

DU-05982-001_v03

DOCUMENT CHANGE HISTORY

Version Date Authors Description of Change
01 September 9, 2011 | SS, VS Initial release.
Note: Some of this content was published as
part of the Compute Visual Profiler User
Guide DU-05162-001_v04.
v02 October 14, 2011 SS, VS Minor updates for CUDA 4.1 RC1 release:
+Removed list of counters.
+Added a reference to the CUPTI users guide.
«Updated sample output.
v03 November 14, 2011 | SS, VS +Added new section, “Command Line Profiler
Default Output”.
«Updated command line profiler options
table, Table 2.

www.nvidia.com
Compute Command Line Profiler

DU-05982-001_v03 | ii

TABLE OF CONTENTS

Compute Command Line Profilerccoiiiiiiiiiiiiiiiiiiiiiiiiiiieeiiercnneenennees 4

VBV BN ettt ettt et et e e ettt et eeteeeeaneeeneeaneeaneeanseenseenseensesnseensesnseensennnennes 4
Command Line Profiler CONTrolo.iiiiiiiiiiii i e e et et e e enaenaenaans 4
Command Line Profiler Default OQULPUL.... ..ot e e e e e eaea s 6
Command Line Profiler Configurationcceiiiiiiiiiiiiiii e e ec e e e eaeaaas 7

Command Line Profiler OPtioNSc.viiieiiitii it ereereeeeeeneeenneanas 7
Command Line Profiler COUNEEIS .. .ottt e e eee et e e e eaaeaes 10
Command Line Profiler OULPULc..iitiii i e e e e eeeeeeeereeareeenaeanans 11

LIST OF TABLES

Table 1. Command Line Profiler Default ColUmMNS.....c..vviiniiiiiiiiiiiiiiiciiiciieiineeenns 6
Table 2. Command Line Profiler Optionsooiiiiiiiiiiii e e e es 7
www.nvidia.com

Compute Command Line Profiler DU-05982-001_v03 | iii

COMPUTE COMMAND LINE PROFILER

OVERVIEW

This document is intended for users of Compute Command Line Profiler for NVIDIA®
CUDA™ technology. Compute Command Line Profiler is a command line based profiling
tool that can be used to measure performance and find potential opportunities for
optimization in order to achieve maximum performance from NVIDIA® GPUs.

The command line profiler allows users to gather timing information about kernel
execution and memory transfer operations for CUDA and OpenCL applications. Profiling
options are controlled through environment variables and a profiler configuration file.
Profiler output is generated in text files either in Key-Value-Pair (KVP) or Comma
Separated (CSV) format.

COMMAND LINE PROFILER CONTROL

The command line profiler is controlled using the following environment variables:
COMPUTE_PROFILE: is set to either 1 or 0 (or unset) to enable or disable profiling.

COMPUTE_PROFILE_LOG: is set to the desired file path for profiling output. In case of
multiple contexts you can add “%d” in the COMPUTE_PROFILE_LOG name. This will
generate separate profiler output files for each context - with “%d” substituted by the
context number. Contexts are numbered starting with zero. In case of multiple processes
you can add “%p” in the COMPUTE_PROFILE_LOG name. This will generate separate
profiler output files for each process - with “%p” substituted by the process id. If there is no
log path specified, the profiler will log data to “cuda_profile_%d.log” in case of a CUDA
context and “opencl_profile_%d.log” in case of a OpenCL context (“%d’ is substituted by
the context number).

www.nvidia.com
Compute Command Line Profiler DU-05982-001_v03 | 4

Compute Command Line Profiler

COMPUTE_PROFILE_CSV: is set to either 1 (set) or 0 (unset) to enable or disable a
comma separated version of the log output.

COMPUTE_PROFILE_CONFIG: is used to specify a config file for enabling performance
counters in the GPU.

Configuration details are covered in a subsequent section.

The old environment variables, which were used specifically for CUDA/OpenCL are still
supported. The old environment variables for the above functionalities are:

CUDA_PROFILE/OPENCL_PROFILE
CUDA_PROFILE_LOG/OPENCL_PROFILE_LOG
CUDA_PROFILE_CSV/OPENCL_PROFILE_CSV
CUDA_PROFILE_CONFIG/OPENCL_PROFILE_CONFIG

If CUDA_PROFILE or OPENCL_PROFILE are explicitly set and the
COMPUTE_PROFILE environment variable is not set, the profiler outputs only the
corresponding contexts. If both are set, the COMPUTE_PROFILE environment variables
take precedence over CUDA_PROFILE/OPENCL_PROFILE environment variable.

www.nvidia.com
Compute Command Line Profiler DU-05982-001_v03 | 5

Compute Command Line Profiler

COMMAND LINE PROFILER DEFAULT OUTPUT

Table 1 describes the columns that are output in the profiler log by default.

Table 1. Command Line Profiler Default Columns

Column

Description

method

This is character string which gives the name of the GPU kernel
or memory copy method. In case of kernels the method name
is the mangled name generated by the compiler.

gputime

This column gives the execution time for the GPU kernel or
memory copy method. This value is calculated as
(gpuendtimestamp - gpustarttimestamp)/1000.0. The column
value is a single precision floating point value in microseconds.

cputime

For non-blocking methods the cputime is only the CPU or host
side overhead to launch the method. In this case:

walltime = cputime + gputime

For blocking methods cputime is the sum of gputime and CPU
overhead. In this case:

walltime = cputime

Note all kernel launches by default are non-blocking. But if any
of the profiler counters are enabled kernel launches are
blocking. Also asynchronous memory copy requests in different
streams are non-blocking.

The column value is a single precision floating point value in
microseconds.

occupancy

This column gives the multiprocessor occupancy which is the
ratio of number of active warps to the maximum number of
warps supported on a multiprocessor of the GPU. This is
helpful in determining how efficient the kernel will be on the
GPU. This column is output only for GPU kernels and the
column value is a single precision floating point value in the
range 0.0 to 1.0.

www.nvidia.com
Compute Command Line Profiler

DU-05982-001_v03 | 6

Compute Command Line Profiler

COMMAND LINE PROFILER CONFIGURATION

The profiler configuration file is used to select the profiler options and counters which are
to be collected during application execution. The configuration file is a simple format text

file with one option on each line. Options can be commented out using the ‘#" character at

the start of a line. The profiler configuration options are same for CUDA and OpenCL, but
the column names in the profiler output is different for some options. Refer the command
line profiler options table for the column names.

Command Line Profiler Options

Table 2 contains the options supported by the command line profiler. Note the following
regarding the profiler log that is produced from the different options:

» Typically, each profiler option corresponds to a single column is output. There are a
few exceptions in which case multiple columns are output; these are noted where
applicable in Table 2.

» In most cases the column name is the same as the option name; the exceptions are listed
in Table 2.

» In most cases the column values are 32-bit integers in decimal format; the exceptions
are listed in Table 2.

Table 2. Command Line Profiler Options

Option Description

gpustarttimestamp Time stamp when a kernel or memory transfer starts.

The column values are 64-bit unsigned value in nanoseconds in
hexadecimal format.

gpuendtimestamp Time stamp when a kernel or memory transfer completes.

The column values are 64-bit unsigned value in nanoseconds in
hexadecimal format.

timestamp Time stamp when a kernel or memory transfer starts. The
column values are single precision floating point value in
microseconds. Use of the gpustarttimestamp column is
recommended as this provides a more accurate time stamp.

www.nvidia.com
Compute Command Line Profiler DU-05982-001_v03 | 7

Compute Command Line Profiler

Option Description

gridsize Number of blocks in a grid along the X and Y dimensions for a
kernel launch.

This option outputs the following two columns:

CUDA:
e gridsizeX
e gridsizeY
OpenCL:

e ndrangesizeX
e ndrangesizeY

gridsize3d Number of blocks in a grid along the X, Y and Z dimensions for
a kernel launch.

This option outputs the following three columns:

CUDA:
e gridsizeX
e gridsizeY
e gridsizeZ
OpenCL:

e ndrangesizeX
e ndrangesizeY
e ndrangesizeZ

threadblocksize Number of threads in a block along the X, Y and Z dimensions
for a kernel launch.

This option outputs the following three columns:
CUDA:

e threadblocksizeX

e threadblocksizeY

e threadblocksizeZ
OpenCL:

e workgroupsizeX

e workgroupsizeY

e workgroupsizeZ

dynsmemperblock Size of dynamically allocated shared memory per block in bytes
for a kernel launch. (Only CUDA)
stasmemperblock Size of statically allocated shared memory per block in bytes

for a kernel launch.
This option outputs the following columns:
CUDA:
e stasmemperblock
OpenCL:
e Stasmemperworkgroup

www.nvidia.com
Compute Command Line Profiler DU-05982-001_v03 | 8

Compute Command Line Profiler

Option Description
regperthread Number of registers used per thread for a kernel launch.
This option outputs the following columns:
CUDA:
e regperthread
OpenCL:
e regperworkitem
memtransferdir Memory transfer direction, a direction value of 0 is used for
host to device memory copies and a value of 1 is used for
device to host memory copies.
memtransfersize Memory transfer size in bytes. This option shows the amount of

memory transferred between source (host/device) to
destination (host/device).

memtransferhostmemtype

Host memory type (pageable or page-locked). This option
implies whether during a memory transfer, the host memory
type is pageable or page-locked.

streamid

Stream Id for a kernel launch.

localblocksize

If workgroupsize has been specified by the user, this option
would be 1, otherwise it would be 0.(Only OpenCL).

This option outputs the following column:
e localworkgroupsize

cacheconfigrequested

Requested cache configuration option for a kernel launch:

0 CU_FUNC_CACHE_PREFER_NONE - no preference for shared
memory or L1 (default)

1 CU_FUNC_CACHE_PREFER_SHARED - prefer larger shared
memory and smaller L1 cache

2 CU_FUNC_CACHE_PREFER_L1 - prefer larger L1 cache and
smaller shared memory

3 CU_FUNC_CACHE_PREFER_EQUAL - prefer equal sized L1
cache and shared memory

cacheconfigexecuted

Cache configuration which was used for the kernel launch. The
values are same as those listed under cacheconfigrequested.

cudadevice
<device index>

This can be used to select different counters for different
CUDA devices. All counters after this option are selected only
for a CUDA device with index <device_index>.

<device_index> is an integer value specifying the CUDA device
index.

Example: To select counterA for all devices, counterB for CUDA
device 0 and counter for CUDA device 1:

counterA
cudadevice 0
counterB
cudadevice 1
counter

www.nvidia.com
Compute Command Line Profiler

DU-05982-001_v03 | 9

Compute Command Line Profiler

Option Description
profilelogformat Choose format for profiler log.
[CSV|KVP] CSV: Comma separated format

KVP: Key Value Pair format
The default format is KVP.

This option will override the format selected using the
environment variable COMPUTE_PROFILE_CSV.

countermodeaggregate If this option is selected then aggregate counter values will be
output. For a SM counter the counter value is the sum of the
counter values from all SMs. For 1%, tex*, sm_cta_launched,
uncached_global_load_transaction and
global_store_transaction counters the counter value is
collected for 1 SM from each GPC and it is extrapolated for all
SMs. This option is supported only for CUDA devices with
compute capability 2.0 or higher.

conckerneltrace This option should be used to get gpu start and end timestamp
values in case of concurrent kernels. Without this option
execution of concurrent kernels is serialized and the
timestamps are not correct. Only CUDA devices with compute
capability 2.0 or higher support execution of multiple kernels
concurrently. Also if profiler counters are enabled than
execution of kernels is serialized. When this option is enabled
additional code is inserted for each kernel and this will result
in some additional execution overhead and also it will have an
impact on some profiler counter values such as “inst_issued”.

COMMAND LINE PROFILER COUNTERS

The command line profiler supports logging of counters during kernel execution. Refer
the CUPTI User’s Guide “Event Reference” sections for supported counters on GPU
devices with different compute capabilities. Note that CUPTI events are referred to as
profiler counters in the command line profiler. The event name listed in the name can be
used in the command line profiler configuration file. In every application run only a few
counter values can be collected. The number of counters depends on the specific counters
selected.

www.nvidia.com
Compute Command Line Profiler DU-05982-001_v03 | 10

Compute Command Line Profiler

COMMAND LINE PROFILER OUTPUT

If the COMPUTE_PROFILE environment variable is set to enable profiling, the profiler
log records timing information for every kernel launch and memory operation performed
by the driver. The profiler determines dynamically whether the context is CUDA or
OpenCL, and produces the output log accordingly.

The default log syntax shown in Example 1Examplet is part of the profiler log for a
CUDA application with no profiler configuration file specified.

Example 1. CUDA Default Profiler Log- No Options or Counters Enabled
(File name: “cuda_profile_0.log”)

CUDA PROFILE LOG_VERSION 2.0

CUDA DEVICE 0 Tesla C2075

CUDA_ CONTEXT 1

TIMESTAMPFACTOR fffffodec0e24570

method, gputime, cputime, occupancy

method=[memcpyHtoD] gputime=[80.640] cputime=[278.000]
method=[memcpyHtoD] gputime=[79.552] cputime=[237.000]
method=[Z7Z6VecAddPKfS0 Pfi] gputime=[5.760] cputime=[18.000]
occupancy;[1.000] B

method=[memcpyDtoH] gputime=[97.472] cputime=[647.000]

The log above in Example 1Exampled shows data for memory copies and a kernel launch.
The ‘method’ label specifies the name of the memory copy method or kernel executed.
The ‘gputime’ and ‘cputime’ labels specify the actual chip execution time and the driver
execution time, respectively. Note that gputime and cputime are in microseconds. The
‘occupancy’ label gives the ratio of the number of active warps per multiprocessor to the
maximum number of active warps for a particular kernel launch. This is the theoretical
occupancy and is calculated using kernel block size, register usage and shared memory
usage.

www.nvidia.com
Compute Command Line Profiler DU-05982-001_v03 | 11

Compute Command Line Profiler

Example 2Example2 shows the profiler log of a CUDA application. There are a few
options and counters enabled in this example using the profiler configuration file:

gpustarttimestamp
gridsize3d
threadblocksize
dynsmemperblock
stasmemperblock
regperthread
memtransfersize
memtransferdir
streamid
countermodeaggregate
active warps
active cycles

Example 2. CUDA Profiler Log- Options and Counters Enabled

CUDA PROFILE LOG VERSION 2.0
CUDA_ DEVICE 0 Tesla C2075
CUDA CONTEXT 1

TIMESTAMPFACTOR fffff6de5e08e990

gpustarttimestamp, method, gputime, cputime, gridsizeX,gridsize¥Y,gridsizeZ, t
hreadblocksizeX, threadblocksizeY, threadblocksizeZ,dynsmemperblock, stasme
mperblock, regperthread, occupancy, streamid, active warps,active cycles,mem
transfersize,memtransferdir

gpustarttimestamp=[124b9%e484b6f3f40] method=[memcpyHtoD] gputime=]|
80.800] cputime=[280.000] streamid=[1] memtransfersize=[200000]
memtransferdir=[1]

gpustarttimestamp=[124b9%e484b7517a0] method=[memcpyHtoD] gputime=][
79.744] cputime=[232.000] streamid=[1] memtransfersize=[200000]
memtransferdir=[1]

gpustarttimestamp=[124b9%e484b8fd8el0] method=[Z6VecAddPKfS0 Pfi]
gputime=[10.016] cputime=[57.000] gridsize=[196, 1, 1]
threadblocksize=[256, 1, 1] dynsmemperblock=[0] stasmemperblock=[0
] regperthread=[4] occupancy=[1.000] streamid=[1 Jactive warps=|[
1545830] active cycles=[40774]

gpustarttimestamp=[124b9%e484bb5a2c0] method=[memcpyDtoH] gputime=][
98.528] cputime=[672.000] streamid=[1] memtransfersize=[200000]
memtransferdir=[2]

The default log syntax is easy to parse with a script, but for spreadsheet analysis it might
be easier to use the comma separated format.

www.nvidia.com
Compute Command Line Profiler DU-05982-001_v03 | 12

Compute Command Line Profiler

When COMPUTE_PROFILE_CSV is set to 1, this same test produces the output log
shown in Example 3Example3.

Example 3. CUDA Profiler Log- Options and Counters Enabled in CSV
Format

CUDA PROFILE LOG VERSION 2.0

CUDA DEVICE 0 Tesla C2075

CUDA_ CONTEXT 1

CUDA_ PROFILE CSV 1

TIMESTAMPFACTOR fffff6de5d77alcO

gpustarttimestamp, method, gputime, cputime, gridsizeX,gridsizeY,gridsizeZ, t
hreadblocksizeX, threadblocksizeY, threadblocksizeZ, dynsmemperblock, stasme
mperblock, regperthread, occupancy, streamid, active warps,active cycles,mem
transfersize,memtransferdir B B
124b9%e85038d1800, memcpyHtoD, 80.352,286.000,,,,,77+r+r+,+,1,,,200000,1
124b9%9e850392ee00, memcpyHtoD, 79.776,232.000,,,,4s+s+s++++,1,,,200000,1
124b9%e8503a£f7460, Z6VecAddPKfSO Pfi,10.048,59.000,196,1,1,256,1,1,0,0,4,
1.000,1,1532814,42030 B
124b9%9e8503d4£280, memcpyDtoH, 97.888,672.000,,,,,rr7rrr+,1,,,200000,2

H= 3 4

| The following examples are for OpenCL applications. Example 4Example4 is part of the
log from a test of the scan application without any counters enabled.

Example 4. OpenCL Default Profiler Log- No Options or Counters Enabled
(File name: “opencl_profile_0.log”)

OPENCL PROFILE LOG VERSION 2.0

OPENCL DEVICE 0 Tesla C2075

OPENCL_ CONTEXT 1

TIMESTAMPFACTOR fffff6debcc2cldO

method, gputime, cputime, occupancy

method=[memcpyDtoHasync] gputime=[72409.602] cputime=[73403.000]
method=[memcpyDtoHasync] gputime=[72764.414] cputime=[73674.000]
method=[VectorAdd] gputime=[1256.480] cputime=[18.000] occupancy=|
1.000 1]

method=[memcpyHtoDasync] gputime=[124819.328] cputime=[129170.000]

The description of the output is same as that in Example 1.

www.nvidia.com
Compute Command Line Profiler DU-05982-001_v03 | 13

Compute Command Line Profiler

Example 5Example-5 shows the profiler log for a OpenCL application with some options
and counters enabled using the same configuration file as for Example 2:

Example 5. OpenCL Profiler Log- Options and Counters Enabled

OPENCL PROFILE LOG VERSION 2.0

OPENCL DEVICE 0 Tesla C2075

OPENCL_CONTEXT 1

TIMESTAMPFACTOR fffff6de5c479690

gpustarttimestamp, method, gputime, cputime, ndrangesizeX, ndrangesizeY, ndran
gesizeZ,workgroupsizeX,workgroupsizeY,workgroupsizeZ, stapmemperworkgroup
, regperworkitem, occupancy, streamid, active warps,active cycles,memtransfe
rsize,memtransferdir

gpustarttimestamp=[124b9f03b0a9c540] method=[memcpyDtoHasync]
gputime=[71607.328] cputime=[72573.000] streamid=[6]
memtransfersize=[45779968] memtransferdir=[2]

gpustarttimestamp=[124b9f03b51376a0] method=[memcpyDtoHasync]
gputime=[72692.258] cputime=[73589.000] streamid=[6]
memtransfersize=[45779968] memtransferdir=[2]

gpustarttimestamp=[124b9f03b9881940] method=[VectorAdd] gputime=][
1255.936] cputime=[1310.000] ndrangesize=[44707, 1, 1]
workgroupsize=[256, 1, 1] stapmemperworkgroup=[0] regperworkitem=[4
] occupancy=[1.000] streamid=[6 Jactive warps=[388164035]

active cycles=[10046628]

gpustarttimestamp=[124b9f03b9c7ffal] method=[memcpyHtoDasync]
gputime=[125990.852] cputime=[130365.000] streamid

=[6] memtransfersize=[45779968] memtransferdir=[1]

When COMPUTE_PROFILE_CSV is set to 1, this same test produces the following
output:

Example 6. OpenCL Profiler Log- Options and Counters Enabled in CSV
Format

OPENCL PROFILE LOG VERSION 2.0

OPENCL DEVICE 0 Tesla C2075

OPENCL_ CONTEXT 1

OPENCL PROFILE CSV 1

TIMESTAMPFACTOR fffffé6de5cl2c270

gpustarttimestamp, method, gputime, cputime, ndrangesizeX, ndrangesizeY, ndran
gesizeZ,workgroupsizeX,workgroupsizeY,workgroupsizeZ, stapmemperworkgroup
, regperworkitem, occupancy, streamid, active warps,active cycles,memtransfe
rsize,memtransferdir

1249f19a3d23840, memcpyDtoHasync, 71908.961,72946.000,,,,,/,,,,,6,,,457799
68,2

124b9£19a83£5be0, memcpyDtoHasync, 72832.125,73732.000,,,,,,,7+,6,,,457799
68,2

124b9f19%9acb65a40,VectorAdd, 1255.648,1311.000,44707,1,1,256,1,1,0,4,1.000
,6,387752953,10045923

124b9f19%acfl1a780, memcpyHtoDasync,126117.953,129953.000,,,,,,77+,,6,,,4577
9968,1

H oH o HE

www.nvidia.com
Compute Command Line Profiler DU-05982-001_v03 | 14

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, and <add all the other product names listed in this document> are trademarks
and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

Copyright

© 20124 NVIDIA Corporation. All rights reserved.

www.nvidia.com ﬁVI ﬁIAo

