
I typedef unsigned int curandDirectionVectors32_t [32]
I typedef unsigned long long curandDirectionVectors64_t [64]
I typedef enum curandDirectionVectorSet curandDirectionVectorSet_t
I typedef struct curandGenerator_st ∗ curandGenerator_t
I typedef enum curandOrdering curandOrdering_t
I typedef enum curandRngType curandRngType_t
I typedef enum curandStatus curandStatus_t

Typedef Documentation
typedef unsigned int curandDirectionVectors32_t[32]

CURAND array of 32-bit direction vectors

typedef unsigned long long curandDirectionVectors64_t[64]

CURAND array of 64-bit direction vectors

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 37

typedef enum curandDirectionVectorSet curandDirectionVec-
torSet_t

CURAND choice of direction vector set

typedef struct curandGenerator_st∗ curandGenerator_t

CURAND generator

typedef enum curandOrdering curandOrdering_t

CURAND orderings of results in memory

typedef enum curandRngType curandRngType_t

CURAND generator types

typedef enum curandStatus curandStatus_t

CURAND function call status types

Enumeration Type Documentation
enum curandDirectionVectorSet

CURAND choice of direction vector set
Enumerator:

CURAND_DIRECTION_VECTORS_32_JOEKUO6 Specific set of 32-bit
direction vectors generated from polynomials recommended by S. Joe and F. Y.
Kuo, for up to 20,000 dimensions.

CURAND_SCRAMBLED_DIRECTION_VECTORS_32_JOEKUO6 Specific set
of 32-bit direction vectors generated from polynomials recommended by S. Joe
and F. Y. Kuo, for up to 20,000 dimensions, and scrambled.

CURAND_DIRECTION_VECTORS_64_JOEKUO6 Specific set of 64-bit
direction vectors generated from polynomials recommended by S. Joe and F. Y.
Kuo, for up to 20,000 dimensions.

CURAND_SCRAMBLED_DIRECTION_VECTORS_64_JOEKUO6 Specific set
of 64-bit direction vectors generated from polynomials recommended by S. Joe
and F. Y. Kuo, for up to 20,000 dimensions, and scrambled.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 38

enum curandOrdering

CURAND orderings of results in memory
Enumerator:

CURAND_ORDERING_PSEUDO_BEST Best ordering for pseudorandom
results.

CURAND_ORDERING_PSEUDO_DEFAULT Specific default 4096 thread
sequence for pseudorandom results.

CURAND_ORDERING_PSEUDO_SEEDED Specific seeding pattern for fast
lower quality pseudorandom results.

CURAND_ORDERING_QUASI_DEFAULT Specific n-dimensional ordering for
quasirandom results.

enum curandRngType

CURAND generator types
Enumerator:

CURAND_RNG_PSEUDO_DEFAULT Default pseudorandom generator.

CURAND_RNG_PSEUDO_XORWOW XORWOW pseudorandom generator.

CURAND_RNG_PSEUDO_MRG32K3A MRG32k3a pseudorandom generator.

CURAND_RNG_PSEUDO_MTGP32 Mersenne Twister pseudorandom generator.

CURAND_RNG_QUASI_DEFAULT Default quasirandom generator.

CURAND_RNG_QUASI_SOBOL32 Sobol32 quasirandom generator.

CURAND_RNG_QUASI_SCRAMBLED_SOBOL32 Scrambled Sobol32
quasirandom generator.

CURAND_RNG_QUASI_SOBOL64 Sobol64 quasirandom generator.

CURAND_RNG_QUASI_SCRAMBLED_SOBOL64 Scrambled Sobol64
quasirandom generator.

enum curandStatus

CURAND Host API datatypes CURAND function call status types
Enumerator:

CURAND_STATUS_SUCCESS No errors.

CURAND_STATUS_VERSION_MISMATCH Header file and linked library
version do not match.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 39

CURAND_STATUS_NOT_INITIALIZED Generator not initialized.
CURAND_STATUS_ALLOCATION_FAILED Memory allocation failed.
CURAND_STATUS_TYPE_ERROR Generator is wrong type.
CURAND_STATUS_OUT_OF_RANGE Argument out of range.
CURAND_STATUS_LENGTH_NOT_MULTIPLE Length requested is not a

multple of dimension.
CURAND_STATUS_DOUBLE_PRECISION_REQUIRED GPU does not have

double precision required by MRG32k3a.
CURAND_STATUS_LAUNCH_FAILURE Kernel launch failure.
CURAND_STATUS_PREEXISTING_FAILURE Preexisting failure on library

entry.
CURAND_STATUS_INITIALIZATION_FAILED Initialization of CUDA failed.
CURAND_STATUS_ARCH_MISMATCH Architecture mismatch, GPU does not

support requested feature.
CURAND_STATUS_INTERNAL_ERROR Internal library error.

Function Documentation
curandStatus_t curandCreateGenerator (curandGenerator_t ∗
generator, curandRngType_t rng_type)

Creates a new random number generator of type rng_type and returns it in ∗generator.

Legal values for rng_type are:

I CURAND_RNG_PSEUDO_DEFAULT

I CURAND_RNG_PSEUDO_XORWOW

I CURAND_RNG_PSEUDO_MRG32K3A

I CURAND_RNG_PSEUDO_MTGP32

I CURAND_RNG_QUASI_DEFAULT

I CURAND_RNG_QUASI_SOBOL32

I CURAND_RNG_QUASI_SCRAMBLED_SOBOL32

I CURAND_RNG_QUASI_SOBOL64

I CURAND_RNG_QUASI_SCRAMBLED_SOBOL64

When rng_type is CURAND_RNG_PSEUDO_DEFAULT, the type chosen is
CURAND_RNG_PSEUDO_XORWOW.

When rng_type is CURAND_RNG_QUASI_DEFAULT, the type chosen is
CURAND_RNG_QUASI_SOBOL32.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 40

The default values for rng_type = CURAND_RNG_PSEUDO_XORWOW are:

I seed = 0

I offset = 0

I ordering = CURAND_ORDERING_PSEUDO_DEFAULT

The default values for rng_type = CURAND_RNG_PSEUDO_MRG32K3A are:

I seed = 0

I offset = 0

I ordering = CURAND_ORDERING_PSEUDO_DEFAULT

The default values for rng_type = CURAND_RNG_PSEUDO_MTGP32 are:

I seed = 0

I offset = 0

I ordering = CURAND_ORDERING_PSEUDO_DEFAULT

The default values for rng_type = CURAND_RNG_QUASI_SOBOL32 are:

I dimensions = 1

I offset = 0

I ordering = CURAND_ORDERING_QUASI_DEFAULT

The default values for rng_type = CURAND_RNG_QUASI_SOBOL64 are:

I dimensions = 1

I offset = 0

I ordering = CURAND_ORDERING_QUASI_DEFAULT

The default values for rng_type =
CURAND_RNG_QUASI_SCRAMBBLED_SOBOL32 are:

I dimensions = 1

I offset = 0

I ordering = CURAND_ORDERING_QUASI_DEFAULT

The default values for rng_type = CURAND_RNG_QUASI_SCRAMBLED_SOBOL64
are:

I dimensions = 1

I offset = 0

I ordering = CURAND_ORDERING_QUASI_DEFAULT

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 41

Parameters:

generator - Pointer to generator
rng_type - Type of generator to create

Returns:

CURAND_STATUS_ALLOCATION_FAILED if memory could not be allocated
CURAND_STATUS_INITIALIZATION_FAILED if there was a problem setting up
the GPU
CURAND_STATUS_VERSION_MISMATCH if the header file version does not
match the dynamically linked library version
CURAND_STATUS_TYPE_ERROR if the value for rng_type is invalid
CURAND_STATUS_SUCCESS if generator was created successfully

curandStatus_t curandCreateGeneratorHost (curandGenerator_t
∗ generator, curandRngType_t rng_type)

Creates a new host CPU random number generator of type rng_type and returns it in
∗generator.

Legal values for rng_type are:

I CURAND_RNG_PSEUDO_DEFAULT

I CURAND_RNG_PSEUDO_XORWOW

I CURAND_RNG_PSEUDO_MRG32K3A

I CURAND_RNG_PSEUDO_MTGP32

I CURAND_RNG_QUASI_DEFAULT

I CURAND_RNG_QUASI_SOBOL32

When rng_type is CURAND_RNG_PSEUDO_DEFAULT, the type chosen is
CURAND_RNG_PSEUDO_XORWOW.

When rng_type is CURAND_RNG_QUASI_DEFAULT, the type chosen is
CURAND_RNG_QUASI_SOBOL32.

The default values for rng_type = CURAND_RNG_PSEUDO_XORWOW are:

I seed = 0

I offset = 0

I ordering = CURAND_ORDERING_PSEUDO_DEFAULT

The default values for rng_type = CURAND_RNG_PSEUDO_MRG32K3A are:

I seed = 0

I offset = 0

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 42

I ordering = CURAND_ORDERING_PSEUDO_DEFAULT

The default values for rng_type = CURAND_RNG_PSEUDO_MTGP32 are:

I seed = 0

I offset = 0

I ordering = CURAND_ORDERING_PSEUDO_DEFAULT

The default values for rng_type = CURAND_RNG_QUASI_SOBOL32 are:

I dimensions = 1

I offset = 0

I ordering = CURAND_ORDERING_QUASI_DEFAULT

The default values for rng_type = CURAND_RNG_QUASI_SOBOL64 are:

I dimensions = 1

I offset = 0

I ordering = CURAND_ORDERING_QUASI_DEFAULT

The default values for rng_type = CURAND_RNG_QUASI_SCRAMBLED_SOBOL32
are:

I dimensions = 1

I offset = 0

I ordering = CURAND_ORDERING_QUASI_DEFAULT

The default values for rng_type = CURAND_RNG_QUASI_SCRAMBLED_SOBOL64
are:

I dimensions = 1

I offset = 0

I ordering = CURAND_ORDERING_QUASI_DEFAULT

Parameters:

generator - Pointer to generator

rng_type - Type of generator to create

Returns:

CURAND_STATUS_ALLOCATION_FAILED if memory could not be allocated
CURAND_STATUS_INITIALIZATION_FAILED if there was a problem setting up
the GPU
CURAND_STATUS_VERSION_MISMATCH if the header file version does not
match the dynamically linked library version
CURAND_STATUS_TYPE_ERROR if the value for rng_type is invalid

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 43

CURAND_STATUS_SUCCESS if generator was created successfully

curandStatus_t curandDestroyGenerator (curandGenerator_t
generator)

Destroy an existing generator and free all memory associated with its state.

Parameters:

generator - Generator to destroy

Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never created
CURAND_STATUS_SUCCESS if generator was destroyed successfully

curandStatus_t curandGenerate (curandGenerator_t generator,
unsigned int ∗ outputPtr, size_t num)

Use generator to generate num 32-bit results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all the
results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 32-bit values with every bit random.

Parameters:

generator - Generator to use

outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to
host memory to store CPU-generated resluts

num - Number of random 32-bit values to generate

Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never created
CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error from
a previous kernel launch
CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output samples
is not a multiple of the quasirandom dimension
CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any reason
CURAND_STATUS_SUCCESS if the results were generated successfully

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 44

curandStatus_t curandGenerateLogNormal (curandGenerator_t
generator, float ∗ outputPtr, size_t n, float mean, float stddev)

Use generator to generate num float results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all the
results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 32-bit floating point values with log-normal distribution based on an associated
normal distribution with mean mean and standard deviation stddev.

Normally distributed results are generated from pseudorandom generators with a
Box-Muller transform, and so require num to be even. Quasirandom generators use an
inverse cumulative distribution function to preserve dimensionality. The normally
distributed results are transformed into log-normal distribution.

There may be slight numerical differences between results generated on the GPU with
generators created with curandCreateGenerator() and results calculated on the CPU with
generators created with curandCreateGeneratorHost(). These differences arise because of
differences in results for transcendental functions. In addition, future versions of CURAND
may use newer versions of the CUDA math library, so different versions of CURAND may
give slightly different numerical values.

Parameters:

generator - Generator to use

outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to
host memory to store CPU-generated resluts

n - Number of floats to generate

mean - Mean of associated normal distribution

stddev - Standard deviation of associated normal distribution
Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never created
CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error from
a previous kernel launch
CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any reason
CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output samples
is not a multiple of the quasirandom dimension, or is not a multiple of two for
pseudorandom generators
CURAND_STATUS_SUCCESS if the results were generated successfully

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 45

curandStatus_t curandGenerateLogNormalDouble
(curandGenerator_t generator, double ∗ outputPtr, size_t n,
double mean, double stddev)

Use generator to generate num double results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all the
results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 64-bit floating point values with log-normal distribution based on an associated
normal distribution with mean mean and standard deviation stddev.

Normally distributed results are generated from pseudorandom generators with a
Box-Muller transform, and so require num to be even. Quasirandom generators use an
inverse cumulative distribution function to preserve dimensionality. The normally
distributed results are transformed into log-normal distribution.

There may be slight numerical differences between results generated on the GPU with
generators created with curandCreateGenerator() and results calculated on the CPU with
generators created with curandCreateGeneratorHost(). These differences arise because of
differences in results for transcendental functions. In addition, future versions of CURAND
may use newer versions of the CUDA math library, so different versions of CURAND may
give slightly different numerical values.

Parameters:

generator - Generator to use

outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to
host memory to store CPU-generated resluts

n - Number of doubles to generate

mean - Mean of normal distribution

stddev - Standard deviation of normal distribution
Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never created
CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error from
a previous kernel launch
CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any reason
CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output samples
is not a multiple of the quasirandom dimension, or is not a multiple of two for
pseudorandom generators
CURAND_STATUS_ARCH_MISMATCH if the GPU does not support double
precision
CURAND_STATUS_SUCCESS if the results were generated successfully

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 46

curandStatus_t curandGenerateLongLong (curandGenerator_t
generator, unsigned long long ∗ outputPtr, size_t num)

Use generator to generate num 64-bit results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all the
results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 64-bit values with every bit random.

Parameters:

generator - Generator to use
outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to

host memory to store CPU-generated resluts
num - Number of random 64-bit values to generate

Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never created
CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error from
a previous kernel launch
CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output samples
is not a multiple of the quasirandom dimension
CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any reason
CURAND_STATUS_SUCCESS if the results were generated successfully

curandStatus_t curandGenerateNormal (curandGenerator_t
generator, float ∗ outputPtr, size_t n, float mean, float stddev)

Use generator to generate num float results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all the
results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 32-bit floating point values with mean mean and standard deviation stddev.

Normally distributed results are generated from pseudorandom generators with a
Box-Muller transform, and so require num to be even. Quasirandom generators use an
inverse cumulative distribution function to preserve dimensionality.

There may be slight numerical differences between results generated on the GPU with
generators created with curandCreateGenerator() and results calculated on the CPU with
generators created with curandCreateGeneratorHost(). These differences arise because of
differences in results for transcendental functions. In addition, future versions of CURAND
may use newer versions of the CUDA math library, so different versions of CURAND may
give slightly different numerical values.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 47

Parameters:

generator - Generator to use
outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to

host memory to store CPU-generated resluts
n - Number of floats to generate
mean - Mean of normal distribution
stddev - Standard deviation of normal distribution

Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never created
CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error from
a previous kernel launch
CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any reason
CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output samples
is not a multiple of the quasirandom dimension, or is not a multiple of two for
pseudorandom generators
CURAND_STATUS_SUCCESS if the results were generated successfully

curandStatus_t curandGenerateNormalDouble
(curandGenerator_t generator, double ∗ outputPtr, size_t n,
double mean, double stddev)

Use generator to generate num double results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all the
results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 64-bit floating point values with mean mean and standard deviation stddev.

Normally distributed results are generated from pseudorandom generators with a
Box-Muller transform, and so require num to be even. Quasirandom generators use an
inverse cumulative distribution function to preserve dimensionality.

There may be slight numerical differences between results generated on the GPU with
generators created with curandCreateGenerator() and results calculated on the CPU with
generators created with curandCreateGeneratorHost(). These differences arise because of
differences in results for transcendental functions. In addition, future versions of CURAND
may use newer versions of the CUDA math library, so different versions of CURAND may
give slightly different numerical values.

Parameters:

generator - Generator to use
outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to

host memory to store CPU-generated resluts

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 48

n - Number of doubles to generate

mean - Mean of normal distribution

stddev - Standard deviation of normal distribution
Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never created
CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error from
a previous kernel launch
CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any reason
CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output samples
is not a multiple of the quasirandom dimension, or is not a multiple of two for
pseudorandom generators
CURAND_STATUS_ARCH_MISMATCH if the GPU does not support double
precision
CURAND_STATUS_SUCCESS if the results were generated successfully

curandStatus_t curandGenerateSeeds (curandGenerator_t
generator)

Generate the starting state of the generator. This function is automatically called by
generation functions such as curandGenerate() and curandGenerateUniform(). It can be
called manually for performance testing reasons to separate timings for starting state
generation and random number generation.

Parameters:

generator - Generator to update

Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never created
CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error from
a previous kernel launch
CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any reason
CURAND_STATUS_SUCCESS if the seeds were generated successfully

curandStatus_t curandGenerateUniform (curandGenerator_t
generator, float ∗ outputPtr, size_t num)

Use generator to generate num float results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all the
results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 49

Results are 32-bit floating point values between 0.0f and 1.0f, excluding 0.0f and
including 1.0f.

Parameters:

generator - Generator to use

outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to
host memory to store CPU-generated resluts

num - Number of floats to generate

Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never created
CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error from
a previous kernel launch
CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any reason
CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output samples
is not a multiple of the quasirandom dimension
CURAND_STATUS_SUCCESS if the results were generated successfully

curandStatus_t curandGenerateUniformDouble
(curandGenerator_t generator, double ∗ outputPtr, size_t num)

Use generator to generate num double results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all the
results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 64-bit double precision floating point values between 0.0 and 1.0, excluding
0.0 and including 1.0.

Parameters:

generator - Generator to use

outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to
host memory to store CPU-generated resluts

num - Number of doubles to generate

Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never created
CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error from
a previous kernel launch
CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any reason
CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output samples
is not a multiple of the quasirandom dimension

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 50

CURAND_STATUS_ARCH_MISMATCH if the GPU does not support double
precision
CURAND_STATUS_SUCCESS if the results were generated successfully

curandStatus_t curandGetDirectionVectors32 (curandDirec-
tionVectors32_t ∗ vectors[], curandDirectionVectorSet_t
set)

Get a pointer to an array of direction vectors that can be used for quasirandom number
generation. The resulting pointer will reference an array of direction vectors in host
memory.

The array contains vectors for many dimensions. Each dimension has 32 vectors. Each
individual vector is an unsigned int.

Legal values for set are:

I CURAND_DIRECTION_VECTORS_32_JOEKUO6 (20,000 dimensions)

I CURAND_SCRAMBLED_DIRECTION_VECTORS_32_JOEKUO6 (20,000
dimensions)

Parameters:

vectors - Address of pointer in which to return direction vectors
set - Which set of direction vectors to use

Returns:

CURAND_STATUS_OUT_OF_RANGE if the choice of set is invalid
CURAND_STATUS_SUCCESS if the pointer was set successfully

curandStatus_t curandGetDirectionVectors64 (curandDirec-
tionVectors64_t ∗ vectors[], curandDirectionVectorSet_t
set)

Get a pointer to an array of direction vectors that can be used for quasirandom number
generation. The resulting pointer will reference an array of direction vectors in host
memory.

The array contains vectors for many dimensions. Each dimension has 64 vectors. Each
individual vector is an unsigned long long.

Legal values for set are:

I CURAND_DIRECTION_VECTORS_64_JOEKUO6 (20,000 dimensions)

I CURAND_SCRAMBLED_DIRECTION_VECTORS_64_JOEKUO6 (20,000
dimensions)

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 51

Parameters:

vectors - Address of pointer in which to return direction vectors
set - Which set of direction vectors to use

Returns:

CURAND_STATUS_OUT_OF_RANGE if the choice of set is invalid
CURAND_STATUS_SUCCESS if the pointer was set successfully

curandStatus_t curandGetScrambleConstants32 (unsigned int ∗∗
constants)

Get a pointer to an array of scramble constants that can be used for quasirandom number
generation. The resulting pointer will reference an array of unsinged ints in host memory.

The array contains constants for many dimensions. Each dimension has a single unsigned
int constant.
Parameters:

constants - Address of pointer in which to return scramble constants

Returns:

CURAND_STATUS_SUCCESS if the pointer was set successfully

curandStatus_t curandGetScrambleConstants64 (unsigned long long
∗∗ constants)

Get a pointer to an array of scramble constants that can be used for quasirandom number
generation. The resulting pointer will reference an array of unsinged long longs in host
memory.

The array contains constants for many dimensions. Each dimension has a single unsigned
long long constant.

Parameters:

constans - Address of pointer in which to return scramble constants

Returns:

CURAND_STATUS_SUCCESS if the pointer was set successfully

curandStatus_t curandGetVersion (int ∗ version)

Return in ∗version the version number of the dynamically linked CURAND library. The
format is the same as CUDART_VERSION from the CUDA Runtime. The only

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 52

supported configuration is CURAND version equal to CUDA Runtime version.

Parameters:

version - CURAND library version

Returns:

CURAND_STATUS_SUCCESS if the version number was successfully returned

curandStatus_t curandSetGeneratorOffset (curandGenerator_t
generator, unsigned long long offset)

Set the absolute offset of the pseudo or quasirandom number generator.

All values of offset are valid. The offset position is absolute, not relative to the current
position in the sequence.

Parameters:

generator - Generator to modify
offset - Absolute offset position

Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never created
CURAND_STATUS_SUCCESS if generator offset was set successfully

curandStatus_t curandSetGeneratorOrdering (curandGenerator_t
generator, curandOrdering_t order)

Set the ordering of results of the pseudo or quasirandom number generator.

Legal values of order for pseudorandom generators are:

I CURAND_ORDERING_PSEUDO_DEFAULT

I CURAND_ORDERING_PSEUDO_BEST

I CURAND_ORDERING_PSEUDO_SEEDED

Legal values of order for quasirandom generators are:

I CURAND_ORDERING_QUASI_DEFAULT

Parameters:

generator - Generator to modify
order - Ordering of results

Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never created

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 53

CURAND_STATUS_OUT_OF_RANGE if the ordering is not valid
CURAND_STATUS_SUCCESS if generator ordering was set successfully

curandStatus_t curandSetPseudoRandomGeneratorSeed
(curandGenerator_t generator, unsigned long long seed)

Set the seed value of the pseudorandom number generator. All values of seed are valid.
Different seeds will produce different sequences. Different seeds will often not be
statistically correlated with each other, but some pairs of seed values may generate
sequences which are statistically correlated.

Parameters:

generator - Generator to modify

seed - Seed value
Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never created
CURAND_STATUS_TYPE_ERROR if the generator is not a pseudorandom
number generator
CURAND_STATUS_SUCCESS if generator seed was set successfully

curandStatus_t curandSetQuasiRandomGeneratorDimensions
(curandGenerator_t generator, unsigned int num_dimensions)

Set the number of dimensions to be generated by the quasirandom number generator.

Legal values for num_dimensions are 1 to 20000.

Parameters:

generator - Generator to modify

num_dimensions - Number of dimensions

Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never created
CURAND_STATUS_OUT_OF_RANGE if num_dimensions is not valid
CURAND_STATUS_TYPE_ERROR if the generator is not a quasirandom number
generator
CURAND_STATUS_SUCCESS if generator ordering was set successfully

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 54

curandStatus_t curandSetStream (curandGenerator_t generator,
cudaStream_t stream)

Set the current stream for CURAND kernel launches. All library functions will use this
stream until set again.

Parameters:

generator - Generator to modify

stream - Stream to use or NULL for null stream
Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never created
CURAND_STATUS_SUCCESS if stream was set successfully

Device API
Typedefs

I typedef struct curandStateXORWOW curandState_t
I typedef struct curandStateMRG32k3a curandStateMRG32k3a_t
I typedef struct curandStateMtgp32 curandStateMtgp32_t
I typedef struct curandStateScrambledSobol32 curandStateScrambledSobol32_t
I typedef struct curandStateScrambledSobol64 curandStateScrambledSobol64_t
I typedef struct curandStateSobol32 curandStateSobol32_t
I typedef struct curandStateSobol64 curandStateSobol64_t
I typedef struct curandStateXORWOW curandStateXORWOW_t

Functions
I __device__ unsigned int curand (curandStateMtgp32_t ∗state)

Return 32-bits of pseudorandomness from a mtgp32 generator.

I __device__ unsigned int curand (curandStateMRG32k3a_t ∗state)
Return 32-bits of pseudorandomness from an MRG32k3a generator.

I __device__ unsigned long long curand (curandStateScrambledSobol64_t ∗state)
Return 64-bits of quasirandomness from a scrambled Sobol64 generator.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 55

I __device__ unsigned long long curand (curandStateSobol64_t ∗state)
Return 64-bits of quasirandomness from a Sobol64 generator.

I __device__ unsigned int curand (curandStateScrambledSobol32_t ∗state)
Return 32-bits of quasirandomness from a scrambled Sobol32 generator.

I __device__ unsigned int curand (curandStateSobol32_t ∗state)
Return 32-bits of quasirandomness from a Sobol32 generator.

I __device__ unsigned int curand (curandStateXORWOW_t ∗state)
Return 32-bits of pseudorandomness from an XORWOW generator.

I __device__ void curand_init (curandDirectionVectors64_t direction_vectors,
unsigned long long scramble_c, unsigned long long offset,
curandStateScrambledSobol64_t ∗state)

Initialize Scrambled Sobol64 state.

I __device__ void curand_init (curandDirectionVectors64_t direction_vectors,
unsigned long long offset, curandStateSobol64_t ∗state)

Initialize Sobol64 state.

I __device__ void curand_init (curandDirectionVectors32_t direction_vectors,
unsigned int scramble_c, unsigned int offset, curandStateScrambledSobol32_t
∗state)

Initialize Scrambled Sobol32 state.

I __device__ void curand_init (curandDirectionVectors32_t direction_vectors,
unsigned int offset, curandStateSobol32_t ∗state)

Initialize Sobol32 state.

I __device__ void curand_init (unsigned long long seed, unsigned long long
subsequence, unsigned long long offset, curandStateMRG32k3a_t ∗state)

Initialize MRG32k3a state.

I __device__ void curand_init (unsigned long long seed, unsigned long long
subsequence, unsigned long long offset, curandStateXORWOW_t ∗state)

Initialize XORWOW state.

I __device__ float curand_log_normal (curandStateScrambledSobol64_t ∗state,
float mean, float stddev)

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 56

Return a log-normally distributed float from a scrambled Sobol64 generator.

I __device__ float curand_log_normal (curandStateSobol64_t ∗state, float mean,
float stddev)

Return a log-normally distributed float from a Sobol64 generator.

I __device__ float curand_log_normal (curandStateScrambledSobol32_t ∗state,
float mean, float stddev)

Return a log-normally distributed float from a scrambled Sobol32 generator.

I __device__ float curand_log_normal (curandStateSobol32_t ∗state, float mean,
float stddev)

Return a log-normally distributed float from a Sobol32 generator.

I __device__ float curand_log_normal (curandStateMtgp32_t ∗state, float mean,
float stddev)

Return a log-normally distributed float from an MTGP32 generator.

I __device__ float curand_log_normal (curandStateMRG32k3a_t ∗state, float
mean, float stddev)

Return a log-normally distributed float from an MRG32k3a generator.

I __device__ float curand_log_normal (curandStateXORWOW_t ∗state, float
mean, float stddev)

Return a log-normally distributed float from an XORWOW generator.

I __device__ float2 curand_log_normal2 (curandStateMRG32k3a_t ∗state, float
mean, float stddev)

Return two normally distributed floats from an MRG32k3a generator.

I __device__ float2 curand_log_normal2 (curandStateXORWOW_t ∗state, float
mean, float stddev)

Return two normally distributed floats from an XORWOW generator.

I __device__ double2 curand_log_normal2_double (curandStateMRG32k3a_t
∗state, double mean, double stddev)

Return two log-normally distributed doubles from an MRG32k3a generator.

I __device__ double2 curand_log_normal2_double (curandStateXORWOW_t
∗state, double mean, double stddev)

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 57

Return two log-normally distributed doubles from an XORWOW generator.

I __device__ double curand_log_normal_double (curandStateScrambledSobol64_t
∗state, double mean, double stddev)

Return a log-normally distributed double from a scrambled Sobol64 generator.

I __device__ double curand_log_normal_double (curandStateSobol64_t ∗state,
double mean, double stddev)

Return a log-normally distributed double from a Sobol64 generator.

I __device__ double curand_log_normal_double (curandStateScrambledSobol32_t
∗state, double mean, double stddev)

Return a log-normally distributed double from a scrambled Sobol32 generator.

I __device__ double curand_log_normal_double (curandStateSobol32_t ∗state,
double mean, double stddev)

Return a log-normally distributed double from a Sobol32 generator.

I __device__ double curand_log_normal_double (curandStateMtgp32_t ∗state,
double mean, double stddev)

Return a log-normally distributed double from an MTGP32 generator.

I __device__ double curand_log_normal_double (curandStateMRG32k3a_t ∗state,
double mean, double stddev)

Return a log-normally distributed double from an MRG32k3a generator.

I __device__ double curand_log_normal_double (curandStateXORWOW_t ∗state,
double mean, double stddev)

Return a log-normally distributed double from an XORWOW generator.

I __device__ float curand_mtgp32_single (curandStateMtgp32_t ∗state)
Return a uniformly distributed float from a mtgp32 generator.

I __device__ float curand_mtgp32_single_specific (curandStateMtgp32_t ∗state)

Return a uniformly distributed float from a specific position in a mtgp32 generator.

I __device__ unsigned int curand_mtgp32_specific (curandStateMtgp32_t ∗state,
unsigned char index, unsigned char n)

Return 32-bits of pseudorandomness from a specific position in a mtgp32 generator.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 58

I __device__ float curand_normal (curandStateScrambledSobol64_t ∗state)
Return a normally distributed float from a scrambled Sobol64 generator.

I __device__ float curand_normal (curandStateSobol64_t ∗state)
Return a normally distributed float from a Sobol64 generator.

I __device__ float curand_normal (curandStateScrambledSobol32_t ∗state)
Return a normally distributed float from a scrambled Sobol32 generator.

I __device__ float curand_normal (curandStateSobol32_t ∗state)
Return a normally distributed float from a Sobol32 generator.

I __device__ float curand_normal (curandStateMtgp32_t ∗state)
Return a normally distributed float from a MTGP32 generator.

I __device__ float curand_normal (curandStateMRG32k3a_t ∗state)
Return a normally distributed float from an MRG32k3a generator.

I __device__ float curand_normal (curandStateXORWOW_t ∗state)
Return a normally distributed float from an XORWOW generator.

I __device__ float2 curand_normal2 (curandStateMRG32k3a_t ∗state)
Return two normally distributed floats from an MRG32k3a generator.

I __device__ float2 curand_normal2 (curandStateXORWOW_t ∗state)
Return two normally distributed floats from an XORWOW generator.

I __device__ double2 curand_normal2_double (curandStateMRG32k3a_t ∗state)

Return two normally distributed doubles from an MRG32k3a generator.

I __device__ double2 curand_normal2_double (curandStateXORWOW_t ∗state)
Return two normally distributed doubles from an XORWOW generator.

I __device__ double curand_normal_double (curandStateScrambledSobol64_t
∗state)

Return a normally distributed double from a scrambled Sobol64 generator.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 59

I __device__ double curand_normal_double (curandStateSobol64_t ∗state)
Return a normally distributed double from a Sobol64 generator.

I __device__ double curand_normal_double (curandStateScrambledSobol32_t
∗state)

Return a normally distributed double from a scrambled Sobol32 generator.

I __device__ double curand_normal_double (curandStateSobol32_t ∗state)
Return a normally distributed double from an Sobol32 generator.

I __device__ double curand_normal_double (curandStateMtgp32_t ∗state)
Return a normally distributed double from an MTGP32 generator.

I __device__ double curand_normal_double (curandStateMRG32k3a_t ∗state)
Return a normally distributed double from an MRG32k3a generator.

I __device__ double curand_normal_double (curandStateXORWOW_t ∗state)
Return a normally distributed double from an XORWOW generator.

I __device__ float curand_uniform (curandStateScrambledSobol64_t ∗state)
Return a uniformly distributed float from a scrambled Sobol64 generator.

I __device__ float curand_uniform (curandStateSobol64_t ∗state)
Return a uniformly distributed float from a Sobol64 generator.

I __device__ float curand_uniform (curandStateScrambledSobol32_t ∗state)
Return a uniformly distributed float from a scrambled Sobol32 generator.

I __device__ float curand_uniform (curandStateSobol32_t ∗state)
Return a uniformly distributed float from a Sobol32 generator.

I __device__ float curand_uniform (curandStateMtgp32_t ∗state)
Return a uniformly distributed float from a MTGP32 generator.

I __device__ float curand_uniform (curandStateMRG32k3a_t ∗state)
Return a uniformly distributed float from an MRG32k3a generator.

I __device__ float curand_uniform (curandStateXORWOW_t ∗state)
Return a uniformly distributed float from an XORWOW generator.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 60

I __device__ double curand_uniform_double (curandStateScrambledSobol64_t
∗state)

Return a uniformly distributed double from a scrambled Sobol64 generator.

I __device__ double curand_uniform_double (curandStateSobol64_t ∗state)
Return a uniformly distributed double from a Sobol64 generator.

I __device__ double curand_uniform_double (curandStateScrambledSobol32_t
∗state)

Return a uniformly distributed double from a scrambled Sobol32 generator.

I __device__ double curand_uniform_double (curandStateSobol32_t ∗state)
Return a uniformly distributed double from a Sobol32 generator.

I __device__ double curand_uniform_double (curandStateMtgp32_t ∗state)
Return a uniformly distributed double from a MTGP32 generator.

I __device__ double curand_uniform_double (curandStateMRG32k3a_t ∗state)
Return a uniformly distributed double from an MRG32k3a generator.

I __device__ double curand_uniform_double (curandStateXORWOW_t ∗state)
Return a uniformly distributed double from an XORWOW generator.

I template<typename T >

__device__ void skipahead (unsigned long long n, T state)

Update Sobol64 state to skip n elements.

I template<typename T >

__device__ void skipahead (unsigned int n, T state)

Update Sobol32 state to skip n elements.

I __device__ void skipahead (unsigned long long n, curandStateMRG32k3a_t
∗state)

Update MRG32k3a state to skip n elements.

I __device__ void skipahead (unsigned long long n, curandStateXORWOW_t
∗state)

Update XORWOW state to skip n elements.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 61

I __device__ void skipahead_sequence (unsigned long long n,
curandStateMRG32k3a_t ∗state)

Update MRG32k3a state to skip ahead n sequences.

I __device__ void skipahead_sequence (unsigned long long n,
curandStateXORWOW_t ∗state)

Update XORWOW state to skip ahead n subsequences.

I __device__ void skipahead_subsequence (unsigned long long n,
curandStateMRG32k3a_t ∗state)

Update MRG32k3a state to skip ahead n subsequences.

Variables
I unsigned int mtgp32_params_fast::flt_tmp_tbl [16]
I unsigned int mtgp32_params_fast::mask
I unsigned char mtgp32_params_fast::poly_sha1 [21]
I int mtgp32_params_fast::pos
I int mtgp32_params_fast::sh1
I int mtgp32_params_fast::sh2
I unsigned int mtgp32_params_fast::tbl [16]
I unsigned int mtgp32_params_fast::tmp_tbl [16]

Typedef Documentation
typedef struct curandStateXORWOW curandState_t

Default RNG

typedef struct curandStateMRG32k3a curandStateMRG32k3a_t

CURAND MRG32K3A state

typedef struct curandStateMtgp32 curandStateMtgp32_t

CURAND MTGP32 state

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 62

typedef struct curandStateScrambledSobol32 curandStateScram-
bledSobol32_t

CURAND Scrambled Sobol32 state

typedef struct curandStateScrambledSobol64 curandStateScram-
bledSobol64_t

CURAND Scrambled Sobol64 state

typedef struct curandStateSobol32 curandStateSobol32_t

CURAND Sobol32 state

typedef struct curandStateSobol64 curandStateSobol64_t

CURAND Sobol64 state

typedef struct curandStateXORWOW curandStateXORWOW_t

CURAND XORWOW state

Function Documentation
__device__ unsigned int curand (curandStateMtgp32_t ∗ state)

Return 32-bits of pseudorandomness from the mtgp32 generator in state, increment
position of generator by the number of threads in the block. Note the number of threads in
the block can not exceed 256.
Parameters:

state - Pointer to state to update

Returns:

32-bits of pseudorandomness as an unsigned int, all bits valid to use.

__device__ unsigned int curand (curandStateMRG32k3a_t ∗
state)

Return 32-bits of pseudorandomness from the MRG32k3a generator in state, increment
position of generator by one.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 63

Parameters:

state - Pointer to state to update

Returns:

32-bits of pseudorandomness as an unsigned int, all bits valid to use.

__device__ unsigned long long curand (curandStateScrambled-
Sobol64_t ∗ state)

Return 64-bits of quasirandomness from the scrambled Sobol32 generator in state,
increment position of generator by one.

Parameters:

state - Pointer to state to update

Returns:

64-bits of quasirandomness as an unsigned long long, all bits valid to use.

__device__ unsigned long long curand (curandStateSobol64_t ∗
state)

Return 64-bits of quasirandomness from the Sobol64 generator in state, increment
position of generator by one.

Parameters:

state - Pointer to state to update

Returns:

64-bits of quasirandomness as an unsigned long long, all bits valid to use.

__device__ unsigned int curand (curandStateScrambled-
Sobol32_t ∗ state)

Return 32-bits of quasirandomness from the scrambled Sobol32 generator in state,
increment position of generator by one.

Parameters:

state - Pointer to state to update

Returns:

32-bits of quasirandomness as an unsigned int, all bits valid to use.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 64

__device__ unsigned int curand (curandStateSobol32_t ∗ state)

Return 32-bits of quasirandomness from the Sobol32 generator in state, increment
position of generator by one.

Parameters:

state - Pointer to state to update

Returns:

32-bits of quasirandomness as an unsigned int, all bits valid to use.

__device__ unsigned int curand (curandStateXORWOW_t ∗
state)

Return 32-bits of pseudorandomness from the XORWOW generator in state, increment
position of generator by one.

Parameters:

state - Pointer to state to update

Returns:

32-bits of pseudorandomness as an unsigned int, all bits valid to use.

__device__ void curand_init (curandDirectionVectors64_t
direction_vectors, unsigned long long scramble_c, unsigned long long
offset, curandStateScrambledSobol64_t ∗ state)

Initialize Sobol64 state in state with the given direction vectors and offset.

The direction vector is a device pointer to an array of 64 unsigned long longs. All input
values of offset are legal.

Parameters:

direction_vectors - Pointer to array of 64 unsigned long longs representing the
direction vectors for the desired dimension

scramble_c Scramble constant

offset - Absolute offset into sequence

state - Pointer to state to initialize

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 65

__device__ void curand_init (curandDirectionVectors64_t
direction_vectors, unsigned long long offset, curandStateSobol64_t
∗ state)

Initialize Sobol64 state in state with the given direction vectors and offset.

The direction vector is a device pointer to an array of 64 unsigned long longs. All input
values of offset are legal.

Parameters:

direction_vectors - Pointer to array of 64 unsigned long longs representing the
direction vectors for the desired dimension

offset - Absolute offset into sequence
state - Pointer to state to initialize

__device__ void curand_init (curandDirectionVectors32_t
direction_vectors, unsigned int scramble_c, unsigned int offset,
curandStateScrambledSobol32_t ∗ state)

Initialize Sobol32 state in state with the given direction vectors and offset.

The direction vector is a device pointer to an array of 32 unsigned ints. All input values of
offset are legal.

Parameters:

direction_vectors - Pointer to array of 32 unsigned ints representing the direction
vectors for the desired dimension

scramble_c Scramble constant
offset - Absolute offset into sequence
state - Pointer to state to initialize

__device__ void curand_init (curandDirectionVectors32_t
direction_vectors, unsigned int offset, curandStateSobol32_t ∗
state)

Initialize Sobol32 state in state with the given direction vectors and offset.

The direction vector is a device pointer to an array of 32 unsigned ints. All input values of
offset are legal.

Parameters:

direction_vectors - Pointer to array of 32 unsigned ints representing the direction
vectors for the desired dimension

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 66

offset - Absolute offset into sequence

state - Pointer to state to initialize

__device__ void curand_init (unsigned long long seed,
unsigned long long subsequence, unsigned long long offset,
curandStateMRG32k3a_t ∗ state)

Initialize MRG32k3a state in state with the given seed, subsequence, and offset.

All input values of seed, subsequence, and offset are legal. subsequence will be
truncated to 51 bits to avoid running into the next sequence

A value of 0 for seed sets the state to the values of the original published version of the
MRG32k3a algorithm.

Parameters:

seed - Arbitrary bits to use as a seed

subsequence - Subsequence to start at

offset - Absolute offset into sequence

state - Pointer to state to initialize

__device__ void curand_init (unsigned long long seed,
unsigned long long subsequence, unsigned long long offset,
curandStateXORWOW_t ∗ state)

Initialize XORWOW state in state with the given seed, subsequence, and offset.

All input values of seed, subsequence, and offset are legal. Large values for subsequence
and offset require more computation and so will take more time to complete.

A value of 0 for seed sets the state to the values of the original published version of the
xorwow algorithm.

Parameters:

seed - Arbitrary bits to use as a seed

subsequence - Subsequence to start at

offset - Absolute offset into sequence

state - Pointer to state to initialize

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 67

__device__ float curand_log_normal (curandState-
ScrambledSobol64_t ∗ state, float mean, float
stddev)

Return a single log-normally distributed float derived from a normal distribution with
mean mean and standard deviation stddev from the scrambled Sobol64 generator in state,
increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results, then converts to log-normal distribution.

Parameters:

state - Pointer to state to update
mean - Mean of the related normal distribution
stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed float with mean mean and standard deviation stddev

__device__ float curand_log_normal (curandStateSobol64_t ∗
state, float mean, float stddev)

Return a single log-normally distributed float derived from a normal distribution with
mean mean and standard deviation stddev from the Sobol64 generator in state, increment
position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results, then converts to log-normal distribution.

Parameters:

state - Pointer to state to update
mean - Mean of the related normal distribution
stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed float with mean mean and standard deviation stddev

__device__ float curand_log_normal (curandState-
ScrambledSobol32_t ∗ state, float mean, float
stddev)

Return a single log-normally distributed float derived from a normal distribution with
mean mean and standard deviation stddev from the scrambled Sobol32 generator in state,

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 68

increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate a
normally distributed result, then transforms the result to log-normal.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution
Returns:

Log-normally distributed float with mean mean and standard deviation stddev

__device__ float curand_log_normal (curandStateSobol32_t ∗
state, float mean, float stddev)

Return a single log-normally distributed float derived from a normal distribution with
mean mean and standard deviation stddev from the Sobol32 generator in state, increment
position of generator by one.

The implementation uses the inverse cumulative distribution function to generate a
normally distributed result, then transforms the result to log-normal.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution
Returns:

Log-normally distributed float with mean mean and standard deviation stddev

__device__ float curand_log_normal (curandStateMtgp32_t ∗
state, float mean, float stddev)

Return a single log-normally distributed float derived from a normal distribution with
mean mean and standard deviation stddev from the MTGP32 generator in state,
increment position of generator.

The implementation uses the inverse cumulative distribution function to generate a
normally distributed result, then transforms the result to log-normal.

Parameters:

state - Pointer to state to update

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 69

mean - Mean of the related normal distribution
stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed float with mean mean and standard deviation stddev

__device__ float curand_log_normal (curandStateMRG32k3a_t
∗ state, float mean, float stddev)

Return a single log-normally distributed float derived from a normal distribution with
mean mean and standard deviation stddev from the MRG32k3a generator in state,
increment position of generator by one.

The implementation uses a Box-Muller transform to generate two normally distributed
results, transforms them to log-normal distribution, then returns them one at a time. See
curand_log_normal2() for a more efficient version that returns both results at once.

Parameters:

state - Pointer to state to update
mean - Mean of the related normal distribution
stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed float with mean mean and standard deviation stddev

__device__ float curand_log_normal (curandStateXORWOW_t
∗ state, float mean, float stddev)

Return a single log-normally distributed float derived from a normal distribution with
mean mean and standard deviation stddev from the XORWOW generator in state,
increment position of generator by one.

The implementation uses a Box-Muller transform to generate two normally distributed
results, transforms them to log-normal distribution, then returns them one at a time. See
curand_log_normal2() for a more efficient version that returns both results at once.

Parameters:

state - Pointer to state to update
mean - Mean of the related normal distribution
stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed float with mean mean and standard deviation stddev

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 70

__device__ float2 curand_log_normal2 (curand-
StateMRG32k3a_t ∗ state, float mean, float stddev)

Return two log-normally distributed floats derived from a normal distribution with mean
mean and standard deviation stddev from the MRG32k3a generator in state, increment
position of generator by two.

The implementation uses a Box-Muller transform to generate two normally distributed
results, then transforms them to log-normal.

Parameters:

state - Pointer to state to update
mean - Mean of the related normal distribution
stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed float2 where each element is from a distribution with mean
mean and standard deviation stddev

__device__ float2 curand_log_normal2 (curandStateXOR-
WOW_t ∗ state, float mean, float stddev)

Return two log-normally distributed floats derived from a normal distribution with mean
mean and standard deviation stddev from the XORWOW generator in state, increment
position of generator by two.

The implementation uses a Box-Muller transform to generate two normally distributed
results, then transforms them to log-normal.

Parameters:

state - Pointer to state to update
mean - Mean of the related normal distribution
stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed float2 where each element is from a distribution with mean
mean and standard deviation stddev

__device__ double2 curand_log_normal2_double
(curandStateMRG32k3a_t ∗ state, double mean, double stddev)

Return two log-normally distributed doubles derived from a normal distribution with mean
mean and standard deviation stddev from the MRG32k3a generator in state, increment
position of generator by two.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 71

The implementation uses a Box-Muller transform to generate two normally distributed
results, and transforms them to log-normal distribution,.

Parameters:

state - Pointer to state to update
mean - Mean of the related normal distribution
stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed double2 where each element is from a distribution with mean
mean and standard deviation stddev

__device__ double2 curand_log_normal2_double
(curandStateXORWOW_t ∗ state, double mean, double stddev)

Return two log-normally distributed doubles derived from a normal distribution with mean
mean and standard deviation stddev from the XORWOW generator in state, increment
position of generator by two.

The implementation uses a Box-Muller transform to generate two normally distributed
results, and transforms them to log-normal distribution,.

Parameters:

state - Pointer to state to update
mean - Mean of the related normal distribution
stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed double2 where each element is from a distribution with mean
mean and standard deviation stddev

__device__ double curand_log_normal_double
(curandStateScrambledSobol64_t ∗ state, double mean, double
stddev)

Return a single normally distributed double derived from a normal distribution with mean
mean and standard deviation stddev from the scrambled Sobol64 generator in state,
increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.
Parameters:

state - Pointer to state to update

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 72

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution
Returns:

Log-normally distributed double with mean mean and standard deviation stddev

__device__ double curand_log_normal_double
(curandStateSobol64_t ∗ state, double mean, double stddev)

Return a single normally distributed double derived from a normal distribution with mean
mean and standard deviation stddev from the Sobol64 generator in state, increment
position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.
Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution
Returns:

Log-normally distributed double with mean mean and standard deviation stddev

__device__ double curand_log_normal_double
(curandStateScrambledSobol32_t ∗ state, double mean, double
stddev)

Return a single log-normally distributed double derived from a normal distribution with
mean mean and standard deviation stddev from the scrambled Sobol32 generator in state,
increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results, and transforms them into log-normal distribution.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution
Returns:

Log-normally distributed double with mean mean and standard deviation stddev

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 73

__device__ double curand_log_normal_double
(curandStateSobol32_t ∗ state, double mean, double stddev)

Return a single log-normally distributed double derived from a normal distribution with
mean mean and standard deviation stddev from the Sobol32 generator in state, increment
position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results, and transforms them into log-normal distribution.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution
Returns:

Log-normally distributed double with mean mean and standard deviation stddev

__device__ double curand_log_normal_double
(curandStateMtgp32_t ∗ state, double mean, double stddev)

Return a single log-normally distributed double derived from a normal distribution with
mean mean and standard deviation stddev from the MTGP32 generator in state,
increment position of generator.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results, and transforms them into log-normal distribution.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution
Returns:

Log-normally distributed double with mean mean and standard deviation stddev

__device__ double curand_log_normal_double
(curandStateMRG32k3a_t ∗ state, double mean, double stddev)

Return a single normally distributed double derived from a normal distribution with mean
mean and standard deviation stddev from the MRG32k3a generator in state, increment
position of generator.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 74

The implementation uses a Box-Muller transform to generate two normally distributed
results, transforms them to log-normal distribution, then returns them one at a time. See
curand_log_normal2_double() for a more efficient version that returns both results at
once.
Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution
Returns:

Log-normally distributed double with mean mean and standard deviation stddev

__device__ double curand_log_normal_double
(curandStateXORWOW_t ∗ state, double mean, double stddev)

Return a single normally distributed double derived from a normal distribution with mean
mean and standard deviation stddev from the XORWOW generator in state, increment
position of generator.

The implementation uses a Box-Muller transform to generate two normally distributed
results, transforms them to log-normal distribution, then returns them one at a time. See
curand_log_normal2_double() for a more efficient version that returns both results at
once.
Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution
Returns:

Log-normally distributed double with mean mean and standard deviation stddev

__device__ float curand_mtgp32_single (curandStateMtgp32_t ∗
state)

Return a uniformly distributed float between 0.0f and 1.0f from the mtgp32 generator in
state, increment position of generator. Output range excludes 0.0f but includes 1.0f.
Denormalized floating point outputs are never returned.

Note: This alternate derivation of a uniform float is provided for completeness with the
original source

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 75

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed float between 0.0f and 1.0f

__device__ float curand_mtgp32_single_specific
(curandStateMtgp32_t ∗ state)

Return a uniformly distributed float between 0.0f and 1.0f from position index of the
mtgp32 generator in state, and increment position of generator by n positions, which
must be the total number of positions upddated in the state by the thread block, for this
invocation. Output range excludes 0.0f but includes 1.0f. Denormalized floating point
outputs are never returned.

Note 1: Thread indices must range from 0...n - 1. The number of positions updated may
not exceed 256. A thread block may update more than one state, but a given state may
not be updated by more than one thread block.

Note 2: This alternate derivation of a uniform float is provided for completeness with the
original source

Parameters:

state - Pointer to state to update

index - Index (0..255) of the position within the state to draw from and update

n - The total number of postions in this state that are being updated by this
invocation

Returns:

uniformly distributed float between 0.0f and 1.0f

__device__ unsigned int curand_mtgp32_specific
(curandStateMtgp32_t ∗ state, unsigned char index, unsigned char
n)

Return 32-bits of pseudorandomness from position index of the mtgp32 generator in
state, increment position of generator by n positions, which must be the total number of
positions upddated in the state by the thread block, for this invocation.

Note : Thread indices must range from 0... n - 1. The number of positions updated may
not exceed 256. A thread block may update more than one state, but a given state may
not be updated by more than one thread block.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 76

Parameters:

state - Pointer to state to update
index - Index (0..255) of the position within the state to draw from and update
n - The total number of postions in this state that are being updated by this

invocation
Returns:

32-bits of pseudorandomness as an unsigned int, all bits valid to use.

__device__ float curand_normal (curandStateScrambled-
Sobol64_t ∗ state)

Return a single normally distributed float with mean 0.0f and standard deviation 1.0f
from the scrambled Sobol64 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.
Parameters:

state - Pointer to state to update

Returns:

Normally distributed float with mean 0.0f and standard deviation 1.0f

__device__ float curand_normal (curandStateSobol64_t ∗ state)

Return a single normally distributed float with mean 0.0f and standard deviation 1.0f
from the Sobol64 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.
Parameters:

state - Pointer to state to update

Returns:

Normally distributed float with mean 0.0f and standard deviation 1.0f

__device__ float curand_normal (curandStateScrambled-
Sobol32_t ∗ state)

Return a single normally distributed float with mean 0.0f and standard deviation 1.0f
from the scrambled Sobol32 generator in state, increment position of generator by one.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 77

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.
Parameters:

state - Pointer to state to update

Returns:

Normally distributed float with mean 0.0f and standard deviation 1.0f

__device__ float curand_normal (curandStateSobol32_t ∗ state)

Return a single normally distributed float with mean 0.0f and standard deviation 1.0f
from the Sobol32 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.
Parameters:

state - Pointer to state to update

Returns:

Normally distributed float with mean 0.0f and standard deviation 1.0f

__device__ float curand_normal (curandStateMtgp32_t ∗ state)

Return a single normally distributed float with mean 0.0f and standard deviation 1.0f
from the MTGP32 generator in state, increment position of generator.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.
Parameters:

state - Pointer to state to update

Returns:

Normally distributed float with mean 0.0f and standard deviation 1.0f

__device__ float curand_normal (curandStateMRG32k3a_t ∗
state)

Return a single normally distributed float with mean 0.0f and standard deviation 1.0f
from the MRG32k3a generator in state, increment position of generator by one.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 78

The implementation uses a Box-Muller transform to generate two normally distributed
results, then returns them one at a time. See curand_normal2() for a more efficient
version that returns both results at once.
Parameters:

state - Pointer to state to update

Returns:

Normally distributed float with mean 0.0f and standard deviation 1.0f

__device__ float curand_normal (curandStateXORWOW_t ∗
state)

Return a single normally distributed float with mean 0.0f and standard deviation 1.0f
from the XORWOW generator in state, increment position of generator by one.

The implementation uses a Box-Muller transform to generate two normally distributed
results, then returns them one at a time. See curand_normal2() for a more efficient
version that returns both results at once.
Parameters:

state - Pointer to state to update

Returns:

Normally distributed float with mean 0.0f and standard deviation 1.0f

__device__ float2 curand_normal2 (curandStateMRG32k3a_t ∗
state)

Return two normally distributed floats with mean 0.0f and standard deviation 1.0f from
the MRG32k3a generator in state, increment position of generator by two.

The implementation uses a Box-Muller transform to generate two normally distributed
results.
Parameters:

state - Pointer to state to update

Returns:

Normally distributed float2 where each element is from a distribution with mean 0.0f
and standard deviation 1.0f

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 79

__device__ float2 curand_normal2 (curandStateXORWOW_t ∗
state)

Return two normally distributed floats with mean 0.0f and standard deviation 1.0f from
the XORWOW generator in state, increment position of generator by two.

The implementation uses a Box-Muller transform to generate two normally distributed
results.
Parameters:

state - Pointer to state to update

Returns:

Normally distributed float2 where each element is from a distribution with mean 0.0f
and standard deviation 1.0f

__device__ double2 curand_normal2_double (curand-
StateMRG32k3a_t ∗ state)

Return two normally distributed doubles with mean 0.0 and standard deviation 1.0 from
the MRG32k3a generator in state, increment position of generator.

The implementation uses a Box-Muller transform to generate two normally distributed
results.
Parameters:

state - Pointer to state to update

Returns:

Normally distributed double2 where each element is from a distribution with mean
0.0 and standard deviation 1.0

__device__ double2 curand_normal2_double (curandStateXOR-
WOW_t ∗ state)

Return two normally distributed doubles with mean 0.0 and standard deviation 1.0 from
the XORWOW generator in state, increment position of generator.

The implementation uses a Box-Muller transform to generate two normally distributed
results.
Parameters:

state - Pointer to state to update

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 80

Returns:

Normally distributed double2 where each element is from a distribution with mean
0.0 and standard deviation 1.0

__device__ double curand_normal_double (curandStateScram-
bledSobol64_t ∗ state)

Return a single normally distributed double with mean 0.0 and standard deviation 1.0
from the scrambled Sobol64 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.
Parameters:

state - Pointer to state to update

Returns:

Normally distributed double with mean 0.0 and standard deviation 1.0

__device__ double curand_normal_double (curandState-
Sobol64_t ∗ state)

Return a single normally distributed double with mean 0.0 and standard deviation 1.0
from the Sobol64 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.
Parameters:

state - Pointer to state to update

Returns:

Normally distributed double with mean 0.0 and standard deviation 1.0

__device__ double curand_normal_double (curandStateScram-
bledSobol32_t ∗ state)

Return a single normally distributed double with mean 0.0 and standard deviation 1.0
from the scrambled Sobol32 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 81

Parameters:

state - Pointer to state to update

Returns:

Normally distributed double with mean 0.0 and standard deviation 1.0

__device__ double curand_normal_double (curandState-
Sobol32_t ∗ state)

Return a single normally distributed double with mean 0.0 and standard deviation 1.0
from the Sobol32 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.
Parameters:

state - Pointer to state to update

Returns:

Normally distributed double with mean 0.0 and standard deviation 1.0

__device__ double curand_normal_double (curand-
StateMtgp32_t ∗ state)

Return a single normally distributed double with mean 0.0 and standard deviation 1.0
from the MTGP32 generator in state, increment position of generator.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.
Parameters:

state - Pointer to state to update

Returns:

Normally distributed double with mean 0.0 and standard deviation 1.0

__device__ double curand_normal_double (curand-
StateMRG32k3a_t ∗ state)

Return a single normally distributed double with mean 0.0 and standard deviation 1.0
from the XORWOW generator in state, increment position of generator.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 82

The implementation uses a Box-Muller transform to generate two normally distributed
results, then returns them one at a time. See curand_normal2_double() for a more
efficient version that returns both results at once.
Parameters:

state - Pointer to state to update

Returns:

Normally distributed double with mean 0.0 and standard deviation 1.0

__device__ double curand_normal_double (curandStateXOR-
WOW_t ∗ state)

Return a single normally distributed double with mean 0.0 and standard deviation 1.0
from the XORWOW generator in state, increment position of generator.

The implementation uses a Box-Muller transform to generate two normally distributed
results, then returns them one at a time. See curand_normal2_double() for a more
efficient version that returns both results at once.
Parameters:

state - Pointer to state to update

Returns:

Normally distributed double with mean 0.0 and standard deviation 1.0

__device__ float curand_uniform (curandStateScrambled-
Sobol64_t ∗ state)

Return a uniformly distributed float between 0.0f and 1.0f from the scrambled Sobol64
generator in state, increment position of generator. Output range excludes 0.0f but
includes 1.0f. Denormalized floating point outputs are never returned.

The implementation is guaranteed to use a single call to curand().

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed float between 0.0f and 1.0f

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 83

__device__ float curand_uniform (curandStateSobol64_t ∗ state)

Return a uniformly distributed float between 0.0f and 1.0f from the Sobol64 generator in
state, increment position of generator. Output range excludes 0.0f but includes 1.0f.
Denormalized floating point outputs are never returned.

The implementation is guaranteed to use a single call to curand().

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed float between 0.0f and 1.0f

__device__ float curand_uniform (curandStateScrambled-
Sobol32_t ∗ state)

Return a uniformly distributed float between 0.0f and 1.0f from the scrambled Sobol32
generator in state, increment position of generator. Output range excludes 0.0f but
includes 1.0f. Denormalized floating point outputs are never returned.

The implementation is guaranteed to use a single call to curand().

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed float between 0.0f and 1.0f

__device__ float curand_uniform (curandStateSobol32_t ∗ state)

Return a uniformly distributed float between 0.0f and 1.0f from the Sobol32 generator in
state, increment position of generator. Output range excludes 0.0f but includes 1.0f.
Denormalized floating point outputs are never returned.

The implementation is guaranteed to use a single call to curand().

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed float between 0.0f and 1.0f

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 84

__device__ float curand_uniform (curandStateMtgp32_t ∗ state)

Return a uniformly distributed float between 0.0f and 1.0f from the MTGP32 generator
in state, increment position of generator. Output range excludes 0.0f but includes 1.0f.
Denormalized floating point outputs are never returned.

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed float between 0.0f and 1.0f

__device__ float curand_uniform (curandStateMRG32k3a_t ∗
state)

Return a uniformly distributed float between 0.0f and 1.0f from the MRG32k3a
generator in state, increment position of generator. Output range excludes 0.0f but
includes 1.0f. Denormalized floating point outputs are never returned.

The implementation returns up to 23 bits of mantissa, with the minimum return value 2−32

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed float between 0.0f and 1.0f

__device__ float curand_uniform (curandStateXORWOW_t ∗
state)

Return a uniformly distributed float between 0.0f and 1.0f from the XORWOW
generator in state, increment position of generator. Output range excludes 0.0f but
includes 1.0f. Denormalized floating point outputs are never returned.

The implementation may use any number of calls to curand() to get enough random bits
to create the return value. The current implementation uses one call.

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed float between 0.0f and 1.0f

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 85

__device__ double curand_uniform_double (curandStateScram-
bledSobol64_t ∗ state)

Return a uniformly distributed double between 0.0 and 1.0 from the scrambled Sobol64
generator in state, increment position of generator. Output range excludes 0.0 but
includes 1.0. Denormalized floating point outputs are never returned.

The implementation is guaranteed to use a single call to curand() to preserve the
quasirandom properties of the sequence.

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed double between 0.0 and 1.0

__device__ double curand_uniform_double (curandState-
Sobol64_t ∗ state)

Return a uniformly distributed double between 0.0 and 1.0 from the Sobol64 generator in
state, increment position of generator. Output range excludes 0.0 but includes 1.0.
Denormalized floating point outputs are never returned.

The implementation is guaranteed to use a single call to curand() to preserve the
quasirandom properties of the sequence.

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed double between 0.0 and 1.0

__device__ double curand_uniform_double (curandStateScram-
bledSobol32_t ∗ state)

Return a uniformly distributed double between 0.0 and 1.0 from the scrambled Sobol32
generator in state, increment position of generator. Output range excludes 0.0 but
includes 1.0. Denormalized floating point outputs are never returned.

The implementation is guaranteed to use a single call to curand() to preserve the
quasirandom properties of the sequence.

Parameters:

state - Pointer to state to update

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 86

Returns:

uniformly distributed double between 0.0 and 1.0

__device__ double curand_uniform_double (curandState-
Sobol32_t ∗ state)

Return a uniformly distributed double between 0.0 and 1.0 from the Sobol32 generator in
state, increment position of generator. Output range excludes 0.0 but includes 1.0.
Denormalized floating point outputs are never returned.

The implementation is guaranteed to use a single call to curand() to preserve the
quasirandom properties of the sequence.

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed double between 0.0 and 1.0

__device__ double curand_uniform_double (curand-
StateMtgp32_t ∗ state)

Return a uniformly distributed double between 0.0f and 1.0f from the MTGP32
generator in state, increment position of generator. Output range excludes 0.0f but
includes 1.0f. Denormalized floating point outputs are never returned.

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed double between 0.0f and 1.0f

__device__ double curand_uniform_double (curand-
StateMRG32k3a_t ∗ state)

Return a uniformly distributed double between 0.0 and 1.0 from the MRG32k3a
generator in state, increment position of generator. Output range excludes 0.0 but
includes 1.0. Denormalized floating point outputs are never returned.

Note the implementation returns at most 32 random bits of mantissa as outlined in the
seminal paper by L’Ecuyer.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 87

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed double between 0.0 and 1.0

__device__ double curand_uniform_double (curandStateXOR-
WOW_t ∗ state)

Return a uniformly distributed double between 0.0 and 1.0 from the XORWOW
generator in state, increment position of generator. Output range excludes 0.0 but
includes 1.0. Denormalized floating point outputs are never returned.

The implementation may use any number of calls to curand() to get enough random bits
to create the return value. The current implementation uses exactly two calls.

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed double between 0.0 and 1.0

template<typename T > __device__ void skipahead (unsigned long
long n, T state)

Update the Sobol64 state in state to skip ahead n elements.

All values of n are valid.
Parameters:

n - Number of elements to skip
state - Pointer to state to update

template<typename T > __device__ void skipahead (unsigned int n,
T state)

Update the Sobol32 state in state to skip ahead n elements.

All values of n are valid.
Parameters:

n - Number of elements to skip
state - Pointer to state to update

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 88

__device__ void skipahead (unsigned long long n,
curandStateMRG32k3a_t ∗ state)

Update the MRG32k3a state in state to skip ahead n elements.

All values of n are valid. Large values require more computation and so will take more
time to complete.

Parameters:

n - Number of elements to skip

state - Pointer to state to update

__device__ void skipahead (unsigned long long n,
curandStateXORWOW_t ∗ state)

Update the XORWOW state in state to skip ahead n elements.

All values of n are valid. Large values require more computation and so will take more
time to complete.

Parameters:

n - Number of elements to skip

state - Pointer to state to update

__device__ void skipahead_sequence (unsigned long long n,
curandStateMRG32k3a_t ∗ state)

Update the MRG32k3a state in state to skip ahead n sequences. Each sequence is 2127

elements long, so this means the function will skip ahead 2127 · n elements.

All values of n are valid. Large values require more computation and so will take more
time to complete.

Parameters:

n - Number of sequences to skip

state - Pointer to state to update

__device__ void skipahead_sequence (unsigned long long n,
curandStateXORWOW_t ∗ state)

Update the XORWOW state in state to skip ahead n subsequences. Each subsequence is
267 elements long, so this means the function will skip ahead 267 · n elements.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 89

All values of n are valid. Large values require more computation and so will take more
time to complete.

Parameters:

n - Number of subsequences to skip

state - Pointer to state to update

__device__ void skipahead_subsequence (unsigned long long n,
curandStateMRG32k3a_t ∗ state)

Update the MRG32k3a state in state to skip ahead n subsequences. Each subsequence is
276 elements long, so this means the function will skip ahead 276 · n elements.

Valid values of n are 0 to 251. Note n will be masked to 51 bits
Parameters:

n - Number of subsequences to skip

state - Pointer to state to update

Variable Documentation
unsigned int mtgp32_params_fast::flt_tmp_tbl[16] [inherited]

a small matrix for tempering and converting to float.

unsigned int mtgp32_params_fast::mask [inherited]

This is a mask for state space

unsigned char mtgp32_params_fast::poly_sha1[21] [inherited]

SHA1 digest

int mtgp32_params_fast::pos [inherited]

pick up position.

int mtgp32_params_fast::sh1 [inherited]

shift value 1. 0 < sh1 < 32.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 90

int mtgp32_params_fast::sh2 [inherited]

shift value 2. 0 < sh2 < 32.

unsigned int mtgp32_params_fast::tbl[16] [inherited]

a small matrix.

unsigned int mtgp32_params_fast::tmp_tbl[16] [inherited]

a small matrix for tempering.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 91

www.nvidia.com

Notice
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

OpenCL
OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks
NVIDIA and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S.
and other countries. Other company and product names may be trademarks of the respective companies with
which they are associated.

Copyright
© 2012 NVIDIA Corporation. All rights reserved.

	CURAND Library
	Compatibility and Versioning
	Host API Overview
	Generator Types
	Generator Options
	Seed
	Offset
	Order

	Return Values
	Generation Functions
	Host API Example
	Performance Notes

	Device API Overview
	Pseudorandom Sequences
	Bit Generation with XORWOW and MRG32k3a generators
	Bit Generation with the MTGP32 generator
	Distributions

	Quasirandom Sequences
	Skip-Ahead
	Performance Notes
	Device API Example
	Thrust and CURAND Example

	Testing

	CURAND Reference
	Host API
	Typedef Documentation
	curandDirectionVectors32_t
	curandDirectionVectors64_t
	curandDirectionVectorSet_t
	curandGenerator_t
	curandOrdering_t
	curandRngType_t
	curandStatus_t

	Enumeration Type Documentation
	curandDirectionVectorSet
	curandOrdering
	curandRngType
	curandStatus

	Function Documentation
	curandCreateGenerator
	curandCreateGeneratorHost
	curandDestroyGenerator
	curandGenerate
	curandGenerateLogNormal
	curandGenerateLogNormalDouble
	curandGenerateLongLong
	curandGenerateNormal
	curandGenerateNormalDouble
	curandGenerateSeeds
	curandGenerateUniform
	curandGenerateUniformDouble
	curandGetDirectionVectors32
	curandGetDirectionVectors64
	curandGetScrambleConstants32
	curandGetScrambleConstants64
	curandGetVersion
	curandSetGeneratorOffset
	curandSetGeneratorOrdering
	curandSetPseudoRandomGeneratorSeed
	curandSetQuasiRandomGeneratorDimensions
	curandSetStream

	Device API
	Typedef Documentation
	curandState_t
	curandStateMRG32k3a_t
	curandStateMtgp32_t
	curandStateScrambledSobol32_t
	curandStateScrambledSobol64_t
	curandStateSobol32_t
	curandStateSobol64_t
	curandStateXORWOW_t

	Function Documentation
	curand
	curand
	curand
	curand
	curand
	curand
	curand
	curand_init
	curand_init
	curand_init
	curand_init
	curand_init
	curand_init
	curand_log_normal
	curand_log_normal
	curand_log_normal
	curand_log_normal
	curand_log_normal
	curand_log_normal
	curand_log_normal
	curand_log_normal2
	curand_log_normal2
	curand_log_normal2_double
	curand_log_normal2_double
	curand_log_normal_double
	curand_log_normal_double
	curand_log_normal_double
	curand_log_normal_double
	curand_log_normal_double
	curand_log_normal_double
	curand_log_normal_double
	curand_mtgp32_single
	curand_mtgp32_single_specific
	curand_mtgp32_specific
	curand_normal
	curand_normal
	curand_normal
	curand_normal
	curand_normal
	curand_normal
	curand_normal
	curand_normal2
	curand_normal2
	curand_normal2_double
	curand_normal2_double
	curand_normal_double
	curand_normal_double
	curand_normal_double
	curand_normal_double
	curand_normal_double
	curand_normal_double
	curand_normal_double
	curand_uniform
	curand_uniform
	curand_uniform
	curand_uniform
	curand_uniform
	curand_uniform
	curand_uniform
	curand_uniform_double
	curand_uniform_double
	curand_uniform_double
	curand_uniform_double
	curand_uniform_double
	curand_uniform_double
	curand_uniform_double
	skipahead
	skipahead
	skipahead
	skipahead
	skipahead_sequence
	skipahead_sequence
	skipahead_subsequence

	Variable Documentation
	flt_tmp_tbl
	mask
	poly_sha1
	pos
	sh1
	sh2
	tbl
	tmp_tbl

