
Introduction to LAPACK
Zhiyu Zhao (sylvia@cs.uno.edu)

The LONI Institute
&

Department of Computer Science
College of Sciences

University of New Orleans
03/16/2009

mailto:sylvia@cs.uno.edu
http://loni.org/
http://institute.loni.org/
http://www.cs.uno.edu/
http://cosc.uno.edu/
http://www.uno.edu/

Outline

What is LAPACK
Linear Algebra PACKage
Problems Solved by LAPACK
Matrices Handled by LAPACK

Structure of LAPACK
Driver Routines
Computational Routines
Auxiliary Routines
LAPACK Naming Scheme

Outline (continued)

Use LAPACK with Your Program
Availability of LAPACK on LONI Clusters
Get Information about a Routine on a Cluster
Use LAPACK Routines in Your Fortran Program
Use LAPACK Routines in Your C Program
Use LAPACK Routines in Your C++ Program

Parallel and Distributed Programming with LAPACK
Multithreaded LAPACK
ScaLAPACK: Scalable LAPACK
Software Hierarchy
Intel MKL

What is LAPACK

Linear Algebra PACKage
A free package of linear algebra subroutines written
in Fortran
Latest version: 3.2 (Nov. 18, 2008)
Website: http://www.netlib.org/lapack/

http://www.netlib.org/lapack/

What is LAPACK

Problems Solved by LAPACK
Systems of linear equations
Linear least squares problems
Eigenvalue problems
Singular value problems
Associated computations

Matrix factorizations (LU, Cholesky, QR, SVD, Schur,
generalized Schur)
Reordering of the Schur factorizations
Estimating condition numbers
…

What is LAPACK

Matrices Handeled by LAPACK
Dense and band matrices (not general sparse
matrices)
Real and complex matrices
Single and double precision matrices

Structure of LAPACK

Driver Routines
Each solves a complete problem and calls a
sequence of computational routines
Problems solved

Linear Equations
Linear Least Squares (LLS) Problems
Generalized Linear Least Squares (LSE and GLM) Problems
Standard Eigenvalue and Singular Value Problems
Generalized Eigenvalue and Singular Value Problems

For a complete list of driver routines, visit
http://www.netlib.org/lapack/lug/node25.html .

http://www.netlib.org/lapack/lug/node25.html

Structure of LAPACK

Computational Routines
Each performs a distinct computational task
Use them when driver routines are not the best
choice
Problems solved

Linear Equations
Orthogonal Factorizations and Linear Least Squares
Problems
Generalized Orthogonal Factorizations and Linear Least
Squares Problems
Symmetric Eigenproblems

Structure of LAPACK

Computational Routines
Problems solved (continued)

Nonsymmetric Eigenproblems
Singular Value Decomposition
Generalized Symmetric Definite Eigenproblems
Generalized Nonsymmetric Eigenproblems
Generalized (or Quotient) Singular Value Decomposition

For a complete list of computational routines, visit
http://www.netlib.org/lapack/lug/node37.html .

http://www.netlib.org/lapack/lug/node37.html

Structure of LAPACK

Auxiliary Routines
Routines that subtasks of block algorithms
Routines that perform some commonly required
low-level computations
A few extensions to the BLAS (Basic Linear Algebra
Subprograms)

For a complete list of auxiliary routines, visit
http://www.netlib.org/lapack/lug/node144.html .

http://www.netlib.org/lapack/lug/node144.html

Structure of LAPACK

LAPACK Naming Scheme
Each routine has a 6-character name

Some driver routines have 5 only (the 6th is blank)

All driver and computational routines have names of
the form XYYZZZ

X: Data type (S – single real, D – double real, C – single
complex, Z – double complex)
YY: Matrix type (e.g. BD – bidiagonal, DI – diagonal)
See http://www.netlib.org/lapack/lug/node24.html for a complete

list of matrix types.

ZZZ: Computation performed (e.g. SVX – an expert driver
which solves AX = B, QRF – QR factorization)

http://www.netlib.org/lapack/lug/node24.html

Use LAPACK with Your Program

Availability of LAPACK on LONI Clusters
Software version: 3.1.1
Installed on: Queen Bee, Louie, Eric, Poseidon,
Oliver, and Painter
To make sure LAPACK is installed on a cluster, logon
that cluster and run the following command:
$ softenv | grep lapack
You should see one or more keys for LAPACK.

Use LAPACK with Your Program

Get Information about a Routine on a Cluster
Logon a LONI cluster
Run the following command
$ man routine_name # routine_name is the name of a

LAPACK routine

e.g.
$ man dgesvd

Use LAPACK with Your Program

Use LAPACK Routines in Your Fortran Program
Call routines as Fortran built-in functions
e.g. CALL DGESV(N, NRHS, A, LDA, IPIV, B, LDB, INFO)

Compile with the library lapack
e.g. $ifort –llapack –o filename filename.f

Use LAPACK with Your Program

Use LAPACK Routines in Your C Program
Routine must be declared with extern
e.g. extern void dgetrf_(int*, int*, double*, int*, int*, int*);

Arguments must be passed by reference
Pointers to variables instead of variable values

Matrices must be transposed
In C matrices are stored in row major order
In Fortran matrices are stored in column major order

Routine name is in lower case and followed by an ‘_’
e.g. dgetrf_(&m, &n, (double*)A, &lda, IPIV, &info);

Compile with the library lapack
e.g. $icc –o filename filename.c –llapack

Use LAPACK with Your Program

Use LAPACK Routines in Your C++ Program
All rules for C apply (see the previous slide) except
that routine must be declared with extern "C“
e.g.
extern "C" dgetrf_(int*, int*, double*, int*, int*, int*);

Compile with the library lapack
e.g. $icpc –o filename filename.c –llapack

Use LAPACK with Your Program

Lab 1: Using LAPACK in Your Code
Write a Fortran/C/C++ program which uses the
LAPACK routine DGESV to solve a system of linear
equations AX = B, where

1 2 3 1 0
A = 4 5 6 and B = 0 1

7 8 10 0 0
Hint: $man dgesv to get more information about this

routine.

Compile your code with –llapack .

Use LAPACK with Your Program

Answer to Lab 1 (Fortran)
PROGRAM LapackLab1

c ifort –o Lab1f Lab1.f -llapack
INTEGER IPIV(3), info
DOUBLE PRECISION A(3,3), B(3,2)
A(1,1)=1
A(1,2)=2
…
A(3,3)=10

c Continued on next slide

Use LAPACK with Your Program

Answer to Lab 1 (Fortran continued)
B(1,1)=1
B(2,1)=0
…
B(3,2)=0
CALL DGESV(3, 2, A, 3, IPIV, B, 3, info)

c If DGESV is called successfully info should be 0.
IF (info .EQ. 0) THEN

DO i=1,3
WRITE(*,'(2F8.3)') (B(i,j), j=1,2)

ENDDO
ENDIF
END

Use LAPACK with Your Program

Answer to Lab 1 (C)
/* icc –o Lab1c Lab1.c –llapack*/
/* Routine must be declared with extern.*/
extern void dgesv_(int*, int*, double*, int*, int*, double*, int*,

int*);
int main () {

int n, nrhs, lda, ldb, IPIV[3], info
double A[3][3], B[2][3]; /* Matrices must be transposed.*/
A[0][0]=1; A[1][0]=2; … A[2][2]=10;
B[0][0]=1; B[0][1]=0; … B[1][2]=0;

Use LAPACK with Your Program

Answer to Lab 1 (C continued)
/* Arguments must be passed by reference.*/
n=3; nrhs=2; lda=3; ldb=3;
/* Routine name is in lower case and followed by an
underscore ‘_’.*/
dgesv_(&n, &nrhs, A, &lda, IPIV, B, &ldb, &info);
/* Print the result. B should be transposed back.*/
/* If DGESV is called successfully info should be 0.*/
if (info==0)

for (i=0; i<3; i++)
printf("%8.3f %8.3f\n", B[0][i], B[1][i]);

}

Use LAPACK with Your Program

Answer to Lab 1 (C++)
// icpc –o Lab1cpp Lab1.cpp –llapack
#include <iostream>
#include <iomanip>
using namespace std;
// Routine must be declared with extern "C".
extern "C" void dgesv_(int*, int*, double*, int*, int*, double*, int*,

int*);
int main () {

int n, nrhs, lda, ldb, IPIV[3], info;
double A[3][3], B[2][3]; // Matrices must be transposed.
A[0][0]=1; A[1][0]=2; … A[2][2]=10;
B[0][0]=1; B[0][1]=0; … B[1][2]=0;

Use LAPACK with Your Program

Answer to Lab 1 (C++ continued)
// Arguments must be passed by reference.
n=3; nrhs=2; lda=3; ldb=3;

// Routine name is in lower case and followed by an underscore
‘_’.
dgesv_(&n, &nrhs, (double*)A, &lda, IPIV, (double*)B, &ldb,
&info);
// Print the result. B should be transposed back.
// If DGESV is called successfully info should be 0.
if (info==0)

for (i=0; i<3; i++)
cout << setprecision(3) << fixed << setw(8) <<

B[0][i] << ' ' << setw(8) << B[1][i] << endl;
}

Use LAPACK with Your Program

Solution to the Linear Equations in Lab 1

-0.667 -1.333
X = -0.667 3.667

1.000 -2.000

Parallel and Distributed Programming
with LAPACK

Multithreaded LAPACK
Reference LAPACK does not support multithreading
Some vendor versions of LAPACK do

Intel Math Kernel Library (Intel MKL)
http://www.intel.com/cd/software/products/asmo-

na/eng/307757.htm
AMD Core Math Library (ACML)
http://developer.amd.com/cpu/Libraries/acml/Pages/defaul

t.aspx
…

http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm
http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm
http://developer.amd.com/cpu/Libraries/acml/Pages/default.aspx
http://developer.amd.com/cpu/Libraries/acml/Pages/default.aspx

Parallel and Distributed Programming
with LAPACK

ScaLAPACK: Scalable LAPACK
A free package of linear algebra subroutines written
in Fortran
Designed for distributed-memory message-passing
MIMD computers and networks of workstations
supporting PVM and/or MPI
Website: http://www.netlib.org/scalapack/
Latest version: 1.8.0 (Apr 5, 2007)
Note: Intel MKL provides ScaLAPACK subroutines.

http://www.netlib.org/scalapack/

Parallel and Distributed Programming
with LAPACK

ScaLAPACK: Scalable LAPACK
Each ScaLAPACK routine has a LAPACK equivalent
Naming scheme: LAPACK name preceded by a ‘P’
4 basic steps required to call a ScaLAPACK routine

Initialize the process grid
Distribute matrices on the process grid
Call the ScaLAPACK routine
Release the process grid

For more information, view ScaLAPACK user’s guide at
http://www.netlib.org/scalapack/slug/index.html .

http://www.netlib.org/scalapack/slug/index.html

Parallel and Distributed Programming
with LAPACK

Software Hierarchy

Cited from http://www.netlib.org/scalapack/slug/node11.html .

http://www.netlib.org/scalapack/slug/node11.html

Parallel and Distributed Programming
with LAPACK

Software Hierarchy
BLAS: Basic Linear Algebra Subprograms

Subroutines that provide standard building blocks for
performing basic vector and matrix operations.
Used by LAPACK and PBLAS
Reference BLAS: a Fortran77 implementation
Website: http://www.netlib.org/blas/
Optimized BLAS libraries
See http://www.netlib.org/blas/faq.html#5

Note: Intel MKL provides optimized BLAS subroutines.

http://www.netlib.org/blas/
http://www.netlib.org/blas/faq.html#5

Parallel and Distributed Programming
with LAPACK

Software Hierarchy
BLACS: Basic Linear Algebra Communication
Subprograms

A linear algebra oriented message passing interface
Uses message passing primitives such as MPI and PVM
Used by PBLAS
Website: http://www.netlib.org/blacs/

PBLAS: Parallel BLAS
Uses BLAS and BLACS
Used by ScaLAPACK
See http://www.netlib.org/scalapack/slug/node14.html

http://www.netlib.org/blacs/
http://www.netlib.org/scalapack/slug/node14.html

Parallel and Distributed Programming
with LAPACK

Intel MKL
Intel ® Math Kernel Library
Contains the complete set of functions from

BLAS / Sparse BLAS / CBLAS
LAPACK
ScaLAPACK
FFT
…

Latest version: 10.1
Website: http://www.intel.com/cd/software/products/asmo-

na/eng/307757.htm

http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm
http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm

Parallel and Distributed Programming
with LAPACK

Intel MKL
Multithreading implemented with OpenMP

Providing multithreaded BLAS and LAPACK routines

Message passing implemented with MPI
Providing MPI based ScaLAPACK routines

Availability on LONI clusters: Queen Bee, Eric, Louie,
Poseidon, Oliver

For more information, view Intel MKL user’s guide at
http://www.intel.com/cd/software/products/asmo-
na/eng/345631.htm .

http://www.intel.com/cd/software/products/asmo-na/eng/345631.htm
http://www.intel.com/cd/software/products/asmo-na/eng/345631.htm

Parallel and Distributed Programming
with LAPACK

Intel MKL
How to compile code with MKL on LONI clusters

Use MKL for multithreaded routines with OpenMP
$ compiler –openmp filename –L path_of_mkl_lib -lmkl
Note: compiler is a Fortran/C/C++ compiler .
e.g. on Queen Bee with Intel MKL 10.0 installed:
$ compiler –openmp filename -L

/usr/local/compilers/Intel/mkl-10.0/lib/em64t -lmkl
Use MKL for ScaLAPACK routines with MPI & OpenMP

$ mpi_compiler –openmp filename –L path_of_mkl_lib -
lmkl_scalapack_lp64 -lmkl_blacs_lp64 -lmkl_lapack –lmkl

Note: mpi_compiler is a MPI Fortran/C/C++ compiler .

Parallel and Distributed Programming
with LAPACK

Lab 2: Using Intel MKL with Multithreaded LAPACK
Write a Fortran/C/C++ program which uses the
LAPACK routine DGETRF to compute the LU
factorization of a matrix of2000*2000 random
entries.
Record the execution time of the DGETRF routine
only (not including the time of generating random
entries), and display that time.
Compile your code on Queen Bee with –llapack and
–openmp –lmkl, respectively, and observe the
difference between the execution times.

Parallel and Distributed Programming
with LAPACK

Answer to Lab 2 (Fortran)
PROGRAM LapackLab2

c ifort -o Lab2f Lab2.f -llapack
c ifort -o Lab2f Lab2.f -L /usr/local/compilers/Intel/mkl-10.0/lib/em64t

-lmkl -openmp
USE IFPORT
INTEGER IPIV(2000), info, i, j, start, end, rate, max, elapsed
DOUBLE PRECISION A(2000,2000)
DO i=1, 2000

DO j=1, 2000
A(i,j)=RAND()

ENDDO
ENDDO

Parallel and Distributed Programming
with LAPACK

Answer to Lab 2 (Fortran continued)
CALL SYSTEM_CLOCK(start, rate, max)
CALL DGETRF(2000, 2000, A, 2000, IPIV, info)
CALL SYSTEM_CLOCK(end, rate, max)
elapsed=(end-start)*1000/rate

c If DGETRF is called successfully info should be 0.
IF (info .EQ. 0) THEN

WRITE (*, '(A, I, A)') 'DGETRF is done. : ', elapsed, ' ms.'
ENDIF
END

Parallel and Distributed Programming
with LAPACK

Answer to Lab 2 (C)
/* icc -o Lab2c Lab2.c –llapack*/
/* icc -o Lab2c Lab2.c -L /usr/local/compilers/Intel/mkl-10.0/lib/em64t -

lmkl -openmp*/
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#define M 2000
#define N 2000
extern void dgetrf_(int*, int*, double*, int*, int*, int*);
int main () {

int m = M, n = N, lda = M, IPIV[N], info, i, j;
double A[N][M];
clock_t start, end;

Parallel and Distributed Programming
with LAPACK

Answer to Lab 2 (C continued)
for (i=0; i<n; i++)

for (j=0; j<m; j++)
A[i][j]=(double)rand();

start=clock();
dgetrf_(&m, &n, (double*)A, &lda, IPIV, &info);
end=clock();

/* If DGETRF is called successfully info should be 0.*/
if (info==0)

printf("dgetrf_ is done: %d ms.\n", (int)((end-
start)*1000/CLOCKS_PER_SEC));

}

Parallel and Distributed Programming
with LAPACK

Answer to Lab 2 (C++)
/* icpc -o Lab2cpp Lab2.cpp –llapack*/
/* icpc -o Lab2cpp Lab2.cpp -L /usr/local/compilers/Intel/mkl-

10.0/lib/em64t -lmkl -openmp*/
#include <iostream>
#include <ctime>
using namespace std;
#define M 2000
#define N 2000
extern "C" void dgetrf_(int*, int*, double*, int*, int*, int*);
int main () {

int m = M, n = N, lda = M, IPIV[N], info, i, j;
double A[N][M];
clock_t start, end;

Parallel and Distributed Programming
with LAPACK

Answer to Lab 2 (C++ continued)
for (i=0; i<n; i++)

for (j=0; j<m; j++)
A[i][j]=(double)rand();

start=clock();
dgetrf_(&m, &n, (double*)A, &lda, IPIV, &info);
end=clock();

/* If DGETRF is called successfully info should be 0.*/
if (info==0)

cout << "dgetrf_ is done: " << ((end-
start)*1000/CLOCKS_PER_SEC) << " ms." << endl;

}

Parallel and Distributed Programming
with LAPACK

Lab 3: Using Intel MKL with ScaLAPACK
On Queen Bee, go to your work directory and
download an example Fortran program from the
official website of ScaLAPACK.
$ wget http://www.netlib.org/scalapack/examples/example1.f

Compile the example program
$ mpif77 -openmp -o example1 example1.f -L
/usr/local/compilers/Intel/mkl-10.0/lib/em64t -
lmkl_scalapack_lp64 -lmkl_blacs_lp64 -lmkl_lapack –lmkl

http://www.netlib.org/scalapack/examples/example1.f

Parallel and Distributed Programming
with LAPACK

Lab 3: Using Intel MKL with ScaLAPACK
Write a job submission script file and save it as
example1.pbs
#!/bin/bash
#PBS -A your_allocation_name
#PBS -q checkpt
#PBS -l nodes=6:ppn=8
#PBS -l walltime=00:10:00
#PBS -o example1_output
#PBS -j oe
#PBS -N example1
mpirun -np 6 example1

Parallel and Distributed Programming
with LAPACK

Lab 3: Using Intel MKL with ScaLAPACK
Submit the job
Wait for the job to be completed and check its
output in the file example1_output
You should see

Thank you!

Questions / Comments?

	Introduction to LAPACK
	Outline
	Outline (continued)
	What is LAPACK
	What is LAPACK
	What is LAPACK
	Structure of LAPACK
	Structure of LAPACK
	Structure of LAPACK
	Structure of LAPACK
	Structure of LAPACK
	Use LAPACK with Your Program
	Use LAPACK with Your Program
	Use LAPACK with Your Program
	Use LAPACK with Your Program
	Use LAPACK with Your Program
	Use LAPACK with Your Program
	Use LAPACK with Your Program
	Use LAPACK with Your Program
	Use LAPACK with Your Program
	Use LAPACK with Your Program
	Use LAPACK with Your Program
	Use LAPACK with Your Program
	Use LAPACK with Your Program
	Parallel and Distributed Programming with LAPACK
	Parallel and Distributed Programming with LAPACK
	Parallel and Distributed Programming with LAPACK
	Parallel and Distributed Programming with LAPACK
	Parallel and Distributed Programming with LAPACK
	Parallel and Distributed Programming with LAPACK
	Parallel and Distributed Programming with LAPACK
	Parallel and Distributed Programming with LAPACK
	Parallel and Distributed Programming with LAPACK
	Parallel and Distributed Programming with LAPACK
	Parallel and Distributed Programming with LAPACK
	Parallel and Distributed Programming with LAPACK
	Parallel and Distributed Programming with LAPACK
	Parallel and Distributed Programming with LAPACK
	Parallel and Distributed Programming with LAPACK
	Parallel and Distributed Programming with LAPACK
	Parallel and Distributed Programming with LAPACK
	Parallel and Distributed Programming with LAPACK
	Parallel and Distributed Programming with LAPACK
	Slide Number 44

