IIIIIII

CUDA Toolkit 4.1
CURAND Guide

Published by
NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050
Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES,
DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND
SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS". NVIDIA MAKES
NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH
RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS
FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such information or
for any infringement of patents or other rights of third parties that may result from its use.
No license is granted by implication or otherwise under any patent or patent rights of
NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all information previously
supplied. NVIDIA Corporation products are not authorized for use as critical components
in life support devices or systems without express written approval of NVIDIA
Corporation.

Trademarks

NVIDIA, CUDA, and the NVIDIA logo are trademarks or registered trademarks of
NVIDIA Corporation in the United States and other countries. Other company and
product names may be trademarks of the respective companies with which they are
associated.

Copyright
Copyright (©2005-2012 by NVIDIA Corporation. All rights reserved.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 1

Portions of the MTGP32 (Mersenne Twister for GPU) library routines are subject to the
following copyright:

Copyright (©2009, 2010 Mutsuo Saito, Makoto Matsumoto and Hiroshima University. All
rights reserved. Copyright (©)2011 Mutsuo Saito, Makoto Matsumoto, Hiroshima
University and University of Tokyo. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither the name of the Hiroshima University nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 2

CURAND Library

The CURAND library provides facilities that focus on the simple and efficient generation
of high-quality pseudorandom and quasirandom numbers. A pseudorandom sequence of
numbers satisfies most of the statistical properties of a truly random sequence but is
generated by a deterministic algorithm. A quasirandom sequence of n-dimensional points
is generated by a deterministic algorithm designed to fill an n-dimensional space evenly.

CURAND consists of two pieces: a library on the host (CPU) side and a device (GPU)
header file. The host-side library is treated like any other CPU library: users include the
header file, /include/curand.h, to get function declarations and then link against the
library. Random numbers can be generated on the device or on the host CPU. For device
generation, calls to the library happen on the host, but the actual work of random number
generation occurs on the device. The resulting random numbers are stored in global
memory on the device. Users can then call their own kernels to use the random numbers,
or they can copy the random numbers back to the host for further processing. For host
CPU generation, all of the work is done on the host, and the random numbers are stored
in host memory.

The second piece of CURAND is the device header file, /include/curand_kernel.h. This
file defines device functions for setting up random number generator states and generating
sequences of random numbers. User code may include this header file, and user-written
kernels may then call the device functions defined in the header file. This allows random
numbers to be generated and immediately consumed by user kernels without requiring the
random numbers to be written to and then read from global memory.

Compatibility and Versioning

The host API of CURAND is intended to be backward compatible at the source level with
future releases (unless stated otherwise in the release notes of a specific future release). In
other words, if a program uses CURAND, it should continue to compile and work correctly
with newer versions of CURAND without source code changes.

CURAND is not guaranteed to be backward compatible at the binary level. Using a
different version of the curand.h header file and the shared library is not supported. Using

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 4

different versions of CURAND and the CUDA runtime is not supported.

The device API should be backward compatible at the source level for public functions in
most cases.

Host API Overview

To use the host API, user code should include the library header file curand.h and
dynamically link against the CURAND library. The library uses the CUDA runtime, so

user code must also use the runtime. The CUDA driver API is not supported by
CURAND.

Random numbers are produced by generators. A generator in CURAND encapsulates all
the internal state necessary to produce a sequence of pseudorandom or quasirandom
numbers. The normal sequence of operations is as follows:

1. Create a new generator of the desired type (see Generator Types) with
curandCreateGenerator ().

2. Set the generator options (see Generator Options); for example, use
curandSetPseudoRandomGeneratorSeed () to set the seed.

. Allocate memory on the device with cudaMalloc().

3
4. Generate random numbers with curandGenerate() or another generation function.
5. Use the results.

6

. If desired, generate more random numbers with more calls to curandGenerate().
7. Clean up with curandDestroyGenerator ().

To generate random numbers on the host CPU, in step one above call
curandCreateGeneratorHost (), and in step three, allocate a host memory buffer to
receive the results. All other calls work identically whether you are generating random
numbers on the device or on the host CPU.

It is legal to create several generators at the same time. Each generator encapsulates a
separate state and is independent of all other generators. The sequence of numbers
produced by each generator is deterministic. Given the same set-up parameters, the same
sequence will be generated with every run of the program. Generating random numbers on
the device will result in the same sequence as generating them on the host CPU.

Note that curandGenerate() in step 4 above launches a kernel and returns
asynchronously. If you launch another kernel in a different stream, and that kernel needs
to use the results of curandGenerate(), you must either call cudaThreadSynchronize() or
use the stream management/event management routines, to ensure that the random
generation kernel has finished execution before the new kernel is launched.

Note that it is not valid to pass a host memory pointer to a generator that is running on

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 5

the device, and it is not valid to pass a device memory pointer to a generator that is
running on the CPU. Behavior in these cases is undefined.

Generator Types

Random number generators are created by passing a type to curandCreateGenerator ().
There are five types of random number generators in CURAND, that fall into two
categories. CURAND_RNG_PSEUDO_XORWOW, CURAND_RNG_PSEUDO_MRG32K3A, and
CURAND_RNG_PSEUDO_MTGP32 are pseudorandom number generators.
CURAND_RNG_PSEUDO_XORWOW is implemented using the XORWOW algorithm, a member of
the xor-shift family of pseudorandom number generators. CURAND_RNG_PSEUDO_MRG32K3A
is a member of the Combined Multiple Recursive family of pseudorandom number
generators. CURAND_RNG_PSEUDO_MTGP32 is a member of the Mersenne Twister family of
pseudorandom number generators, with parameters customized for operation on the GPU.
There are 4 variants of the basic SOBOL’ quasi random number generator. All of the
variants generate sequences in up to 20,000 dimensions. CURAND_RNG_QUASI_S0BOL32,
CURAND_RNG_QUASI_SCRAMBLED_SOB0L32, CURAND_RNG_QUASI_SOBOL64, and
CURAND_RNG_QUASI_SCRAMBLED_SO0BOL64 are quasirandom number generator types.
CURAND_RNG_QUASI_SOBOL32 is a Sobol’ generator of 32-bit sequences.
CURAND_RNG_QUASI_SCRAMBLED_SOBOL32 is a scrambled Sobol” generator of 32-bit
sequences. CURAND_RNG_QUASI_SOBOL64 is a Sobol” generator of 64-bit sequences.
CURAND_RNG_QUASI_SCRAMBLED_S0BOL64 is a scrambled Sobol’” generator of 64-bit
sequences.

Generator Options

Once created, random number generators can be defined using the general options seed,
offset, and order.

Seed

The seed parameter is a 64-bit integer that initializes the starting state of a pseudorandom
number generator. The same seed always produces the same sequence of results.

Offset

The offset parameter is used to skip ahead in the sequence. If offset = 100, the first random
number generated will be the 100th in the sequence. This allows multiple runs of the same
program to continue generating results from the same sequence without overlap. Note that
the skip ahead function is not available for the CURAND_RNG_PSEUDO_MTGP32 generator.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 6

Order

The order parameter is used to choose how the results are ordered in global memory.
There are three ordering choices for pseudorandom sequences:
CURAND_ORDERING_PSEUDO_DEFAULT, CURAND_ORDERING_PSEUDO_BEST, and
CURAND_ORDERING_PSEUDO_SEEDED. There is one ordering choice for quasirandom numbers,
CURAND_ORDERING_QUASI_DEFAULT. The default ordering for pseudorandom number
generators is CURAND_ORDERING_PSEUDO_DEFAULT, while the default ordering for
quasirandom number generators is CURAND_ORDERING_QUASI_DEFAULT.

Currently, the two pseudorandom orderings CURAND_ORDERING_PSEUDO_DEFAULT and
CURAND_ORDERING_PSEUDO_BEST produce the same output ordering for all pseudo-random
generators. However, future releases of CURAND may change the ordering associated with
CURAND_ORDERING_PSEUDO_BEST to improve either performance or the quality of the
results. It will always be the case that the ordering obtained with
CURAND_ORDERING_PSEUDO_BEST is deterministic and is the same for each run of the
program. The ordering returned by CURAND_ORDERING_PSEUDO_DEFAULT is guaranteed to
remain the same for all CURAND releases. In the current release, only the XORWOW
generator has more than one ordering.

The behavior of the ordering parameters for each generator type is outlined below:

» XORWOW pseudorandom generator
e CURAND_ORDERING_PSEUDO_BEST

The output ordering of CURAND_ORDERING_PSEUDO_BEST is the same as
CURAND_ORDERING_PSEUDO_DEFAULT in the current release.

e CURAND_ORDERING_PSEUDO_DEFAULT

The result at offset n in global memory is from position
(n mod 4096) - 257 4+ |n/4096 |

in the original XORWOW sequence.
e CURAND_ORDERING_PSEUDO_SEEDED

The result at offset n in global memory is from position [n/4096] in the
XORWOW sequence seeded with a combination of the user seed and the
number n mod 4096. In other words, each of 4096 threads uses a different seed.
This seeding method reduces state setup time but may result in statistical
weaknesses of the pseudorandom output for some user seed values.

» MRG32k3a pseudorandom generator
e CURAND_ORDERING_PSEUDO_BEST

The output ordering of CURAND_ORDERING_PSEUDO_BEST is the same as
CURAND_ORDERING_PSEUDO_DEFAULT in the current release.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 7

e CURAND_ORDERING_PSEUDO_DEFAULT

The result at offset n in global memory is from position
(n mod 4096) - 276 4 |n/4096 |

in the original MRG32k3a sequence. (Note that the stride between subsequent
samples for MRG32k3a is not the same as for XORWOW)

» MTGP32 pseudorandom generator
e CURAND_ORDERING_PSEUDO_BEST

The output ordering of CURAND_ORDERING_PSEUDO_BEST is the same as
CURAND_ORDERING_PSEUDO_DEFAULT in the current release.

e CURAND_ORDERING_PSEUDO_DEFAULT

The MTGP32 generator actually generates 64 distinct sequences based on
different parameter sets for the basic algorithm. Let S(p) be the sequence for
parmeter set p.

The result at offset n in global memory is from position (n mod 256) from the
sequence

S(|n/256] mod 64)

In other words 256 samples from S(0) are followed by 256 samples from S(1)
and so-on, up to S(63). This pattern repeats, so the subsequent 256 samples are
from S(0), followed by 256 samples from S(1), ands so on.

» 32 and 64 bit SOBOL and Scrambled SOBOL quasirandom generators
e CURAND_ORDERING_QUASI_DEFAULT

When generating n results in d dimensions, the output will consist of n/d
results from dimension 1, followed by n/d results from dimension 2, and so on
up to dimension d. Only exact multiples of the dimension size may be
generated. The dimension parameter d is set with
curandSetQuasiRandomGeneratorDimensions () and defaults to 1.

Return Values

All CURAND host library calls have a return value of curandStatus_t. Calls that succeed
without errors return CURAND_STATUS_SUCCESS. If errors occur, other values are returned
depending on the error. Because CUDA allows kernels to execute asynchronously from
CPU code, it is possible that errors in a non-CURAND kernel will be detected during a
call to a library function. In this case, CURAND_STATUS_PREEXISTING_ERROR is returned.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 8

Generation Functions

curandStatus_t

curandGenerate (
curandGenerator_t generator,
unsigned int *outputPtr, size_t num)

The curandGenerate () function is used to generate pseudo- or quasirandom bits of
output. For XORWOW, MRG32k3a, MTGP32, and SOBOL32 generators, each output
element is a 32-bit unsigned int where all bits are random. For SOBOL64 generators, each
output element is a 64-bit unsigned long long where all bits are random.

curandStatus_t

curandGenerateUniform(
curandGenerator_t generator,
float *outputPtr, size_t num)

The curandGenerateUniform() function is used to generate uniformly distributed floating
point values between 0.0 and 1.0, where 0.0 is excluded and 1.0 is included.

curandStatus_t

curandGenerateNormal (
curandGenerator_t generator,
float *outputPtr, size_t n,
float mean, float stddev)

The curandGenerateNormal () function is used to generate normally distributed floating
point values with the given mean and standard deviation.

curandStatus_t

curandGenerateLogNormal (
curandGenerator_t generator,
float *outputPtr, size_t n,
float mean, float stddev)

The curandGenerateLogNormal () function is used to generate log-normally distributed
floating point values based on a normal distribution with the given mean and standard
deviation.

curandStatus_t

curandGenerateUniformDouble(
curandGenerator_t generator,
double *outputPtr, size_t num)

The function curandGenerateUniformDouble() generates uniformly distributed random
numbers in double precision. The function

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 9

curandStatus_t

curandGenerateNormalDouble (
curandGenerator_t generator,
double *outputPtr, size_t n,
double mean, double stddev)

curandGenerateNormalDouble () generates normally distributed results in double
precision with the given mean and standard deviation. Double precision results can only
be generated on devices of compute capability 1.3 or above, and the host.

curandStatus_t

curandGeneratelLogNormalDouble (
curandGenerator_t generator,
double *outputPtr, size_t n,
double mean, double stddev)

curandGenerateLogNormalDouble () generates log-normally distributed results in double
precision, based on a normal distribution with the given mean and standard deviation.

For quasirandom generation, the number of results returned must be a multiple of the
dimension of the generator.

Generation functions can be called multiple times on the same generator to generate
successive blocks of results. For pseudorandom generators, multiple calls to generation
functions will yield the same result as a single call with a large size. For quasirandom
generators, because of the ordering of dimensions in memory, many shorter calls will not
produce the same results in memory as one larger call; however the generated
n-dimensional vectors will be the same.

Double precision results can only be generated on devices of compute capability 1.3 or
above, and the host.

Host API Example

/ *
* This program uses the host CURAND API to generate 100
* pseudorandom floats.
*/

#include <stdio.h>

#include <stdlib.h>

#include <cuda.h>

#include <curand.h>

#define CUDA_CALL(x) do { if ((x)'=cudaSuccess) { \

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 10

printf ("Error at %s:%d\n",__FILE

return EXIT_FAILURE;}} while (0)
#define CURAND_CALL(x) do { if ((x)!=CURAND_STATUS_SUCCESS) { \

printf ("Error at %s:%d\n",__FILE LINE__);\

return EXIT_FAILURE;}} while (0)

LINE__);\

—_) — =

o= 9 ==

int main(int argc, char *argv[])

size_t n = 100;

size_t 1i;
curandGenerator_t gen;
float *devData, *hostData;

/* Allocate n floats on host */
hostData = (float *)calloc(n, sizeof (float));

/* Allocate n floats on device */
CUDA_CALL (cudaMalloc ((void *x*)&devData, n*sizeof (float)));

/* Create pseudo-random number generator */
CURAND_CALL (curandCreateGenerator (&gen,
CURAND_RNG_PSEUDO_DEFAULT)) ;

/* Set seed */
CURAND_CALL (curandSetPseudoRandomGeneratorSeed (gen,
1234ULL));

/* Generate n floats on device */
CURAND_CALL (curandGenerateUniform(gen, devData, n));

/* Copy device memory to host x/
CUDA_CALL (cudaMemcpy (hostData, devData, n * sizeof (float),
cudaMemcpyDeviceToHost)) ;

/* Show result */
for(i = 0; i < n; i++) A
printf ("%1.4f ", hostDatalil]);
b
printf ("\n");

/* Cleanup */

CURAND_CALL (curandDestroyGenerator (gen)) ;
CUDA_CALL (cudaFree (devData)) ;
free(hostData) ;

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 11

return EXIT_SUCCESS;
}

Performance Notes

In general you will get the best performance from the CURAND library by generating
blocks of random numbers that are as large as possible. Fewer calls to generate many
random numbers is more efficient than many calls generating only a few random numbers.
The default pseudorandom generator, XORWOW, with the default ordering takes some
time to setup the first time it is called. Subsequent generation calls do not require this
setup. To avoid this setup time, use the CURAND_ORDERING_PSEUDO_SEEDED ordering.

The MTGP32 Mersenne Twister algorithm is closely tied to the thread and block count.
The state structure for MTGP32 actually contains the state for 256 consecutive samples
from a given sequence, as determined by a specific parameter set. Each of 64 blocks uses a
different parameter set and each of 256 threads generates one sample from the state, and
updates the state. Hence the most efficient use of MTGP32 is to generate a multiple of
16384 samples.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 12

Device API Overview

To use the device API, include the file curand_kernel.h in files that define kernels that
use CURAND device functions. The device API includes functions for pseudorandom
generation and quasirandom generation.

Pseudorandom Sequences

The functions for pseudorandom sequences support bit generation and generation from
distributions.

Bit Generation with XORWOW and MRG32k3a generators

__device__ unsigned int
curand (curandState_t *state)

Following a call to curand_init (), curand () returns a sequence of pseudorandom
numbers with a period greater than 2'%°. If curand() is called with the same initial state
each time, and the state is not modified between the calls to curand(), the same sequence
is always generated.

__device__ void
curand_init (
unsigned long long seed, unsigned long long sequence,

unsigned long long offset, curandState_t *state)

The curand_init () function sets up an initial state allocated by the caller using the given
seed, sequence number, and offset within the sequence. Different seeds are guaranteed to
produce different starting states and different sequences. The same seed always produces
the same state and the same sequence. The state set up will be the state after

267 . sequence + offset calls to curand() from the seed state.

Sequences generated with different seeds usually do not have statistically correlated values,
but some choices of seeds may give statistically correlated sequences. Sequences generated
with the same seed and different sequence numbers will not have statistically correlated
values.

For the highest quality parallel pseudorandom number generation, each experiment should
be assigned a unique seed. Within an experiment, each thread of computation should be
assigned a unique sequence number. If an experiment spans multiple kernel launches, it is
recommended that threads between kernel launches be given the same seed, and sequence
numbers be assigned in a monotonically increasing way. If the same configuration of
threads is launched, random state can be preserved in global memory between launches to
avoid state setup time.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 13

Bit Generation with the MTGP32 generator

The MTGP32 generator is an adaptation of code developed at Hiroshima University

(see [1]). In this algorithm, samples are generated for multiple sequences, each sequence
based on a set of computed parameters. CURAND uses the 200 parameter sets that have
been pre-generated for the 32-bit generator with period 21213 It would be possible to
generate other parameter sets, as described in [1], and use those instead. There is one state
structure for each parameter set (sequence), and the algorithm allows thread-safe
generation and state update for up to 256 concurrent threads (within a single block) for
each of the 200 sequences.

Note that two different blocks can not operate on the same state safely. Also note that,
within a block, at most 256 threads may operate on a given state.

For the MTGP32 generator, two host functions are provided to help set up parameters for
the different sequences in device memory, and to set up the initial state.

__host__ curandStatus_t
curandMakeMTGP32Constants (mtgp32_params_fast_t params[], mtgp32_kernel params_t * p)

This function re-organizes the paramter set data from the pre-generated format
(mtgp32_params_fast_t) into the format used by the kernel functions
(mtgp32_kernel_params_t), and copies them to device memory.

__host__ curandStatus_t

curandMakeMTGP32KernelState (curandStateMtgp32_t *s,
mtgp32_params_fast_t params[],
mtgp32_kernel_params_t *k,
int n,
unsigned long long seed)

This function initializes n states, based on the specified parameter set and seed, and copies
them to device memory indicated by s. Note that if you are using the pre-generated
states, the maximum value of n is 200.

The CURAND MTGP32 generator provides two kernel functions to generate random bits.

__device__ unsigned int
curand (curandStateMtgp32_t *state)

This function computes a thread index, and for that index generates a result and updates
state. The thread index t is computed as:

t = (blockDim.z * blockDim.y * threadIdx.z) + (blockDim.x * threadIldx.y) +
threadIdx.x

This function may be called repeatedly from a single kernel launch, with the following
constraints:

It may only be called safely from a block that has 256 or fewer threads.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 14

A given state may not be used by more than one block.

A given block may generate randoms using multiple states.

__device__ unsigned int
curand_mtgp32_specific(curandStateMtgp32_t *state, unsigned char index, unsigned char n)

This function generates a result and updates state for the position specified by a
thread-specific index, and advances the offset in the state by n positions.
curand_mtgp32_specific may be called multiple times within a kernel launch, with the
following constraints:

At most 256 threads may call this function for a given state.

Within a block, for a given state, if n threads are calling the function, the indices must run
from 0...n-1. The indices do not have to match the thread numbers, and may be
distributed among the threads as required by the calling program.

A given state may not be used by more than one block.
A given block may generate randoms using multiple states.

Figure 1 is an illustration of how blocks and threads in MTGP32 operate on the generator
states. Each row represents a circular state array of 32-bit integers s(n). Threads
operating on the array are identified as T(m). The specific case shown matches the internal
implementation of the host API, which launches 64 blocks of 256 threads. Each block
operates on a different sequence, determined by a unique set of paramters, P(n). One
complete state of an MTGP32 sequence is defined by 351 32-bit integers. Each thread T (m)
operates on one of these integers, s (n+m) combining it with s(n+m+1) and a pickup element
s (n+m+p), where p <= 95. It stores the new state at position s(n+m+351) in the state
array. After thread synchronization, the base index n is advanced by the number of threads
that have updated the state. To avoid being overwritten, the array itself must be at least
256 + 351 integers in length. In fact it is sized at 1024 integers for efficiency of indexing.

The limitation on the number of threads in a block, which can operate on a given state
array, arises from the need to ensure that state s(n+351) has been updated before it is
needed as a pickup state. If there were a thread T(256), it could use s(n+256+95) i.e.
s(n+351) before thread zero has updated s(n+351). If an application requires that more
than 256 threads in a block invoke an MTGP32 generator function, it must use multiple
MTGP32 states, either by using multiple parameter sets, or by using multiple generators
with different seeds. Also note that the generator functions synchronize threads at the end
of each call, so it is most efficient for 256 threads in a block to invoke the generator.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 15

Block(0) using P(0) T(0), T(1),

[sar | [s [swsn| smex[... [smep [stepsn)... [see350] sns352)] [saoz2) [saiozs) |
Block(1) using P(1) T(0), T(1),

| s(1) | e | s(n) I s(n+1) | s(n+2) | e | s(n+p) | s(n+p+l1 e | s(n+351)| s(n+352)| e | s(1022) | s(1023) I
Block(2) using P(2) T(0) T(1)

| s(1) | | s) | s(n+1) | s(n+2) | |s(n+p) |s(n+p+1)| |s(n+351)| s(n+352)| |s(1022) |s(1023) |
Block(63) using P(63) T(0) T(1)

l s(1) I e | s(n) l s(n+1) I s(n+2) l e I s(n+p) I s(n+p+11 e I s(n+35l)l s(n+352)| e | s(1022) I s(1023) |

Figure 1: MTGP32 Block and Thread Operation

Distributions

__device__ float

curand_uniform (curandState_t *state)

This function returns a sequence of pseudorandom floats uniformly distributed between 0.0
and 1.0. It may return from 0.0 to 1.0, where 1.0 is included and 0.0 is excluded.
Distribution functions may use any number of unsigned integer values from a basic
generator. The number of values consumed is not guaranteed to be fixed.

__device__ float
curand_normal (curandState_t *state)

This function returns a single normally distributed float with mean 0.0 and standard
deviation 1.0. This result can be scaled and shifted to produce normally distributed values
with any mean and standard deviation.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 16

__device__ float
curand_log_normal (curandState_t *state, float mean, float stddev)

This function returns a single log-normally distributed float based on a normal distribution
with the given mean and standard deviation.

__device__ double
curand_uniform_double (curandState_t *state)

__device__ double

curand_normal_double (curandState_t *state)

__device__ double
curand_log_normal_double (curandState_t *state, double mean, double stddev)

The three functions above are the double precision versions of curand_uniform(),
curand_normal (), and curand_log_normal().

For pseudorandom generators, the double precision functions use multiple calls to
curand () to generate 53 random bits.

__device__ float2
curand_normal?2 (curandState_t *state)

__device__ float2

curand_log_normal2 (curandState_t *state)

__device__ double2

curand_normal2_double (curandState_t *state)

__device__ double2
curand_log_normal2_double (curandState_t *state)

The above functions generate two normally or log normally distributed pseudorandom
results with each call. Because the underlying implementation uses the Box-Muller
transform, this is generally more efficient than generating a single result with each call.

Quasirandom Sequences

Although the default generator type is pseudorandom numbers from XORWOW, Sobol’
sequences based on Sobol’ 32-bit integers can be generated using the following functions:

__device__ void

curand_init (
unsigned int *direction_vectors,
unsigned int offset,

curandStateSobol32_t *state)

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 17

__device__ void

curand_init (
unsigned int *direction_vectors,
unsigned int scramble_c,
unsigned int offset,

curandStateScrambledSobol32_t *state)

__device__ unsigned int
curand (curandStateSobol32_t *state)

__device__ float
curand_uniform (curandStateSobol32_t *state)

__device__ float
curand_normal (curandStateSobol32_t *state)

__device__ float

curand_log_normal (
curandStateSobol32_t *state,
float mean,

float stddev)

__device__ double

curand_uniform_double (curandStateSobol32_t *state)

__device__ double
curand_normal_double (curandStateSobol32_t *state)

__device__ double
curand_log_normal_double (
curandStateSobol32_t *state,
double mean,
double stddev)

The curand_init() function initializes the quasirandom number generator state. There is
no seed parameter, only direction vectors and offset. For scrambled Sobol’ generators,
there is an additional parameter scramble_c, which is the initial value of the scrambled
sequence. For the curandStateSobol32_t type and the curandStateScrambledSobol32_t
type the direction vectors are an array of 32 unsigned integer values. For the
curandStateSobol64_t type and the curandStateScrambledSobol64_t type the direction
vectors are an array of 64 unsigned long long values. Offsets and initial constants for the
scrambled sequence are of type unsigned int for 32-bit Sobol” generators. These parameters
are of type unsigned long long for 64-bit Soblol’ generators. For the
curandStateSobol32_t type and the curandStateScrambledSobol32_t type the sequence
is exactly 232 elements long where each element is 32 bits. For the curandStateSobol64_t
type and the curandStateScrambledSobol64_t type the sequence is exactly 26 elements
long where each element is 64 bits. Fach call to curand () returns the next quasirandom

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 18

element. Calls to curand_uniform() return quasirandom floats or doubles from 0.0 to 1.0,
where 1.0 is included and 0.0 is excluded. Similarly, calls to curand_normal () return
normally distributed floats or doubles with mean 0.0 and standard deviation 1.0. Calls to
curand_log_normal () return log-normally distributed floats or doubles, derived from the
normal distribution with the specified mean and standard deviation. All of the generation
functions may be called with any type of Sobol’ generator.

As an example, generating quasirandom coordinates that fill a unit cube requires keeping
track of three quasirandom generators. All three would start at offset = 0 and would
have dimensions 0, 1, and 2, respectively. A single call to curand_uniform() for each
generator state would generate the x, y, and z coordinates. Tables of direction vectors are
accessible on the host through the curandGetDirectionVectors32() and
curandGetDirectionVectors64() functions. The direction vectors needed should be
copied into device memory before use.

The normal distribution functions for quasirandom generation use the inverse cumulative
density function to preserve the dimensionality of the quasirandom sequence. Therefore
there are no functions that generate more than one result at a time as there are with the
pseudorandom generators.

The double precision Sobol32 functions return results in double precision that use 32 bits
of internal precision from the underlying generator.

The double precision Sobol64 functions return results in double precision that use 53 bits
of internal precision from the underlying generator. These bits are taken from the high
order 53 bits of the 64 bit samples.

Skip-Ahead

There are several functions to skip ahead from a generator state.

__device__ void

skipahead (unsigned long long n, curandState_t *state)

__device__ void
skipahead (unsigned int n, curandStateSobol32_t *state)

Using this function is equivalent to calling curand () n times without using the return
value, but it is much faster.

__device__ void

skipahead_sequence (unsigned long long n, curandState_t *state)

This function is the equivalent of calling curand() n - 257 times without using the return
value and is much faster.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 19

Performance Notes

Calls to curand_init () are slower than calls to curand() or curand_uniform(). Large
offsets to curand_init () take more time than smaller offsets. It is much faster to save and
restore random generator state than to recalculate the starting state repeatedly.

As shown below, generator state can be stored in global memory between kernel launches,
used in local memory for fast generation, and then stored back into global memory.

__global__ void example(curandState *global_state)

{

curandState local_state;
local_state = global_state[threadIdx.x];
for(int i = 0; i < 10000; i++) {

unsigned int x = curand(&local_state);

}
global_state[threadIdx.x] = local_state;

3

Initialization of the random generator state generally requires more registers and local
memory than random number generation. It may be beneficial to separate calls to
curand_init () and curand() into separate kernels for maximum performance.

State setup can be an expensive operation. One way to speed up the setup is to use
different seeds for each thread and a constant sequence number of 0. This can be especially
helpful if many generators need to be created. While faster to set up, this method provides
less guarantees about the mathematical properties of the generated sequences. If there
happens to be a bad interaction between the hash function that initializes the generator
state from the seed and the periodicity of the generators, there might be threads with
highly correlated outputs for some seed values. We do not know of any problem values; if
they do exist they are likely to be rare.

Device API Example

This example uses the device API to calculate the proportion of pseudorandom integers
that have the low bit set.

/*
* This program uses the device CURAND API to calculate what
* proportion of pseudo-random ints have low bit set.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 20

x/
#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>
#include <curand_kernel.h>

#define CUDA_CALL(x) do { if((x) !'= cudaSuccess) { \
printf ("Error at %s:%d\n",__FILE LINE__); \
return EXIT_FAILURE;}} while (0)

== 9 ==

__global__ void setup_kernel (curandState *state)
{
int id = threadIdx.x + blockIdx.x * 64;
/* Each thread gets same seed, a different sequence
number , no offset */
curand_init (1234, id, 0, &state[id]);
}
__global__ void generate_kernel (curandState *state,
int *result)
{
int id = threadIdx.x + blockIdx.x * 64;
int count = O0;
unsigned int x;
/* Copy state to local memory for efficiency */
curandState localState = statel[id];
/* Generate pseudo-random unsigned ints */
for(int n = 0; n < 100000; n++) {
x = curand(&localState);
/* Check if low bit set */
if(x & 1) {
count ++;
}
}
/* Copy state back to global memory x*/
state[id] = localState;
/* Store results */
result [id] += count;
}

int main(int argc, char *argv[])
{

int i, total;

curandState *devStates;

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 21

int *devResults, *hostResults;

/* Allocate space for results on host */
hostResults = (int *)calloc (64 * 64, sizeof (int));

/* Allocate space for results on device */
CUDA_CALL (cudaMalloc ((void x*x*)&devResults, 64 * 64 x*
sizeof (int)));

/* Set results to 0 x/
CUDA_CALL (cudaMemset (devResults, 0, 64 *x 64 *
sizeof (int)));

/* Allocate space for prng states on device */
CUDA_CALL (cudaMalloc ((void **)&devStates, 64 * 64 *
sizeof (curandState))) ;

/* Setup prng states */
setup_kernel <<<64, 64>>>(devStates);

/* Generate and use pseudo-random */
for(i = 0; i < 10; i++) {
generate_kernel <<<64, 64>>>(devStates, devResults);

/* Copy device memory to host */
CUDA_CALL (cudaMemcpy (hostResults, devResults, 64 * 64 x
sizeof (int), cudaMemcpyDeviceToHost));

/* Show result x/

total = 0;

for(i = 0; 1 < 64 *x 64; i++) {
total += hostResults[i];

}

printf ("Fraction with low bit set was %10.13f\n",
(float)total / (64.0f * 64.0f * 100000.0f * 10.0£f));

/* Cleanup */

CUDA_CALL (cudaFree(devStates)) ;
CUDA_CALL (cudaFree(devResults)) ;
free(hostResults) ;

return EXIT_SUCCESS;

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 22

Thrust and CURAND Example

The following example demonstrates mixing CURAND and Thrust. It is a minimally
modified version of monte_carlo.cu, one of the standard Thrust examples. The example
estimates 7 by randomly picking points in the unit square and calculating the distance to

the origin to see if the points are in the quarter unit circle.

#include <thrust/iterator/counting_iterator.h>

#include <thrust/functional .h>
#include <thrust/transform_reduce.h>
#include <curand_kernel .h>

#include <iostream>
#include <iomanip>

// we could vary M & N to find the perf sweet spot

struct estimate_pi

public thrust::unary_function<unsigned

{
__device__

float operator () (unsigned int thread_id)
{

float sum = O0;

unsigned int N = 10000; // samples per

unsigned int seed = thread_id;
curandState s;

// seed a random number generator
curand_init (seed, 0, 0, &s);

// take N samples in a quarter circle
for (unsigned int i = 0; i < N; ++1i)

{

// draw a sample from the unit square

float x
float y = curand_uniform(&s);

curand_uniform(&s) ;

// measure distance from the origin
float dist = sqrtf (x*x + y*y);

CUDA Toolkit 4.1 CURAND Guide

float>

thread

PG-05328-041_v01 | 23

// add 1.0f if (uO,ul) is inside the quarter circle
if (dist <= 1.0f)
sum += 1.0f;

// multiply by 4 to get the area of the whole circle
sum *= 4.0f;

// divide by N
return sum / N;
+
};

int main(void)

{
// use 30K independent seeds
int M = 30000;

float estimate = thrust::transform_reduce(
thrust::counting_iterator<int>(0),
thrust::counting_iterator<int>(M),
estimate_pi (),
0.0f,
thrust::plus<float>());

estimate /= M;

std::cout << std::setprecision(3);
std::cout << "pi is approximately ";
std::cout << estimate << std::endl;
return O;

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 24

Testing

Sobol’ sequences are generated using the direction vectors recommended by Joe and
Kuo [2]. The scrambled Sobol’ method is described in [3] and [4].

The XORWOW generator was proposed by Marsaglia [5] and has been tested using the
TestUO1 "Crush" framework of tests [6]. The full suite of NIST pseudorandomness tests |7|
has also been run, though the focus has been on TestU01. The most rigorous the the
TestUO1 batteries is "BigCrush", which executes 106 statistical tests over the course of
approximately 5 hours on a high-end CPU/GPU. The XORWOW generator passes all of
the tests on most runs, but does produce occasional suspect statistics. Below is an
examples of the summary output from a run that did not pass all tests, with the detail of
the specific failure.

Version: TestUO1 1.2.3

Generator: curandXORWOW

Number of statistics: 160

Total CPU time: 05:17:59.63

The following tests gave p-values outside [0.001, 0.9990]:
(eps means a value < 1.0e-300):

(epsl means a value < 1.0e-15):

81 LinearComp, r = 29 1 - 7.1e-11
All other tests were passed

Detail from test 81:

scomp_LinearComp test:

Number of degrees of freedom : 12
Chi2 statistic for size of jumps : 7.11
p-value of test : 0.85

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 25

Normal statistic for number of jumps : -6.41
p-value of test : 1 - 7.1e-11 *ok ok Kk

To put this into perspective, there is a table in [6] that gives the results of running various
levels of the "Crush" tests on a broad selection of generators. Only a small number of
generators pass all of the BigCrush tests. For example the widely-respected Mersenne
twister [8] consistently fails two of the linear complexity tests.

The MRG32k3a generator was proposed in [9], with a specific implementation suggested
in [10]. This generator passes all "BigCrush" tests frequently, with occasional marginal
results similar to those shown below.

Version: TestU01 1.2.3

Generator: curandMRG32k3a

Number of statistics: 160

Total CPU time: 07:14:55.41

The following tests gave p-values outside [0.001, 0.9990]:
(eps means a value < 1.0e-300):

(epsl means a value < 1.0e-15):

A1l other tests were passed
Detail from test 59:

svaria_WeightDistrib test:

N= 1, n = 20000000, r= 0, k =256, Alpha = 0, Beta = 0.25
Number of degrees of freedom : 67
Chi-square statistic : 111.55
p-value of test : b5.2e-4 Kokokokok
CPU time used : 00:02:56.25

The MTGP32 generator is an adaptation of the work outlined in [1]. The MTGP32

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 26

generator exhibits some marginal results on "BigCrush". Below is an example.

Version: TestUO1 1.2.3

Generator: curandMtgp32Int

Number of statistics: 160

Total CPU time: 05:45:29.49

The following tests gave p-values outside [0.001, 0.9990]:
(eps means a value < 1.0e-300):

(epsl means a value < 1.0e-15):

A1l other tests were passed
Detail from test 12:

smultin_MultinomialOver test:

N = 30, =n = 20000000, r = 28, d = 4, t = 21,
Sparse TRUE

GenerCell = smultin_GenerCellSerial

Number of cells = d°t = 4398046511104
Expected number per cell = 1 / 219902.33
EColl = n~2 / (2k) = 45.47473509

Hashing = TRUE

Collision test

CollisionOver: demsity =n / k= 1/ 219902.33
Expected number of collisions = Mu = 45.47

Results of CollisionOver test:

POISSON approximation :
Expected number of collisions = N*Mu : 1364 .24

Observed number of collisions : 1248
p-value of test : 0.9993 KooKk ok

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 27

Total number of cells containing j balls

j= 0 131940795334368

j=1 599997504

j= 2 1248

j= 3 0

j= 4 0

j= 5 0
CPU time used : 00:04:32.52

Testing of the normal distribution, with the each of the generators, has been done using
the Pearson chi-squared test [11], [12], the Jarque-Bera test [13], the Kolmogorov-Smirnov
test [14], [15], and the Anderson-Darling test [16].

Tests are run over the range +/- 6 standard deviations. Three Pearson tests are run, with
cell counts 1000, 100, and 25. The test output has columns labeled PK for Pearson with
1000 cells, PC for Pearson with 100 cells, P25 for Pearson with 25 cells, JB for
Jarque-Bera, KS for Kolmogorov-Smirnov, and AD for Anderson-Darling. The rejection
criterion for each test is printed below the label.

The following tables are representative of the test output for statistical testing of the
normal distribution for XORWOW, MRG32k3a, MTGP32, Sobol’ 32-bit, and scrambled
Sobol’ 32-bit generators. The rows of each table represent the statistical results computed
over successive sequences of 10000 samples.

XORWOW Generator:

PK PC P25 JB KS AD
<1058 <118 <33 <4.6 <0.0122 <.632
684.48120 58.97784 20.44693 2.84152 0.00540 0.32829
686.37925 54.84938 7.79583 0.55109 0.00900 0.25832
673.21437 69.15825 15.46540 0.30335 0.00872 0.26772
568.26999 49.99519 8.85046 0.66624 0.00870 0.22939
639.10690 84.23040 10.19753 0.19844 0.00542 0.27939

MRg32k3a Generator:

PK PC P25 JB KS AD
<1058 <118 <33 <4.6 <0.0122 <.632

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 28

764 .38500 74.48157 19.32716 1.50118 0.01103 0.60351
795.31006 74.15086 11.78414 1.15159 0.00821 0.35343
741.85426 91.88692 20.67103 2.34232 0.00900 0.61787
644 .62093 70.68369 17.18277 0.32870 0.01243x* 0.34630
806.02693 93.50691 23.10548 2.67340 0.00978 0.51466
MTGP32 Generator:
PK PC P25 JB KS AD
<1058 <118 <33 <4.6 <0.0122 <.632
924 .62604 110.19868 23.45811 0.86919 0.00519 0.33411
708.76047 79.42919 20.67913 1.13427 0.01142 0.54632
674.17713 65.80415 13.09834 1.07799 0.01040 0.23860
733.35915 57.13829 17.66337 3.17017 0.01188 0.30864
620.17297 50.39043 14.75682 0.57970 0.00845 0.28916
Sobol’ 32-bit generator:
PK PC P25 JB KS AD
<1058 <118 <33 <4.6 <0.0122 <.632
157.04578 6.47398 1.45802 0.19007 0.00024 0.00188
243.82767 11.98164 1.34982 0.00668 0.00030 0.00086
229.87234 10.40206 2.73912 0.04165 0.00036 0.00137
290.29451 17.09013 3.25717 0.02583 0.00042 0.00172
327.32072 19.22832 5.09510 0.00335 0.00036 0.00127
Scrambled Sobol’ 32-bit generator:
PK PC P25 JB KS AD
<1058 <118 <33 <4.6 <0.0122 <.632
255.80606 10.93180 1.33766 0.01226 0.00036 0.00112
258.84244 8.45589 1.56766 0.04164 0.00036 0.00170
585.34346 49.33610 5.32037 0.04069 0.00043 0.00208
337.50312 27.64720 3.38925 0.01953 0.00041 0.00211
729.56687 56.89682 32.89772 0.00911 0.00040 0.00204

Even though the log-normal distribution is closely derived from the normal distribution, it
has also been tested using the Pearson chi-squared test and the Kolmogorov-Smirnov test.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 29

The following tables are representative of the test output for statistical testing of the log
normal distribution for XORWOW, MRG32k3a, MTGP32, Sobol’ 32-bit, and scrambled

Sobol’” 32-bit generators.
XORWOW generator:

1019.57936
991.93663
983.09678
966.45604
996.35262

105.63667

91.95369
115.34978
113.30013
111.50026

MRG32k3a generator:

1000.00359
942.17843
1005.62148
1053.68391
998.38936

90.12428
81.16259
102.29924
98.75565
103.43649

MTGP32 generator:

1010.18903
993.78319
1010.22068
963.33103
927.15616

94.51850
76.86543
63.76027
89.44369
75.85515

Sobol’ 32-bit generator:

PK
<1058

CUDA Toolkit 4.1 CURAND Guide

PC
<118

13.15820
20.46549
20.50434
24.54060
21.01332

22.82709
16.13670
23.62705
28.65422
19.26568

17.98126
12.48859
11.65743
17.96636
13.64221

P25
<33

KS
<0.0122

0.00540
0.00900
0.00872
0.00870
0.00542

KS
<0.0122

0.00826
0.00739
0.00697
0.01107
0.00803

KS
<0.0122

0.00771
0.00831
0.00677
0.01200
0.00566

KS
<0.0122

PG-05328-041_v01 | 30

289.42589
386.79860
355.04631
434.19211
343.57507

Scrambled Sobol- 32-bit generator:

354.55037
506.45280
451.96949
593.25666
423.05263

CUDA Toolkit 4.1 CURAND Guide

5.03327
6.57783
8.54472
9.54021
10.71571

8.20727
12.93848
18.18903
16.55782
12.06600

0.48858
0.76902
1.12228
2.07006
0.42503

0.24592
0.73323
0.69465
0.54769
0.53472

0.00024
0.00030
0.00036
0.00042
0.00036

KS
<0.0122

0.00036
0.00036
0.00043
0.00041
0.00040

PG-05328-041 v01 | 31

Bibliography

[1] Mutsuo Saito. A variant of mersenne twister suitable for graphic processors.
arXiw:1005.4973v2 [es. MS], Jun 2010.

[2] S. Joe and F. Y. Kuo. Remark on algorithm 659: Implementing sobol’s quasirandom
sequence generator. ACM Transactions on Mathematical Software, 29:49-57, March
2003.

[3] Jiri Matousek. Journal of complexity. ACM Transactions on Mathematical Software,
14(4):527-556, December 1998.

[4] Art B. Owen. Local antithetic sampling with scrambled nets. The Annals of
Statistics, 36(5):2319-2343, 2008.

[5] George Marsaglia. Xorshift RNGs. Journal of Statistical Software, 8(14), 2003.
Available at http://www. jstatsoft.org/v08/i14/paper.

[6] Pierre L’Ecuyer and Richard Simard. TestUO1: A C library for empirical testing of
random number generators. ACM Transactions on Mathematical Software, 33(4),
August 2007. Available at
http://www.iro.umontreal.ca/ lecuyer/myftp/papers/testull.pdf.

[7] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker, Stefan
Leigh, Mark Levenson, Mark Vangel, David Banks, Alan Heckert, James Dray, and
San Vo. A statistical test suite for the validation of random number generators and
pseudorandom number generators for cryptographic applications. Special Publication
800-22 Revision 1a, National Institute of Standards and Technology, April 2010.
Available at http://csrc.nist.gov/groups/ST/toolkit/rng/index.html.

[8] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator. ACM Transactions on
Modeling and Computer Simulation, 8(1):3-30, January 1998.

[9] Pierre L’Ecuyer. Good parameters and implementations for combined multiple
recursive random number generators. Operations Research, 47(1), Jan-Feb 1999.

[10] Pierre L’Ecuyer, Richard Simard, E. Jack Chen, and W. David Kelton. An
object-oriented random-number package with many long streams and substreams.
Operations Research, 50(6), Nov-Dec 2002.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 32

http://www.jstatsoft.org/v08/i14/paper
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html

[11] Karl Pearson. On the criterion that a given system of deviations from the probable in
the case of a correlated system of variables is such that it can be reasonably supposed
to have arisen from random sampling. Philosophical Magazine, 50(302):157-175, July
1900.

[12] R. L. Placket. Karl Pearson and the chi-squared test. International Statistics Review,
51:59-72, 1983.

[13] Carlos M. Jarque and Anil K. Bera. Efficient tests for normality, homoscedasticity and
serial independence of regression residuals. Economics Letters, 6(3):255-259, 1980.

[14] A. Kolmogorov. Sulla determinazione empirica di una legge di distribuzione. G. Inst.
Ital. Attuari, 4(83), 1933.

[15] Frank J. Massey. The Kolmogorov-Smirnov test for goodness of fit. Journal of the
American Statistical Association, 46(253):68-78, 1951.

[16] T. W. Anderson and D. A. Darling. Asymptotic theory of certain "goodness-of-fit"
criteria based on stochastic processes. Annals of Mathematical Statistics,
23(2):193-212, 1952.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 33

CURAND Reference

Host API

Functions

» curandStatus t curandCreateGenerator (curandGenerator t xgenerator,
curandRngType t rng type)

Create new random number generator.

» curandStatus_t curandCreateGeneratorHost (curandGenerator t xgenerator,
curandRngType t rng type)

Create new host CPU random number generator.

» curandStatus_t curandDestroyGenerator (curandGenerator t generator)

Destroy an ezisting generator.

» curandStatus_t curandGenerate (curandGenerator t generator, unsigned int
xoutputPtr, size t num)

Generate 32-bit pseudo or quasirandom numbers.

» curandStatus t curandGenerateLogNormal (curandGenerator t generator, float
sxoutputPtr, size t n, float mean, float stddev)

Generate log-normally distributed floats.

» curandStatus_t curandGenerateLogNormalDouble (curandGenerator t generator,
double xoutputPtr, size t n, double mean, double stddev)

Generate log-normally distributed doubles.

» curandStatus_t curandGenerateLongLong (curandGenerator t generator, unsigned
long long *outputPtr, size t num)

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 34

Generate 64-bit quasirandom numbers.

» curandStatus t curandGenerateNormal (curandGenerator t generator, float
sxoutputPtr, size t n, float mean, float stddev)

Generate normally distributed floats.

» curandStatus_t curandGenerateNormalDouble (curandGenerator t generator,
double xoutputPtr, size t n, double mean, double stddev)

Generate normally distributed doubles.

» curandStatus_t curandGenerateSeeds (curandGenerator t generator)

Setup starting states.

» curandStatus t curandGenerateUniform (curandGenerator t generator, float
xoutputPtr, size t num)

Generate uniformly distributed floats.

» curandStatus t curandGenerateUniformDouble (curandGenerator t generator,
double sxoutputPtr, size t num)

Generate uniformly distributed doubles.

» curandStatus_t curandGetDirectionVectors32 (curandDirectionVectors32 t
xvectors| |, curandDirectionVectorSet t set)

Get direction vectors for 32-bit quasirandom number generation.

» curandStatus t curandGetDirectionVectors64 (curandDirectionVectors64 t
xvectors| |, curandDirectionVectorSet _t set)

Get direction vectors for 64-bit quasirandom number generation.

» curandStatus_t curandGetScrambleConstants32 (unsigned int s*constants)

Get scramble constants for 32-bit scrambled Sobol’ .

» curandStatus t curandGetScrambleConstants64 (unsigned long long sxconstants)

Get scramble constants for 64-bit scrambled Sobol’ .

» curandStatus_t curandGetVersion (int xversion)

Return the version number of the library.

» curandStatus_t curandSetGeneratorOffset (curandGenerator t generator, unsigned
long long offset)

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 35

Set the absolute offset of the pseudo or quasirandom number generator.

» curandStatus t curandSetGeneratorOrdering (curandGenerator t generator,
curandOrdering _t order)

Set the ordering of results of the pseudo or quasirandom number generator.

» curandStatus_t curandSetPseudoRandomGeneratorSeed (curandGenerator t
generator, unsigned long long seed)

Set the seed value of the pseudo-random number generator.

» curandStatus t curandSetQuasiRandomGeneratorDimensions (curandGenerator t
generator, unsigned int num__dimensions)

Set the number of dimensions.

» curandStatus t curandSetStream (curandGenerator t generator, cudaStream t
stream)

Set the current stream for CURAND kernel launches.

» enum curandDirectionVectorSet {
CURAND_DIRECTION_VECTORS_32_JOEKUO6 = 101,
CURAND _SCRAMBLED _DIRECTION_VECTORS_32_ JOEKUO6 = 102,
CURAND_DIRECTION_VECTORS_64_JOEKUO6 = 103,
CURAND SCRAMBLED DIRECTION VECTORS 64 JOEKUO6 = 104 }

» enum curandOrdering {
CURAND_ ORDERING_ PSEUDO_BEST = 100,
CURAND_ ORDERING_ PSEUDO_ DEFAULT = 101,
CURAND _ORDERING _PSEUDO_SEEDED = 102,

CURAND ORDERING QUASI DEFAULT = 201 }
» enum curandRngType { ,

CURAND RNG PSEUDO_ DEFAULT = 100,
CURAND RNG_PSEUDO_ XORWOW - 101,
CURAND RNG PSEUDO MRG32K3A — 121,
CURAND RNG PSEUDO MTGP32 — 141,
CURAND RNG QUASI DEFAULT - 200,
CURAND _RNG_QUASI_SOBOL32 = 201,

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 36

CURAND RNG QUASI SCRAMBLED SOBOL32 = 202,
CURAND RNG QUASI SOBOL64 = 203,
CURAND RNG QUASI SCRAMBLED SOBOL64 — 204 }

» enum curandStatus {
CURAND _ STATUS SUCCESS = 0,
CURAND STATUS VERSION MISMATCH = 100,
CURAND STATUS NOT INITIALIZED = 101,
CURAND_ STATUS ALLOCATION FAILED = 102,
CURAND_ STATUS TYPE ERROR — 103,
CURAND STATUS OUT OF RANGE — 104,
CURAND_STATUS LENGTH NOT MULTIPLE = 105,
CURAND_ STATUS DOUBLE PRECISION REQUIRED = 106,
CURAND_ STATUS LAUNCH_ FAILURE = 201,
CURAND_STATUS PREEXISTING FAILURE = 202,
CURAND _STATUS INITIALIZATION FAILED = 203,
CURAND STATUS ARCH MISMATCH — 204,

CURAND STATUS INTERNAL ERROR = 999 }
typedef unsigned int curandDirectionVectors32 t [32]
typedef unsigned long long curandDirectionVectors64 t [64]

typedef enum curandDirectionVectorSet curandDirectionVectorSet t

typedef enum curandOrdering curandOrdering_ t

| 4
>
>
» typedef struct curandGenerator st * curandGenerator t
>
» typedef enum curandRngType curandRngType t

>

typedef enum curandStatus curandStatus_t

Typedet Documentation

typedef unsigned int curandDirectionVectors32 t[32]

CURAND array of 32-bit direction vectors

typedef unsigned long long curandDirectionVectors64 t[64]

CURAND array of 64-bit direction vectors

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 37

typedef enum curandDirectionVectorSet curandDirectionVec-
torSet t

CURAND choice of direction vector set

typedef struct curandGenerator_st+ curandGenerator t

CURAND generator

typedef enum curandOrdering curandOrdering t

CURAND orderings of results in memory

typedef enum curandRngType curandRngType t

CURAND generator types

typedef enum curandStatus curandStatus t

CURAND function call status types

Enumeration Type Documentation
enum curandDirectionVectorSet

CURAND choice of direction vector set
Enumerator:

CURAND_ DIRECTION VECTORS 32 JOEKUOG6 Specific set of 32-bit
direction vectors generated from polynomials recommended by S. Joe and F. Y.
Kuo, for up to 20,000 dimensions.

CURAND SCRAMBLED DIRECTION VECTORS 32 JOEKUOG6 Specific set
of 32-bit direction vectors generated from polynomials recommended by S. Joe
and F. Y. Kuo, for up to 20,000 dimensions, and scrambled.

CURAND_ DIRECTION VECTORS 64 JOEKUOG6 Specific set of 64-bit
direction vectors generated from polynomials recommended by S. Joe and F. Y.
Kuo, for up to 20,000 dimensions.

CURAND SCRAMBLED DIRECTION VECTORS 64 JOEKUOG6 Specific set
of 64-bit direction vectors generated from polynomials recommended by S. Joe
and F. Y. Kuo, for up to 20,000 dimensions, and scrambled.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 38

enum curandOrdering

CURAND orderings of results in memory

Enumerator:

CURAND _ ORDERING PSEUDO_BEST Best ordering for pseudorandom
results.

CURAND ORDERING_ PSEUDO_ DEFAULT Specific default 4096 thread

sequence for pseudorandom results.

CURAND _ ORDERING_ PSEUDO_ SEEDED Specific seeding pattern for fast
lower quality pseudorandom results.

CURAND ORDERING_ QUASI DEFAULT Specific n-dimensional ordering for

quasirandom results.

enum curandRngType

CURAND generator types

Enumerator:
CURAND RNG PSEUDO DEFAULT Default pseudorandom generator.
CURAND_ RNG_PSEUDO_ XORWOW XORWOW pseudorandom generator.
CURAND RNG_PSEUDO_ MRG32K3A MRG32k3a pseudorandom generator.
CURAND RNG_ PSEUDO_ MTGP32 Mersenne Twister pseudorandom generator.

CURAND RNG_ QUASI DEFAULT Default quasirandom generator.
CURAND RNG_ QUASI SOBOL32 Sobol32 quasirandom generator.
CURAND RNG QUASI SCRAMBLED SOBOL32 Scrambled Sobol32

quasirandom generator.
CURAND RNG_ QUASI SOBOL64 Sobol64 quasirandom generator.
CURAND RNG_ QUASI SCRAMBLED SOBOL64 Scrambled Sobol64

quasirandom generator.

enum curandStatus

CURAND Host API datatypes CURAND function call status types
Enumerator:
CURAND_ STATUS SUCCESS No errors.
CURAND_ STATUS VERSION MISMATCH Header file and linked library

version do not match.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 39

CURAND_ STATUS NOT INITIALIZED Generator not initialized.
CURAND STATUS ALLOCATION FAILED Memory allocation failed.
CURAND_ STATUS TYPE ERROR Generator is wrong type.
CURAND_ STATUS OUT OF RANGE Argument out of range.

CURAND_ STATUS LENGTH NOT_ MULTIPLE Length requested is not a
multple of dimension.

CURAND_ STATUS DOUBLE PRECISION REQUIRED GPU does not have
double precision required by MRG32k3a.

CURAND STATUS LAUNCH_ FAILURE Kernel launch failure.

CURAND_ STATUS PREEXISTING FAILURE Preexisting failure on library
entry.

CURAND STATUS INITIALIZATION FAILED Initialization of CUDA failed.
CURAND STATUS ARCH MISMATCH Architecture mismatch, GPU does not

support requested feature.

CURAND_ STATUS INTERNAL ERROR Internal library error.

Function Documentation

curandStatus t curandCreateGenerator (curandGenerator t x
generator, curandRngType t rng type)

Creates a new random number generator of type rng_type and returns it in *generator.

Legal values for rng_type are:

>

vV vV v vV V. VY

>

CURAND RNG PSEUDO_ DEFAULT
CURAND RNG_PSEUDO XORWOW

CURAND RNG_ PSEUDO MRG32K3A
CURAND RNG PSEUDO MTGP32
CURAND_RNG_QUASI_DEFAULT

CURAND_ RNG_QUASI_SOBOL32

CURAND_ RNG_QUASI_SCRAMBLED SOBOL32
CURAND_ RNG_QUASI_SOBOL64

CURAND RNG_QUASI SCRAMBLED SOBOLG64

When rng_type is CURAND RNG PSEUDO DEFAULT, the type chosen is
CURAND RNG_ PSEUDO XORWOW.

When rng_type is CURAND RNG_ QUASI DEFAULT, the type chosen is
CURAND RNG_ QUASI SOBOL32.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 40

The default values for rng_type = CURAND RNG_ PSEUDO_ XORWOW are:
» seed =0
» offset =0
» ordering = CURAND ORDERING PSEUDO_ DEFAULT
The default values for rng_type = CURAND RNG_PSEUDO_MRG32K3A are:
» seed =0
» offset =0
» ordering = CURAND ORDERING PSEUDO_ DEFAULT
The default values for rng_type = CURAND RNG _ PSEUDO_ MTGP32 are:
» seed = 0
» offset =0
» ordering = CURAND ORDERING PSEUDO_ DEFAULT
The default values for rng_type = CURAND RNG_ QUASI SOBOL32 are:
» dimensions =1
» offset =0
» ordering = CURAND ORDERING QUASI DEFAULT
The default values for rng_type = CURAND RNG_QUASI SOBOLG64 are:
» dimensions =1
» offset =0
» ordering = CURAND ORDERING QUASI DEFAULT

The default values for rng_type =
CURAND RNG_ QUASI SCRAMBBLED SOBOL32 are:

» dimensions =1
» offset =0
» ordering = CURAND ORDERING QUASI DEFAULT
The default values for rng_type = CURAND RNG_QUASI SCRAMBLED SOBOL64

are:
» dimensions =1
» offset =0
» ordering = CURAND ORDERING QUASI DEFAULT

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 41

Parameters:
generator - Pointer to generator
rng type - Type of generator to create

Returns:

CURAND_ STATUS ALLOCATION FAILED if memory could not be allocated
CURAND_ STATUS INITTALIZATION FAILED if there was a problem setting up
the GPU

CURAND_ STATUS VERSION MISMATCH if the header file version does not
match the dynamically linked library version

CURAND_ STATUS TYPE ERROR if the value for rng_type is invalid

CURAND STATUS SUCCESS if generator was created successfully

curandStatus_t curandCreateGeneratorHost (curandGenerator t
 generator, curandRngType t rng type)

Creates a new host CPU random number generator of type rng_type and returns it in
kgenerator.
Legal values for rng_type are:
» CURAND RNG PSEUDO DEFAULT
CURAND RNG_PSEUDO_XORWOW
CURAND RNG_PSEUDO_ MRG32K3A
CURAND RNG_ PSEUDO _ MTGP32
CURAND RNG_ QUASI DEFAULT
» CURAND RNG_ QUASI SOBOL32

When rng_type is CURAND RNG_ PSEUDO _ DEFAULT, the type chosen is
CURAND RNG_PSEUDO_XORWOW.

When rng_type is CURAND RNG QUASI DEFAULT, the type chosen is
CURAND RNG_ QUASI SOBOL32.

The default values for rng_type = CURAND RNG_ PSEUDO_ XORWOW are:
» seed =0
» offset =0
» ordering = CURAND ORDERING PSEUDO_ DEFAULT

The default values for rng_type = CURAND RNG_PSEUDO_MRG32K3A are:
» seed =0

» offset =0

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 42

» ordering = CURAND ORDERING PSEUDO_ DEFAULT
The default values for rng_type = CURAND RNG_ PSEUDO_ MTGP32 are:
» seed =0
» offset =0
» ordering = CURAND ORDERING PSEUDO_ DEFAULT
The default values for rng_type = CURAND RNG_QUASI SOBOL32 are:
» dimensions =1
» offset =0
» ordering = CURAND ORDERING QUASI DEFAULT
The default values for rng_type = CURAND RNG_ QUASI SOBOL64 are:
» dimensions =1
» offset =0
» ordering = CURAND ORDERING QUASI DEFAULT
The default values for rng_type = CURAND RNG_ QUASI SCRAMBLED SOBOL32

are:
» dimensions = 1
» offset =0
» ordering = CURAND ORDERING_ QUASI DEFAULT
The default values for rng_type = CURAND RNG QUASI SCRAMBLED SOBOL64

are:
» dimensions = 1
» offset =0
» ordering = CURAND _ ORDERING QUASI DEFAULT
Parameters:
generator - Pointer to generator
rng_type - Type of generator to create

Returns:

CURAND_ STATUS ALLOCATION FAILED if memory could not be allocated
CURAND STATUS INITIALIZATION FAILED if there was a problem setting up
the GPU

CURAND_ STATUS VERSION MISMATCH if the header file version does not
match the dynamically linked library version

CURAND_ STATUS TYPE ERROR if the value for rng_type is invalid

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 43

CURAND _STATUS SUCCESS if generator was created successfully

curandStatus_t curandDestroyGenerator (curandGenerator t
generator)

Destroy an existing generator and free all memory associated with its state.
Parameters:

generator - Generator to destroy
Returns:

CURAND STATUS NOT INITTALIZED if the generator was never created
CURAND STATUS SUCCESS if generator was destroyed successfully

curandStatus t curandGenerate (curandGenerator t generator,
unsigned int x outputPtr, size t num)

Use generator to generate num 32-bit results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all the
results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 32-bit values with every bit random.
Parameters:

generator - Generator to use

outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to
host memory to store CPU-generated resluts

num - Number of random 32-bit values to generate
Returns:

CURAND STATUS NOT INITIALIZED if the generator was never created
CURAND STATUS PREEXISTING FAILURE if there was an existing error from
a previous kernel launch

CURAND STATUS LENGTH NOT MULTIPLE if the number of output samples
is not a multiple of the quasirandom dimension

CURAND_ STATUS LAUNCH FAILURE if the kernel launch failed for any reason
CURAND_ STATUS SUCCESS if the results were generated successfully

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 44

curandStatus t curandGenerateLogNormal (curandGenerator t
generator, float x outputPtr, size t n, float mean, float stddev)

Use generator to generate num float results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all the
results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 32-bit floating point values with log-normal distribution based on an associated
normal distribution with mean mean and standard deviation stddev.

Normally distributed results are generated from pseudorandom generators with a
Box-Muller transform, and so require num to be even. Quasirandom generators use an
inverse cumulative distribution function to preserve dimensionality. The normally
distributed results are transformed into log-normal distribution.

There may be slight numerical differences between results generated on the GPU with
generators created with curandCreateGenerator() and results calculated on the CPU with
generators created with curandCreateGeneratorHost(). These differences arise because of
differences in results for transcendental functions. In addition, future versions of CURAND
may use newer versions of the CUDA math library, so different versions of CURAND may
give slightly different numerical values.

Parameters:

generator - Generator to use

outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to
host memory to store CPU-generated resluts

n - Number of floats to generate
mean - Mean of associated normal distribution
stddev - Standard deviation of associated normal distribution

Returns:
CURAND_ STATUS NOT _INITIALIZED if the generator was never created
CURAND STATUS PREEXISTING FAILURE if there was an existing error from
a previous kernel launch
CURAND_ STATUS LAUNCH_FAILURE if the kernel launch failed for any reason
CURAND_ STATUS LENGTH NOT MULTIPLE if the number of output samples
is not a multiple of the quasirandom dimension, or is not a multiple of two for

pseudorandom generators
CURAND_ STATUS SUCCESS if the results were generated successfully

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 45

curandStatus t curandGenerateLogNormalDouble
(curandGenerator t generator, double x outputPtr, size t n,
double mean, double stddev)

Use generator to generate num double results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all the
results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 64-bit floating point values with log-normal distribution based on an associated
normal distribution with mean mean and standard deviation stddev.

Normally distributed results are generated from pseudorandom generators with a
Box-Muller transform, and so require num to be even. Quasirandom generators use an
inverse cumulative distribution function to preserve dimensionality. The normally
distributed results are transformed into log-normal distribution.

There may be slight numerical differences between results generated on the GPU with
generators created with curandCreateGenerator() and results calculated on the CPU with
generators created with curandCreateGeneratorHost(). These differences arise because of
differences in results for transcendental functions. In addition, future versions of CURAND
may use newer versions of the CUDA math library, so different versions of CURAND may
give slightly different numerical values.

Parameters:

generator - Generator to use

outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to
host memory to store CPU-generated resluts

n - Number of doubles to generate

mean - Mean of normal distribution

stddev - Standard deviation of normal distribution

Returns:

CURAND_ STATUS NOT INITTALIZED if the generator was never created
CURAND_ STATUS PREEXISTING FAILURE if there was an existing error from
a previous kernel launch

CURAND_ STATUS LAUNCH FAILURE if the kernel launch failed for any reason
CURAND_ STATUS LENGTH NOT MULTIPLE if the number of output samples
is not a multiple of the quasirandom dimension, or is not a multiple of two for
pseudorandom generators

CURAND_ STATUS ARCH_ MISMATCH if the GPU does not support double
precision

CURAND STATUS SUCCESS if the results were generated successfully

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 46

curandStatus t curandGenerateLongLong (curandGenerator t
generator, unsigned long long * outputPtr, size t num)

Use generator to generate num 64-bit results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all the
results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 64-bit values with every bit random.
Parameters:

generator - Generator to use

outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to
host memory to store CPU-generated resluts

num - Number of random 64-bit values to generate
Returns:

CURAND _STATUS NOT _INITIALIZED if the generator was never created
CURAND_ STATUS PREEXISTING FAILURE if there was an existing error from
a previous kernel launch

CURAND STATUS LENGTH NOT MULTIPLE if the number of output samples
is not a multiple of the quasirandom dimension

CURAND STATUS LAUNCH_ FAILURE if the kernel launch failed for any reason
CURAND_ STATUS SUCCESS if the results were generated successfully

curandStatus t curandGenerateNormal (curandGenerator t
generator, float x outputPtr, size t n, float mean, float stddev)

Use generator to generate num float results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all the
results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 32-bit floating point values with mean mean and standard deviation stddev.

Normally distributed results are generated from pseudorandom generators with a
Box-Muller transform, and so require num to be even. Quasirandom generators use an
inverse cumulative distribution function to preserve dimensionality.

There may be slight numerical differences between results generated on the GPU with
generators created with curandCreateGenerator() and results calculated on the CPU with
generators created with curandCreateGeneratorHost(). These differences arise because of
differences in results for transcendental functions. In addition, future versions of CURAND
may use newer versions of the CUDA math library, so different versions of CURAND may
give slightly different numerical values.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 47

Parameters:

generator - Generator to use

outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to
host memory to store CPU-generated resluts

n - Number of floats to generate

mean - Mean of normal distribution

stddev - Standard deviation of normal distribution

Returns:

CURAND_ STATUS NOT INITTALIZED if the generator was never created
CURAND STATUS PREEXISTING FAILURE if there was an existing error from
a previous kernel launch

CURAND STATUS LAUNCH FAILURE if the kernel launch failed for any reason
CURAND_ STATUS LENGTH NOT_ MULTIPLE if the number of output samples
is not a multiple of the quasirandom dimension, or is not a multiple of two for
pseudorandom generators

CURAND_ STATUS SUCCESS if the results were generated successfully

curandStatus t curandGenerateNormalDouble
(curandGenerator t generator, double x outputPtr, size t n,
double mean, double stddev)

Use generator to generate num double results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all the
results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 64-bit floating point values with mean mean and standard deviation stddev.

Normally distributed results are generated from pseudorandom generators with a
Box-Muller transform, and so require num to be even. Quasirandom generators use an
inverse cumulative distribution function to preserve dimensionality.

There may be slight numerical differences between results generated on the GPU with
generators created with curandCreateGenerator() and results calculated on the CPU with
generators created with curandCreateGeneratorHost(). These differences arise because of
differences in results for transcendental functions. In addition, future versions of CURAND
may use newer versions of the CUDA math library, so different versions of CURAND may
give slightly different numerical values.

Parameters:

generator - Generator to use

outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to
host memory to store CPU-generated resluts

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 48

n - Number of doubles to generate
mean - Mean of normal distribution
stddev - Standard deviation of normal distribution

Returns:

CURAND_ STATUS NOT INITIALIZED if the generator was never created
CURAND STATUS PREEXISTING FAILURE if there was an existing error from
a previous kernel launch

CURAND_ STATUS LAUNCH FAILURE if the kernel launch failed for any reason
CURAND STATUS LENGTH NOT MULTIPLE if the number of output samples
is not a multiple of the quasirandom dimension, or is not a multiple of two for
pseudorandom generators

CURAND_ STATUS ARCH_ MISMATCH if the GPU does not support double
precision

CURAND STATUS SUCCESS if the results were generated successfully

curandStatus t curandGenerateSeeds (curandGenerator t
generator)

Generate the starting state of the generator. This function is automatically called by
generation functions such as curandGenerate() and curandGenerateUniform(). It can be
called manually for performance testing reasons to separate timings for starting state
generation and random number generation.

Parameters:
generator - Generator to update
Returns:

CURAND_ STATUS NOT INITTALIZED if the generator was never created
CURAND STATUS PREEXISTING FAILURE if there was an existing error from
a previous kernel launch

CURAND STATUS LAUNCH _FAILURE if the kernel launch failed for any reason
CURAND _STATUS SUCCESS if the seeds were generated successfully

curandStatus t curandGenerateUniform (curandGenerator t
generator, float x outputPtr, size t num)

Use generator to generate num float results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all the
results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 49

Results are 32-bit floating point values between 0.0f and 1.0f, excluding 0.0f and
including 1.0f.

Parameters:

generator - Generator to use
outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to
host memory to store CPU-generated resluts

num - Number of floats to generate
Returns:

CURAND_ STATUS NOT INITTALIZED if the generator was never created
CURAND_ STATUS PREEXISTING FAILURE if there was an existing error from
a previous kernel launch

CURAND_ STATUS LAUNCH FAILURE if the kernel launch failed for any reason
CURAND STATUS LENGTH NOT MULTIPLE if the number of output samples
is not a multiple of the quasirandom dimension

CURAND _STATUS SUCCESS if the results were generated successfully

curandStatus t curandGenerateUniformDouble
(curandGenerator t generator, double * outputPtr, size t num)

Use generator to generate num double results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all the
results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 64-bit double precision floating point values between 0.0 and 1.0, excluding
0.0 and including 1.0.

Parameters:

generator - Generator to use

outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to
host memory to store CPU-generated resluts

num - Number of doubles to generate
Returns:

CURAND_ STATUS NOT _INITIALIZED if the generator was never created
CURAND STATUS PREEXISTING FAILURE if there was an existing error from
a previous kernel launch

CURAND_ STATUS LAUNCH FAILURE if the kernel launch failed for any reason
CURAND_ STATUS LENGTH NOT MULTIPLE if the number of output samples
is not a multiple of the quasirandom dimension

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 50

CURAND_ STATUS ARCH MISMATCH if the GPU does not support double
precision

CURAND_ STATUS SUCCESS if the results were generated successfully

curandStatus t curandGetDirectionVectors32 (curandDirec-
tionVectors32 t * vectors||, curandDirectionVectorSet t
set)

Get a pointer to an array of direction vectors that can be used for quasirandom number
generation. The resulting pointer will reference an array of direction vectors in host
memory.

The array contains vectors for many dimensions. Each dimension has 32 vectors. Each
individual vector is an unsigned int.

Legal values for set are:
» CURAND DIRECTION VECTORS 32 JOEKUOG6 (20,000 dimensions)
» CURAND SCRAMBLED DIRECTION VECTORS 32 JOEKUOG6 (20,000

dimensions)
Parameters:
vectors - Address of pointer in which to return direction vectors

set - Which set of direction vectors to use

Returns:

CURAND_ STATUS OUT_ OF_ RANGE if the choice of set is invalid
CURAND_ STATUS SUCCESS if the pointer was set successfully

curandStatus t curandGetDirectionVectors64 (curandDirec-
tionVectors64 t = vectors||, curandDirectionVectorSet t
set)

Get a pointer to an array of direction vectors that can be used for quasirandom number
generation. The resulting pointer will reference an array of direction vectors in host
memory.

The array contains vectors for many dimensions. Each dimension has 64 vectors. Each
individual vector is an unsigned long long.

Legal values for set are:
» CURAND DIRECTION VECTORS 64 JOEKUO6 (20,000 dimensions)
» CURAND SCRAMBLED DIRECTION VECTORS 64 JOEKUOG6 (20,000

dimensions)

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 51

Parameters:

vectors - Address of pointer in which to return direction vectors
set, - Which set of direction vectors to use

Returns:

CURAND_ STATUS OUT_ OF RANGE if the choice of set is invalid
CURAND STATUS SUCCESS if the pointer was set successfully

curandStatus t curandGetScrambleConstants32 (unsigned int s
constants)

Get a pointer to an array of scramble constants that can be used for quasirandom number
generation. The resulting pointer will reference an array of unsinged ints in host memory.

The array contains constants for many dimensions. Each dimension has a single unsigned
int constant.

Parameters:
constants - Address of pointer in which to return scramble constants

Returns:

CURAND _STATUS SUCCESS if the pointer was set successfully

curandStatus_t curandGetScrambleConstants64 (unsigned long long
sk constants)

Get a pointer to an array of scramble constants that can be used for quasirandom number
generation. The resulting pointer will reference an array of unsinged long longs in host
memory.

The array contains constants for many dimensions. Each dimension has a single unsigned
long long constant.

Parameters:

constans - Address of pointer in which to return scramble constants

Returns:

CURAND STATUS SUCCESS if the pointer was set successfully

curandStatus t curandGetVersion (int * version)

Return in *version the version number of the dynamically linked CURAND library. The
format is the same as CUDART VERSION from the CUDA Runtime. The only

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 52

supported configuration is CURAND version equal to CUDA Runtime version.
Parameters:

version - CURAND library version
Returns:

CURAND _ STATUS SUCCESS if the version number was successfully returned

curandStatus_t curandSetGeneratorOffset (curandGenerator t
generator, unsigned long long offset)

Set the absolute offset of the pseudo or quasirandom number generator.

All values of offset are valid. The offset position is absolute, not relative to the current
position in the sequence.

Parameters:

generator - Generator to modify

offset - Absolute offset position

Returns:

CURAND_ STATUS NOT INITTALIZED if the generator was never created
CURAND _STATUS SUCCESS if generator offset was set successfully

curandStatus t curandSetGeneratorOrdering (curandGenerator t
generator, curandOrdering t order)

Set the ordering of results of the pseudo or quasirandom number generator.
Legal values of order for pseudorandom generators are:

» CURAND ORDERING PSEUDO _ DEFAULT

» CURAND ORDERING_ PSEUDO _ BEST

» CURAND ORDERING PSEUDO SEEDED
Legal values of order for quasirandom generators are:

» CURAND ORDERING QUASI DEFAULT

Parameters:

generator - Generator to modify

order - Ordering of results

Returns:

CURAND_ STATUS NOT INITTALIZED if the generator was never created

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 53

CURAND STATUS OUT_ OF RANGE if the ordering is not valid
CURAND STATUS SUCCESS if generator ordering was set successfully

curandStatus t curandSetPseudoRandomGeneratorSeed
(curandGenerator t generator, unsigned long long seed)

Set the seed value of the pseudorandom number generator. All values of seed are valid.
Different seeds will produce different sequences. Different seeds will often not be
statistically correlated with each other, but some pairs of seed values may generate
sequences which are statistically correlated.

Parameters:
generator - Generator to modify
seed - Seed value

Returns:

CURAND_ STATUS NOT INITTALIZED if the generator was never created
CURAND STATUS TYPE ERROR if the generator is not a pseudorandom

number generator

CURAND _ STATUS SUCCESS if generator seed was set successfully

curandStatus t curandSetQuasiRandomGeneratorDimensions
(curandGenerator t generator, unsigned int num_ dimensions)

Set the number of dimensions to be generated by the quasirandom number generator.
Legal values for num_dimensions are 1 to 20000.
Parameters:
generator - Generator to modify
num__dimensions - Number of dimensions
Returns:

CURAND STATUS NOT INITTALIZED if the generator was never created
CURAND STATUS OUT OF RANGE if num dimensions is not valid
CURAND STATUS TYPE ERROR if the generator is not a quasirandom number

generator

CURAND _STATUS SUCCESS if generator ordering was set successfully

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 54

curandStatus t curandSetStream (curandGenerator t generator,
cudaStream t stream)

Set the current stream for CURAND kernel launches. All library functions will use this
stream until set again.

Parameters:

generator - Generator to modify
stream - Stream to use or NULL for null stream
Returns:

CURAND STATUS NOT INITTALIZED if the generator was never created
CURAND STATUS SUCCESS if stream was set, successfully

Device API
Typedets

» typedef struct curandState XORWOW curandState t

typedef struct curandStateMRG32k3a curandStateMRG32k3a_t

typedef struct curandStateMtgp32 curandStateMtgp32 t

typedef struct curandStateScrambledSobol32 curandStateScrambledSobol32 t
typedef struct curandStateScrambledSobol64 curandStateScrambledSobol64 t
typedef struct curandStateSobol32 curandStateSobol32 t

typedef struct curandStateSobol64 curandStateSobol64 t

typedef struct curandState XORWOW curandState XORWOW

vVvvyVvyVvVvyyvyy

Functions

» device unsigned int curand (curandStateMtgp32 t kstate)

Return 32-bits of pseudorandomness from a mtgp32 generator.

» device unsigned int curand (curandStateMRG32k3a t xstate)
Return 32-bits of pseudorandomness from an MRG32k3a generator.

» device unsigned long long curand (curandStateScrambledSobol64 t xstate)

Return 64-bits of quasirandomness from a scrambled Sobol64 generator.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 55

» device unsigned long long curand (curandStateSobol64 t xstate)

Return 64-bits of quasirandomness from a Sobol64 generator.

» device unsigned int curand (curandStateScrambledSobol32 t kstate)

Return 32-bits of quasirandomness from a scrambled Sobol32 generator.

» device unsigned int curand (curandStateSobol32 t xstate)

Return 32-bits of quasirandomness from a Sobol32 generator.

» device unsigned int curand (curandStateXORWOW t xstate)
Return 32-bits of pseudorandomness from an XORWOW generator.

» device_ void curand init (curandDirectionVectors64 t direction vectors,
unsigned long long scramble ¢, unsigned long long offset,
curandStateScrambledSobol64 t kstate)

Initialize Scrambled Sobol6) state.

» device void curand init (curandDirectionVectors64 t direction vectors,
unsigned long long offset, curandStateSobol64 t xstate)

Initialize Sobol64 state.

» device void curand init (curandDirectionVectors32 t direction vectors,
unsigned int scramble c, unsigned int offset, curandStateScrambledSobol32 t
xstate)

Initialize Scrambled Sobol32 state.

» device void curand init (curandDirectionVectors32 t direction vectors,
unsigned int offset, curandStateSobol32 t xstate)

Initialize Sobol32 state.

» device void curand init (unsigned long long seed, unsigned long long
subsequence, unsigned long long offset, curandStateMRG32k3a_t *state)

Initialize MRG32k3a state.

» device void curand init (unsigned long long seed, unsigned long long
subsequence, unsigned long long offset, curandState XORWOW _t xstate)

Initialize XORWOW state.

» device float curand log normal (curandStateScrambledSobol64 t xstate,
float mean, float stddev)

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 56

Return a log-normally distributed float from a scrambled Sobol6/ generator.

» device float curand log normal (curandStateSobol64 t kstate, float mean,
float stddev)

Return a log-normally distributed float from a Sobol6] generator.

» device float curand log normal (curandStateScrambledSobol32 t xstate,
float mean, float stddev)

Return a log-normally distributed float from a scrambled Sobol32 generator.

» device float curand log normal (curandStateSobol32 t xstate, float mean,
float stddev)

Return a log-normally distributed float from a Sobol32 generator.

» device float curand log normal (curandStateMtgp32 t xstate, float mean,
float stddev)

Return a log-normally distributed float from an MTGP32 generator.

» device float curand log normal (curandStateMRG32k3a t xstate, float
mean, float stddev)

Return a log-normally distributed float from an MRG32k3a generator.

» device float curand log normal (curandStateXORWOW _t sstate, float
mean, float stddev)

Return a log-normally distributed float from an XORWOW generator.

» device float2 curand log normal2 (curandStateMRG32k3a t sstate, float
mean, float stddev)

Return two normally distributed floats from an MRG32k3a generator.

» device float2 curand log normal2 (curandStateXORWOW t xstate, float
mean, float stddev)

Return two normally distributed floats from an XORWOW generator.

» device double2 curand log normal2 double (curandStateMRG32k3a t
xstate, double mean, double stddev)

Return two log-normally distributed doubles from an MRG32k3a generator.

» device_ double2 curand log normal2 double (curandState XORWOW _t
xstate, double mean, double stddev)

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 57

Return two log-normally distributed doubles from an XORWOW generator.

__device__ double curand log normal double (curandStateScrambledSobol64 t
«state, double mean, double stddev)

Return a log-normally distributed double from a scrambled Sobol64 generator.

__device_ double curand log normal double (curandStateSobol64 t xstate,
double mean, double stddev)

Return a log-normally distributed double from a Sobol64 generator.

__device__ double curand log normal double (curandStateScrambledSobol32 t
xstate, double mean, double stddev)

Return a log-normally distributed double from a scrambled Sobol32 generator.

__device__ double curand log normal double (curandStateSobol32 t kstate,
double mean, double stddev)

Return a log-normally distributed double from a Sobol32 generator.

~_device double curand log normal double (curandStateMtgp32 t sstate,
double mean, double stddev)

Return a log-normally distributed double from an MTGPS32 generator.

__device__ double curand log mnormal double (curandStateMRG32k3a_t xstate,
double mean, double stddev)

Return a log-normally distributed double from an MRG32k3a generator.

__device__ double curand log normal double (curandStateXORWOW _t kstate,
double mean, double stddev)

Return a log-normally distributed double from an XORWOW generator.

__device _ float curand mtgp32 single (curandStateMtgp32 t xstate)

Return a uniformly distributed float from a mtgp32 generator.

__device float curand mtgp32 single specific (curandStateMtgp32 t kstate)

Return a uniformly distributed float from a specific position in a mtgp32 generator.

__device unsigned int curand mtgp32 specific (curandStateMtgp32 t kstate,
unsigned char index, unsigned char n)

Return 32-bits of pseudorandomness from a specific position in a mtgp32 generator.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 58

» device float curand normal (curandStateScrambledSobol64 t kstate)

Return a normally distributed float from a scrambled Sobol64 generator.

» device float curand normal (curandStateSobol64 t xstate)

Return a normally distributed float from a Sobol6j generator.

» device float curand normal (curandStateScrambledSobol32 t xstate)

Return a normally distributed float from a scrambled Sobol32 generator.

» device float curand normal (curandStateSobol32 t xstate)

Return a normally distributed float from a Sobol32 generator.

» device float curand normal (curandStateMtgp32 t xstate)
Return a normally distributed float from a MTGP32 generator.

» device float curand normal (curandStateMRG32k3a t xstate)
Return a normally distributed float from an MRGS32k3a generator.

» device float curand normal (curandStateXORWOW t xstate)
Return a normally distributed float from an XORWOW generator.

» device float2 curand normal2 (curandStateMRG32k3a t *state)
Return two normally distributed floats from an MRG32k3a generator.

» device float2 curand normal2 (curandStateXORWOW t sxstate)
Return two normally distributed floats from an XORWOW generator.

» device_ double2 curand normal2 double (curandStateMRG32k3a_t *state)

Return two normally distributed doubles from an MRG32k3a generator.

» device double2 curand normal2 double (curandStateXORWOW _t kstate)
Return two normally distributed doubles from an XORWOW generator.

» device double curand normal double (curandStateScrambledSobol64 t
xstate)

Return a normally distributed double from a scrambled Sobol6/ generator.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 59

» device double curand normal double (curandStateSobol64 t xstate)

Return a normally distributed double from a Sobol64 generator.

» device double curand normal double (curandStateScrambledSobol32 t
xstate)

Return a normally distributed double from a scrambled Sobol32 generator.

» device double curand normal double (curandStateSobol32 t xstate)

Return a normally distributed double from an Sobol32 generator.

» device double curand normal double (curandStateMtgp32 t xstate)
Return a normally distributed double from an MTGP32 generator.

» device double curand normal double (curandStateMRG32k3a_t xstate)
Return a normally distributed double from an MRG32k3a generator.

» device double curand normal double (curandStateXORWOW t sstate)
Return a normally distributed double from an XORWOW generator.

» device float curand uniform (curandStateScrambledSobol64 t xstate)

Return a uniformly distributed float from a scrambled Sobol6j generator.

» device_ float curand uniform (curandStateSobol64 t xstate)

Return a uniformly distributed float from a Sobol6 generator.

» device float curand uniform (curandStateScrambledSobol32 t xstate)

Return a uniformly distributed float from a scrambled Sobol32 generator.

» device float curand uniform (curandStateSobol32 t xstate)

Return a uniformly distributed float from a Sobol32 generator.

» device float curand uniform (curandStateMtgp32 t kstate)
Return a uniformly distributed float from a MTGP32 generator.

» device float curand uniform (curandStateMRG32k3a t kstate)
Return a uniformly distributed float from an MRG32k3a generator.

» device float curand uniform (curandStateXORWOW t xstate)
Return a uniformly distributed float from an XORWOW generator.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 60

» device_ double curand uniform double (curandStateScrambledSobol64 t
xstate)

Return a uniformly distributed double from a scrambled Sobol64 generator.

» device double curand uniform double (curandStateSobol64 t xstate)

Return a uniformly distributed double from a Sobol64 generator.

» device double curand uniform double (curandStateScrambledSobol32 t
xstate)

Return a uniformly distributed double from a scrambled Sobol32 generator.

» device double curand uniform double (curandStateSobol32 t xstate)

Return a uniformly distributed double from a Sobol32 generator.

» device double curand uniform double (curandStateMtgp32 t xstate)
Return a uniformly distributed double from a MTGP32 generator.

» device double curand uniform double (curandStateMRG32k3a t xstate)
Return a uniformly distributed double from an MRG32k3a generator.

» device double curand uniform double (curandStateXORWOW t xstate)
Return a uniformly distributed double from an XORWOW generator.

» template<typename T >
__device _ void skipahead (unsigned long long n, T state)

Update Sobol6 state to skip n elements.

» template<typename T >
__device__ void skipahead (unsigned int n, T state)

Update Sobol32 state to skip n elements.

» device void skipahead (unsigned long long n, curandStateMRG32k3a_t
xstate)

Update MRG32k3a state to skip n elements.

» device void skipahead (unsigned long long n, curandState XORWOW _t
xstate)

Update XORWOW state to skip n elements.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 61

» device void skipahead sequence (unsigned long long n,
curandStateMRG32k3a_t *state)

Update MRG32k3a state to skip ahead n sequences.

» device void skipahead sequence (unsigned long long n,
curandStateXORWOW _t xstate)

Update XORWOW state to skip ahead n subsequences.

» device void skipahead subsequence (unsigned long long n,
curandStateMRG32k3a_t *state)

Update MRG32k3a state to skip ahead n subsequences.

Variables

unsigned int mtgp32 params fast:flt tmp tbl [16]
unsigned int mtgp32 params_fast::mask

unsigned char mtgp32 params_fast::poly shal [21]
int mtgp32 params fast::pos

int mtgp32 params_fast::shl

int mtgp32 params fast::sh2

unsigned int mtgp32 params_fast::tbl [16]

vVVvVvvyVvyVvYVYyYVvYyy

unsigned int mtgp32 params fast:tmp tbl [16]

Typedef Documentation
typedef struct curandStateXORWOW curandState t

Default RNG

typedef struct curandStateMRG32k3a curandStateMRG32k3a _ t

CURAND MRG32K3A state

typedef struct curandStateMtgp32 curandStateMtgp32 t

CURAND MTGP32 state

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 62

typedetf struct curandStateScrambledSobol32 curandStateScram-
bledSobol32 t

CURAND Scrambled Sobol32 state

typedef struct curandStateScrambledSobol64 curandStateScram-
bledSobol64 t

CURAND Scrambled Sobol64 state

typedef struct curandStateSobol32 curandStateSobol32 t

CURAND Sobol32 state

typedef struct curandStateSobol64 curandStateSobol64 t

CURAND Sobol64 state

typedef struct curandStateXORWOW curandStateXORWOW _ t

CURAND XORWOW state

Function Documentation

_device__ unsigned int curand (curandStateMtgp32 t x state)

Return 32-bits of pseudorandomness from the mtgp32 generator in state, increment
position of generator by the number of threads in the block. Note the number of threads in
the block can not exceed 256.

Parameters:

state - Pointer to state to update

Returns:

32-bits of pseudorandomness as an unsigned int, all bits valid to use.

__device__ unsigned int curand (curandStateMRG32k3a_t
state)

Return 32-bits of pseudorandomness from the MRG32k3a generator in state, increment
position of generator by one.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 63

Parameters:
state - Pointer to state to update

Returns:

32-bits of pseudorandomness as an unsigned int, all bits valid to use.

__device _ unsigned long long curand (curandStateScrambled-
Sobol64 t x state)
Return 64-bits of quasirandomness from the scrambled Sobol32 generator in state,
increment position of generator by one.
Parameters:

state - Pointer to state to update

Returns:

64-bits of quasirandomness as an unsigned long long, all bits valid to use.

__device__ unsigned long long curand (curandStateSobol64 t x
state)
Return 64-bits of quasirandomness from the Sobol64 generator in state, increment
position of generator by one.
Parameters:

state - Pointer to state to update

Returns:

64-bits of quasirandomness as an unsigned long long, all bits valid to use.

_device _ unsigned int curand (curandStateScrambled-

Sobol32_t * state)

Return 32-bits of quasirandomness from the scrambled Sobol32 generator in state,
increment position of generator by one.
Parameters:

state - Pointer to state to update

Returns:

32-bits of quasirandomness as an unsigned int, all bits valid to use.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 64

__device__ unsigned int curand (curandStateSobol32 t x state)
Return 32-bits of quasirandomness from the Sobol32 generator in state, increment
position of generator by one.
Parameters:

state - Pointer to state to update
Returns:

32-bits of quasirandomness as an unsigned int, all bits valid to use.

__device__ unsigned int curand (curandStateXORWOW _t x
state)

Return 32-bits of pseudorandomness from the XORWOW generator in state, increment
position of generator by one.
Parameters:
state - Pointer to state to update
Returns:

32-bits of pseudorandomness as an unsigned int, all bits valid to use.

_device__ void curand _init (curandDirectionVectors64 t

direction vectors, unsigned long long scramble ¢, unsigned long long
offset, curandStateScrambledSobol64 t x state)

Initialize Sobol64 state in state with the given direction vectors and offset.

The direction vector is a device pointer to an array of 64 unsigned long longs. All input
values of offset are legal.

Parameters:

direction vectors - Pointer to array of 64 unsigned long longs representing the
direction vectors for the desired dimension

scramble ¢ Scramble constant
offset - Absolute offset into sequence

state - Pointer to state to initialize

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 65

__device__ void curand_init (curandDirectionVectors64 t
direction_ vectors, unsigned long long offset, curandStateSobol64 t
* state)

Initialize Sobol64 state in state with the given direction vectors and offset.

The direction vector is a device pointer to an array of 64 unsigned long longs. All input
values of offset are legal.

Parameters:
direction vectors - Pointer to array of 64 unsigned long longs representing the
direction vectors for the desired dimension
offset - Absolute offset into sequence

state - Pointer to state to initialize

device void curand init (curandDirectionVectors32 t

direction vectors, unsigned int scramble ¢, unsigned int offset,
curandStateScrambledSobol32 t x state)

Initialize Sobol32 state in state with the given direction vectors and offset.

The direction vector is a device pointer to an array of 32 unsigned ints. All input values of
offset are legal.

Parameters:

direction vectors - Pointer to array of 32 unsigned ints representing the direction
vectors for the desired dimension

scramble ¢ Scramble constant

offset - Absolute offset into sequence

state - Pointer to state to initialize

__device__ void curand_init (curandDirectionVectors32 t
direction_ vectors, unsigned int offset, curandStateSobol32 t x
state)

Initialize Sobol32 state in state with the given direction vectors and offset.

The direction vector is a device pointer to an array of 32 unsigned ints. All input values of
offset are legal.

Parameters:

direction vectors - Pointer to array of 32 unsigned ints representing the direction
vectors for the desired dimension

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 66

offset - Absolute offset into sequence

state - Pointer to state to initialize

__device _ void curand_init (unsigned long long seed,
unsigned long long subsequence, unsigned long long offset,
curandStateMRG32k3a t * state)

Initialize MRG32k3a state in state with the given seed, subsequence, and offset.

All input values of seed, subsequence, and offset are legal. subsequence will be
truncated to 51 bits to avoid running into the next sequence

A value of 0 for seed sets the state to the values of the original published version of the
MRG32k3a algorithm.

Parameters:
seed - Arbitrary bits to use as a seed
subsequence - Subsequence to start at
offset - Absolute offset into sequence

state - Pointer to state to initialize

__device _ void curand_init (unsigned long long seed,
unsigned long long subsequence, unsigned long long offset,
curandStateXORWOW _t « state)

Initialize XORWOW state in state with the given seed, subsequence, and offset.

All input values of seed, subsequence, and offset are legal. Large values for subsequence
and offset require more computation and so will take more time to complete.

A value of 0 for seed sets the state to the values of the original published version of the
xorwow algorithm.

Parameters:
seed - Arbitrary bits to use as a seed
subsequence - Subsequence to start at
offset - Absolute offset into sequence

state - Pointer to state to initialize

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 67

__device float curand log normal (curandState-
ScrambledSobol64 t x state, float mean, float

stddev)

Return a single log-normally distributed float derived from a normal distribution with
mean mean and standard deviation stddev from the scrambled Sobol64 generator in state,
increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results, then converts to log-normal distribution.

Parameters:
state - Pointer to state to update
mean - Mean of the related normal distribution
stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed float with mean mean and standard deviation stddev

__device_ _ float curand_log_normal (curandStateSobol64 t x
state, float mean, float stddev)

Return a single log-normally distributed float derived from a normal distribution with
mean mean and standard deviation stddev from the Sobol64 generator in state, increment
position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results, then converts to log-normal distribution.

Parameters:
state - Pointer to state to update
mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed float with mean mean and standard deviation stddev

__device float curand log normal (curandState-
ScrambledSobol32 t x state, float mean, float
stddev)

Return a single log-normally distributed float derived from a normal distribution with
mean mean and standard deviation stddev from the scrambled Sobol32 generator in state,

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 68

increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate a
normally distributed result, then transforms the result to log-normal.

Parameters:
state - Pointer to state to update
mean - Mean of the related normal distribution
stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed float with mean mean and standard deviation stddev

__device__ float curand_log normal (curandStateSobol32 t x
state, float mean, float stddev)

Return a single log-normally distributed float derived from a normal distribution with
mean mean and standard deviation stddev from the Sobol32 generator in state, increment
position of generator by one.

The implementation uses the inverse cumulative distribution function to generate a
normally distributed result, then transforms the result to log-normal.

Parameters:
state - Pointer to state to update
mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed float with mean mean and standard deviation stddev

__device__ float curand_log normal (curandStateMtgp32 t =
state, float mean, float stddev)

Return a single log-normally distributed float derived from a normal distribution with
mean mean and standard deviation stddev from the MTGP32 generator in state,
increment position of generator.

The implementation uses the inverse cumulative distribution function to generate a
normally distributed result, then transforms the result to log-normal.

Parameters:

state - Pointer to state to update

CUDA Toolkit 4.1 CURAND Guide PG-05328-041_v01 | 69

mean - Mean of the related normal distribution
stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed float with mean mean and standard deviation stddev

__device__ float curand _log normal (curandStateMRG32k3a t
x state, float mean, float stddev)

Return a single log-normally distributed float derived from a normal distribution with
mean mean and standard deviation stddev from the MRG32k3a generator in state,
increment position of generator by one.

The implementation uses a Box-Muller transform to generate two normally distributed
results, transforms them to log-normal distribution, then returns them one at a time. See
curand log normal2() for a more efficient version that returns both results at once.

Parameters:
state - Pointer to state to update
mean - Mean of the related normal distribution
stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed float with mean mean and standard deviation stddev

__device__ float curand _log_normal (curandStateXORWOW _t
x state, float mean, float stddev)

Return a single log-normally distributed float derived from a normal distribution with
mean mean and standard deviation stddev from the XORWOW generator in state,
increment position of generator by one.

The implementation uses a Box-Muller transform to generate two normally distributed
results, transforms them to log-normal distribution, then returns them one at a time. See
curand log normal2() for a more efficient version that returns both results at once.

Parameters:

state - Pointer to state to update
mean - Mean of the related normal distribution
stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed float with mean mean and standard deviation stddev

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 70

__device float2 curand log normal2 (curand-
StateMRG32k3a t * state, float mean, float stddev)

Return two log-normally distributed floats derived from a normal distribution with mean
mean and standard deviation stddev from the MRG32k3a generator in state, increment
position of generator by two.

The implementation uses a Box-Muller transform to generate two normally distributed
results, then transforms them to log-normal.

Parameters:

state - Pointer to state to update
mean - Mean of the related normal distribution
stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed float2 where each element is from a distribution with mean
mean and standard deviation stddev

__device _ float2 curand log normal2 (curandStateXOR-
WOW _t * state, float mean, float stddev)

Return two log-normally distributed floats derived from a normal distribution with mean
mean and standard deviation stddev from the XORWOW generator in state, increment
position of generator by two.

The implementation uses a Box-Muller transform to generate two normally distributed
results, then transforms them to log-normal.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution
Returns:

Log-normally distributed float2 where each element is from a distribution with mean
mean and standard deviation stddev

_device double2 curand log normal2 double
(curandStateMRG32k3a_ t * state, double mean, double stddev)

Return two log-normally distributed doubles derived from a normal distribution with mean
mean and standard deviation stddev from the MRG32k3a generator in state, increment
position of generator by two.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 71

The implementation uses a Box-Muller transform to generate two normally distributed
results, and transforms them to log-normal distribution,.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution
Returns:

Log-normally distributed double2 where each element is from a distribution with mean
mean and standard deviation stddev

_device double2 curand log normal2 double
(curandStateXORWOW _t x state, double mean, double stddev)

Return two log-normally distributed doubles derived from a normal distribution with mean
mean and standard deviation stddev from the XORWOW generator in state, increment
position of generator by two.

The implementation uses a Box-Muller transform to generate two normally distributed
results, and transforms them to log-normal distribution,.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution
Returns:

Log-normally distributed double2 where each element is from a distribution with mean
mean and standard deviation stddev

__device double curand log normal double
(curandStateScrambledSobol64 t x state, double mean, double

stddev)

Return a single normally distributed double derived from a normal distribution with mean
mean and standard deviation stddev from the scrambled Sobol64 generator in state,
increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

Parameters:

state - Pointer to state to update

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 72

mean - Mean of the related normal distribution
stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed double with mean mean and standard deviation stddev

_device double curand log normal double
(curandStateSobol64 t x state, double mean, double stddev)

Return a single normally distributed double derived from a normal distribution with mean
mean and standard deviation stddev from the Sobol64 generator in state, increment
position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

Parameters:

state - Pointer to state to update
mean - Mean of the related normal distribution
stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed double with mean mean and standard deviation stddev

__device double curand log normal double
(curandStateScrambledSobol32 t x state, double mean, double

stddev)

Return a single log-normally distributed double derived from a normal distribution with
mean mean and standard deviation stddev from the scrambled Sobol32 generator in state,
increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results, and transforms them into log-normal distribution.

Parameters:

state - Pointer to state to update
mean - Mean of the related normal distribution
stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed double with mean mean and standard deviation stddev

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 73

_device double curand log normal double
(curandStateSobol32 t x state, double mean, double stddev)

Return a single log-normally distributed double derived from a normal distribution with
mean mean and standard deviation stddev from the Sobol32 generator in state, increment
position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results, and transforms them into log-normal distribution.

Parameters:
state - Pointer to state to update
mean - Mean of the related normal distribution
stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed double with mean mean and standard deviation stddev

_device double curand log normal double
(curandStateMtgp32 t * state, double mean, double stddev)

Return a single log-normally distributed double derived from a normal distribution with
mean mean and standard deviation stddev from the MTGP32 generator in state,
increment position of generator.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results, and transforms them into log-normal distribution.

Parameters:

state - Pointer to state to update
mean - Mean of the related normal distribution
stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed double with mean mean and standard deviation stddev

__device double curand log normal double
(curandStateMRG32k3a_t * state, double mean, double stddev)

Return a single normally distributed double derived from a normal distribution with mean
mean and standard deviation stddev from the MRG32k3a generator in state, increment
position of generator.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 74

The implementation uses a Box-Muller transform to generate two normally distributed
results, transforms them to log-normal distribution, then returns them one at a time. See
curand log normal2 double() for a more efficient version that returns both results at
once.

Parameters:

state - Pointer to state to update
mean - Mean of the related normal distribution
stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed double with mean mean and standard deviation stddev

_device double curand log normal double
(curandStateXORWOW t x state, double mean, double stddev)

Return a single normally distributed double derived from a normal distribution with mean
mean and standard deviation stddev from the XORWOW generator in state, increment
position of generator.

The implementation uses a Box-Muller transform to generate two normally distributed
results, transforms them to log-normal distribution, then returns them one at a time. See
curand log normal2 double() for a more efficient version that returns both results at
once.

Parameters:
state - Pointer to state to update
mean - Mean of the related normal distribution
stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed double with mean mean and standard deviation stddev

__device__ float curand _mtgp32_single (curandStateMtgp32 t
state)

Return a uniformly distributed float between 0.0f and 1.0f from the mtgp32 generator in
state, increment position of generator. Output range excludes 0.0f but includes 1.0f.
Denormalized floating point outputs are never returned.

Note: This alternate derivation of a uniform float is provided for completeness with the
original source

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 75

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed float between 0.0f and 1.0f

_device float curand mtgp32 single specific
(curandStateMtgp32 t * state)

Return a uniformly distributed float between 0.0f and 1.0f from position index of the
mtgp32 generator in state, and increment position of generator by n positions, which
must be the total number of positions upddated in the state by the thread block, for this
invocation. Output range excludes 0.0f but includes 1.0f. Denormalized floating point
outputs are never returned.

Note 1: Thread indices must range from 0...n - 1. The number of positions updated may
not exceed 256. A thread block may update more than one state, but a given state may
not be updated by more than one thread block.

Note 2: This alternate derivation of a uniform float is provided for completeness with the
original source

Parameters:

state - Pointer to state to update
index - Index (0..255) of the position within the state to draw from and update

n - The total number of postions in this state that are being updated by this
invocation

Returns:

uniformly distributed float between 0.0f and 1.0f

_device unsigned int curand mtgp32 specific
(curandStateMtgp32 t * state, unsigned char index, unsigned char

1)

Return 32-bits of pseudorandomness from position index of the mtgp32 generator in
state, increment position of generator by n positions, which must be the total number of
positions upddated in the state by the thread block, for this invocation.

Note : Thread indices must range from 0... n - 1. The number of positions updated may
not exceed 256. A thread block may update more than one state, but a given state may
not be updated by more than one thread block.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 76

Parameters:

state - Pointer to state to update
index - Index (0..255) of the position within the state to draw from and update

n - The total number of postions in this state that are being updated by this
invocation

Returns:

32-bits of pseudorandomness as an unsigned int, all bits valid to use.

__device _ float curand normal (curandStateScrambled-
Sobol64 t = state)

Return a single normally distributed float with mean 0.0f and standard deviation 1.0f
from the scrambled Sobol64 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

Parameters:
state - Pointer to state to update
Returns:

Normally distributed float with mean 0.0f and standard deviation 1.0f

__device__ float curand _normal (curandStateSobol64 t * state)
Return a single normally distributed float with mean 0.0f and standard deviation 1.0f
from the Sobol64 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

Parameters:

state - Pointer to state to update

Returns:

Normally distributed float with mean 0.0f and standard deviation 1.0f

__device__ float curand normal (curandStateScrambled-
Sobol32 t x state)

Return a single normally distributed float with mean 0.0f and standard deviation 1.0f
from the scrambled Sobol32 generator in state, increment position of generator by one.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 77

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

Parameters:
state - Pointer to state to update
Returns:

Normally distributed float with mean 0.0f and standard deviation 1.0f

__device__ float curand _normal (curandStateSobol32 t * state)

Return a single normally distributed float with mean 0.0f and standard deviation 1.0f
from the Sobol32 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

Parameters:
state - Pointer to state to update

Returns:

Normally distributed float with mean 0.0f and standard deviation 1.0f

device float curand _normal (curandStateMtgp32 t x state)

Return a single normally distributed float with mean 0.0f and standard deviation 1.0f
from the MTGP32 generator in state, increment position of generator.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

Parameters:

state - Pointer to state to update
Returns:

Normally distributed float with mean 0.0f and standard deviation 1.0f

__device__ float curand_normal (curandStateMRG32k3a t
state)

Return a single normally distributed float with mean 0.0f and standard deviation 1.0f
from the MRG32k3a generator in state, increment position of generator by one.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 78

The implementation uses a Box-Muller transform to generate two normally distributed
results, then returns them one at a time. See curand normal2() for a more efficient
version that returns both results at once.

Parameters:
state - Pointer to state to update
Returns:

Normally distributed float with mean 0.0f and standard deviation 1.0f

__device__ float curand _normal (curandStateXORWOW _t
state)

Return a single normally distributed float with mean 0.0f and standard deviation 1.0f
from the XORWOW generator in state, increment position of generator by one.

The implementation uses a Box-Muller transform to generate two normally distributed
results, then returns them one at a time. See curand normal2() for a more efficient
version that returns both results at once.

Parameters:
state - Pointer to state to update
Returns:

Normally distributed float with mean 0.0f and standard deviation 1.0f

__device__ float2 curand _normal2 (curandStateMRG32k3a_t =
state)

Return two normally distributed floats with mean 0.0f and standard deviation 1.0f from
the MRG32k3a generator in state, increment position of generator by two.

The implementation uses a Box-Muller transform to generate two normally distributed
results.

Parameters:
state - Pointer to state to update
Returns:

Normally distributed float2 where each element is from a distribution with mean 0.0f
and standard deviation 1.0f

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 79

__device__ float2 curand _normal2 (curandState XORWOW _t «
state)

Return two normally distributed floats with mean 0.0f and standard deviation 1.0f from
the XORWOW generator in state, increment position of generator by two.

The implementation uses a Box-Muller transform to generate two normally distributed
results.

Parameters:
state - Pointer to state to update
Returns:

Normally distributed float2 where each element is from a distribution with mean 0.0f
and standard deviation 1.0f

__device__ double2 curand normal2 double (curand-
StateMRG32k3a_t state)

Return two normally distributed doubles with mean 0.0 and standard deviation 1.0 from
the MRG32k3a generator in state, increment position of generator.

The implementation uses a Box-Muller transform to generate two normally distributed
results.

Parameters:
state - Pointer to state to update
Returns:

Normally distributed double2 where each element is from a distribution with mean
0.0 and standard deviation 1.0

__device__ double2 curand normal2 _double (curandStateXOR-
WOW _t * state)

Return two normally distributed doubles with mean 0.0 and standard deviation 1.0 from

the XORWOW generator in state, increment position of generator.

The implementation uses a Box-Muller transform to generate two normally distributed
results.

Parameters:

state - Pointer to state to update

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 80

Returns:

Normally distributed double2 where each element is from a distribution with mean
0.0 and standard deviation 1.0

__device__ double curand _normal double (curandStateScram-
bledSobol64 t x state)

Return a single normally distributed double with mean 0.0 and standard deviation 1.0
from the scrambled Sobol64 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

Parameters:
state - Pointer to state to update
Returns:

Normally distributed double with mean 0.0 and standard deviation 1.0

__device double curand normal double (curandState-
Sobol64 t * state)

Return a single normally distributed double with mean 0.0 and standard deviation 1.0
from the Sobol64 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

Parameters:
state - Pointer to state to update
Returns:

Normally distributed double with mean 0.0 and standard deviation 1.0

__device__ double curand normal double (curandStateScram-
bledSobol32 t x state)

Return a single normally distributed double with mean 0.0 and standard deviation 1.0
from the scrambled Sobol32 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 81

Parameters:
state - Pointer to state to update

Returns:

Normally distributed double with mean 0.0 and standard deviation 1.0

__device_ double curand normal double (curandState-
Sobol32 t x state)

Return a single normally distributed double with mean 0.0 and standard deviation 1.0
from the Sobol32 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

Parameters:
state - Pointer to state to update
Returns:

Normally distributed double with mean 0.0 and standard deviation 1.0

device double curand normal double (curand-

StateMtgp32 t x state)

Return a single normally distributed double with mean 0.0 and standard deviation 1.0
from the MTGP32 generator in state, increment position of generator.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

Parameters:
state - Pointer to state to update

Returns:

Normally distributed double with mean 0.0 and standard deviation 1.0

device double curand normal double (curand-

StateMRG32k3a_t state)

Return a single normally distributed double with mean 0.0 and standard deviation 1.0
from the XORWOW generator in state, increment position of generator.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 82

The implementation uses a Box-Muller transform to generate two normally distributed
results, then returns them one at a time. See curand normal2 double() for a more
efficient version that returns both results at once.

Parameters:
state - Pointer to state to update
Returns:

Normally distributed double with mean 0.0 and standard deviation 1.0

__device_ double curand _normal double (curandStateXOR-
WOW _t x state)

Return a single normally distributed double with mean 0.0 and standard deviation 1.0
from the XORWOW generator in state, increment position of generator.

The implementation uses a Box-Muller transform to generate two normally distributed
results, then returns them one at a time. See curand normal2 double() for a more
efficient version that returns both results at once.

Parameters:
state - Pointer to state to update
Returns:

Normally distributed double with mean 0.0 and standard deviation 1.0

__device _ float curand uniform (curandStateScrambled-
Sobol64 t * state)

Return a uniformly distributed float between 0.0f and 1.0f from the scrambled Sobol64
generator in state, increment position of generator. Output range excludes 0.0f but
includes 1.0f. Denormalized floating point outputs are never returned.

The implementation is guaranteed to use a single call to curand().
Parameters:

state - Pointer to state to update
Returns:

uniformly distributed float between 0.0f and 1.0f

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 83

__device__ float curand _uniform (curandStateSobol64 t x state)

Return a uniformly distributed float between 0.0f and 1.0f from the Sobol64 generator in
state, increment position of generator. Output range excludes 0.0f but includes 1.0f.
Denormalized floating point outputs are never returned.

The implementation is guaranteed to use a single call to curand().
Parameters:

state - Pointer to state to update
Returns:

uniformly distributed float between 0.0f and 1.0f

__device__ float curand uniform (curandStateScrambled-
Sobol32 t « state)

Return a uniformly distributed float between 0.0f and 1.0f from the scrambled Sobol32
generator in state, increment position of generator. Output range excludes 0.0f but
includes 1.0f. Denormalized floating point outputs are never returned.

The implementation is guaranteed to use a single call to curand().
Parameters:

state - Pointer to state to update
Returns:

uniformly distributed float between 0.0f and 1.0f

device _ float curand_uniform (curandStateSobol32 t x state)

Return a uniformly distributed float between 0.0f and 1.0f from the Sobol32 generator in
state, increment position of generator. Output range excludes 0.0f but includes 1.0f.
Denormalized floating point outputs are never returned.

The implementation is guaranteed to use a single call to curand().

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed float between 0.0f and 1.0f

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 84

__device__ float curand _uniform (curandStateMtgp32 t x state)

Return a uniformly distributed float between 0.0f and 1.0f from the MTGP32 generator
in state, increment position of generator. Output range excludes 0.0f but includes 1.0f.
Denormalized floating point outputs are never returned.

Parameters:
state - Pointer to state to update
Returns:

uniformly distributed float between 0.0f and 1.0f

__device_ _ float curand_uniform (curandStateMRG32k3a t =
state)

Return a uniformly distributed float between 0.0f and 1.0f from the MRG32k3a
generator in state, increment position of generator. Output range excludes 0.0f but
includes 1.0f. Denormalized floating point outputs are never returned.

The implementation returns up to 23 bits of mantissa, with the minimum return value 2732
Parameters:

state - Pointer to state to update
Returns:

uniformly distributed float between 0.0f and 1.0f

__device_ _ float curand_uniform (curandStateXORWOW _t x
state)

Return a uniformly distributed float between 0.0f and 1.0f from the XORWOW
generator in state, increment position of generator. Output range excludes 0.0f but
includes 1.0f. Denormalized floating point outputs are never returned.

The implementation may use any number of calls to curand() to get enough random bits
to create the return value. The current implementation uses one call.

Parameters:

state - Pointer to state to update
Returns:

uniformly distributed float between 0.0f and 1.0f

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 85

__device__ double curand _uniform double (curandStateScram-
bledSobol64 t x state)

Return a uniformly distributed double between 0.0 and 1.0 from the scrambled Sobol64
generator in state, increment position of generator. Output range excludes 0.0 but
includes 1.0. Denormalized floating point outputs are never returned.

The implementation is guaranteed to use a single call to curand () to preserve the
quasirandom properties of the sequence.

Parameters:
state - Pointer to state to update
Returns:

uniformly distributed double between 0.0 and 1.0

__device__ double curand uniform double (curandState-
Sobol64 t * state)

Return a uniformly distributed double between 0.0 and 1.0 from the Sobol64 generator in
state, increment position of generator. Output range excludes 0.0 but includes 1.0.
Denormalized floating point outputs are never returned.

The implementation is guaranteed to use a single call to curand () to preserve the
quasirandom properties of the sequence.

Parameters:
state - Pointer to state to update
Returns:

uniformly distributed double between 0.0 and 1.0

__device__ double curand _uniform _double (curandStateScram-
bledSobol32 t x state)

Return a uniformly distributed double between 0.0 and 1.0 from the scrambled Sobol32
generator in state, increment position of generator. Output range excludes 0.0 but
includes 1.0. Denormalized floating point outputs are never returned.

The implementation is guaranteed to use a single call to curand () to preserve the
quasirandom properties of the sequence.

Parameters:

state - Pointer to state to update

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 86

Returns:

uniformly distributed double between 0.0 and 1.0

__device_ double curand _uniform double (curandState-
Sobol32 t x state)

Return a uniformly distributed double between 0.0 and 1.0 from the Sobol32 generator in
state, increment position of generator. Output range excludes 0.0 but includes 1.0.
Denormalized floating point outputs are never returned.

The implementation is guaranteed to use a single call to curand() to preserve the
quasirandom properties of the sequence.

Parameters:
state - Pointer to state to update
Returns:

uniformly distributed double between 0.0 and 1.0

__device_ double curand uniform double (curand-
StateMtgp32 t x state)

Return a uniformly distributed double between 0.0f and 1.0f from the MTGP32
generator in state, increment position of generator. Output range excludes 0.0f but
includes 1.0f. Denormalized floating point outputs are never returned.

Parameters:
state - Pointer to state to update
Returns:

uniformly distributed double between 0.0f and 1.0f

__device double curand uniform double (curand-
StateMRG32k3a_t * state)

Return a uniformly distributed double between 0.0 and 1.0 from the MRG32k3a
generator in state, increment position of generator. Output range excludes 0.0 but
includes 1.0. Denormalized floating point outputs are never returned.

Note the implementation returns at most 32 random bits of mantissa as outlined in the
seminal paper by L’Ecuyer.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 87

Parameters:
state - Pointer to state to update
Returns:

uniformly distributed double between 0.0 and 1.0

__device__ double curand _uniform _double (curandStateXOR-
WOW _t * state)

Return a uniformly distributed double between 0.0 and 1.0 from the XORWOW
generator in state, increment position of generator. Output range excludes 0.0 but
includes 1.0. Denormalized floating point outputs are never returned.

The implementation may use any number of calls to curand() to get enough random bits
to create the return value. The current implementation uses exactly two calls.

Parameters:
state - Pointer to state to update

Returns:

uniformly distributed double between 0.0 and 1.0

template<typename T > device _ void skipahead (unsigned long
long n, T state)

Update the Sobol64 state in state to skip ahead n elements.

All values of n are valid.

Parameters:

n - Number of elements to skip

state - Pointer to state to update

template<typename T > device void skipahead (unsigned int n,
T state)

Update the Sobol32 state in state to skip ahead n elements.

All values of n are valid.

Parameters:

n - Number of elements to skip

state - Pointer to state to update

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 88

__device _ void skipahead (unsigned long long n,
curandStateMRG32k3a t x state)

Update the MRG32k3a state in state to skip ahead n elements.

All values of n are valid. Large values require more computation and so will take more

time to complete.
Parameters:

n - Number of elements to skip

state - Pointer to state to update

_device void skipahead (unsigned long long n,

curandStateXORWOW _t * state)

Update the XORWOW state in state to skip ahead n elements.

All values of n are valid. Large values require more computation and so will take more

time to complete.
Parameters:

n - Number of elements to skip

state - Pointer to state to update

device_ void skipahead sequence (unsigned long long n,

curandStateMRG32k3a_t * state)

Update the MRG32k3a state in state to skip ahead n sequences. Each sequence is 227
elements long, so this means the function will skip ahead 227 - n elements.

All values of n are valid. Large values require more computation and so will take more

time to complete.
Parameters:

n - Number of sequences to skip

state - Pointer to state to update

device void skipahead sequence (unsigned long long n,

curandStateXORWOW _t « state)

Update the XORWOW state in state to skip ahead n subsequences. Each subsequence is
267 elements long, so this means the function will skip ahead 2%7 - n elements.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 89

All values of n are valid. Large values require more computation and so will take more
time to complete.

Parameters:

n - Number of subsequences to skip

state - Pointer to state to update

__device _ void skipahead subsequence (unsigned long long n,
curandStateMRG32k3a_t * state)

Update the MRG32k3a state in state to skip ahead n subsequences. Each subsequence is
276 clements long, so this means the function will skip ahead 27% - n elements.

Valid values of n are 0 to 2°1. Note n will be masked to 51 bits

Parameters:

n - Number of subsequences to skip

state - Pointer to state to update

Variable Documentation
unsigned int mtgp32 params_fast::flt _tmp tbl[16] [inherited]

a small matrix for tempering and converting to float.

unsigned int mtgp32 params fast::mask [inherited]

This is a mask for state space

unsigned char mtgp32 params_fast::poly shal|21] [inherited]

SHAT1 digest

int mtgp32 params fast::pos [inherited]

pick up position.

int mtgp32 params fast::shl [inherited]

shift value 1. 0 < shl < 32.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 vO01 | 90

int mtgp32 params_fast::sh2 [inherited]

shift value 2. 0 < sh2 < 32.

unsigned int mtgp32 params_ fast::tbl|16] [inherited]

a small matrix.

unsigned int mtgp32 params_ fast::tmp_tbl[16] [inherited]

a small matrix for tempering.

CUDA Toolkit 4.1 CURAND Guide PG-05328-041 v01 | 91

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S.
and other countries. Other company and product names may be trademarks of the respective companies with
which they are associated.

Copyright
© 2012 NVIDIA Corporation. All rights reserved.

www.nvidia.com nVIBIA-

	CURAND Library
	Compatibility and Versioning
	Host API Overview
	Generator Types
	Generator Options
	Seed
	Offset
	Order

	Return Values
	Generation Functions
	Host API Example
	Performance Notes

	Device API Overview
	Pseudorandom Sequences
	Bit Generation with XORWOW and MRG32k3a generators
	Bit Generation with the MTGP32 generator
	Distributions

	Quasirandom Sequences
	Skip-Ahead
	Performance Notes
	Device API Example
	Thrust and CURAND Example

	Testing

	CURAND Reference
	Host API
	Typedef Documentation
	curandDirectionVectors32_t
	curandDirectionVectors64_t
	curandDirectionVectorSet_t
	curandGenerator_t
	curandOrdering_t
	curandRngType_t
	curandStatus_t

	Enumeration Type Documentation
	curandDirectionVectorSet
	curandOrdering
	curandRngType
	curandStatus

	Function Documentation
	curandCreateGenerator
	curandCreateGeneratorHost
	curandDestroyGenerator
	curandGenerate
	curandGenerateLogNormal
	curandGenerateLogNormalDouble
	curandGenerateLongLong
	curandGenerateNormal
	curandGenerateNormalDouble
	curandGenerateSeeds
	curandGenerateUniform
	curandGenerateUniformDouble
	curandGetDirectionVectors32
	curandGetDirectionVectors64
	curandGetScrambleConstants32
	curandGetScrambleConstants64
	curandGetVersion
	curandSetGeneratorOffset
	curandSetGeneratorOrdering
	curandSetPseudoRandomGeneratorSeed
	curandSetQuasiRandomGeneratorDimensions
	curandSetStream

	Device API
	Typedef Documentation
	curandState_t
	curandStateMRG32k3a_t
	curandStateMtgp32_t
	curandStateScrambledSobol32_t
	curandStateScrambledSobol64_t
	curandStateSobol32_t
	curandStateSobol64_t
	curandStateXORWOW_t

	Function Documentation
	curand
	curand
	curand
	curand
	curand
	curand
	curand
	curand_init
	curand_init
	curand_init
	curand_init
	curand_init
	curand_init
	curand_log_normal
	curand_log_normal
	curand_log_normal
	curand_log_normal
	curand_log_normal
	curand_log_normal
	curand_log_normal
	curand_log_normal2
	curand_log_normal2
	curand_log_normal2_double
	curand_log_normal2_double
	curand_log_normal_double
	curand_log_normal_double
	curand_log_normal_double
	curand_log_normal_double
	curand_log_normal_double
	curand_log_normal_double
	curand_log_normal_double
	curand_mtgp32_single
	curand_mtgp32_single_specific
	curand_mtgp32_specific
	curand_normal
	curand_normal
	curand_normal
	curand_normal
	curand_normal
	curand_normal
	curand_normal
	curand_normal2
	curand_normal2
	curand_normal2_double
	curand_normal2_double
	curand_normal_double
	curand_normal_double
	curand_normal_double
	curand_normal_double
	curand_normal_double
	curand_normal_double
	curand_normal_double
	curand_uniform
	curand_uniform
	curand_uniform
	curand_uniform
	curand_uniform
	curand_uniform
	curand_uniform
	curand_uniform_double
	curand_uniform_double
	curand_uniform_double
	curand_uniform_double
	curand_uniform_double
	curand_uniform_double
	curand_uniform_double
	skipahead
	skipahead
	skipahead
	skipahead
	skipahead_sequence
	skipahead_sequence
	skipahead_subsequence

	Variable Documentation
	flt_tmp_tbl
	mask
	poly_sha1
	pos
	sh1
	sh2
	tbl
	tmp_tbl

