
Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

Hybrid Programming with MPI and OpenMP

B. Estrade
<estrabd@lsu.edu>

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

Objectives

● understand the difference between message passing and shared memory
models;

● learn of basic models for utilizing both message passing and shared
memory approaches to parallel programming;

● learn how to program a basic hybrid program and execute it on local
resources;

● learn of basic issues regarding the hybridization of existing serial, all-MPI,
or all-OpenMP codes;

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

What is Hybridization?

● the use of inherently different models of programming in a complimentary
manner, in order to achieve some benefit not possible otherwise;

● a way to use different models of parallelization in a way that takes
advantage of the good points of each;

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

How Does Hybridization Help?

● introducing MPI into OpenMP applications can help scale across multiple
SMP nodes;

● introducing OpenMP into MPI applications can help make more efficient
use of the shared memory on SMP nodes, thus mitigating the need for
explicit intra-node communication;

● introducing MPI and OpenMP during the design/coding of a new application
can help maximize efficiency, performance, and scaling;

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

When Does Hybridization Make Sense?

● when one wants to scale a shared memory OpenMP application for use on
multiple SMP nodes in a cluster;

● when one wants to reduce an MPI application's sensitivity to becoming
communication bound;

● when one is designing a parallel program from the very beginning;

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

Hybridization Using MPI and OpenMP

● facilitates cooperative shared memory (OpenMP) programming across
clustered SMP nodes;

● MPI facilitates communication among SMP nodes;

● OpenMP manages the workload on each SMP node;

● MPI and OpenMP are used in tandem to manage the overall concurrency of
the application;

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

MPI

● provides a familiar and explicit means to use message passing on
distributed memory clusters;

● has implementations on many architectures and topologies;

● is the defacto standard for distributed memory communications;

● requires that program state synchronization must be handled explicitly
due to the nature of distributed memory;

● data goes to the process;

● program correctness is an issue, but not big compared to those inherent to
OpenMP;

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

OpenMP

● allows for implicit intra-node communication, which is a shared memory
paradigm;

● provides for efficient utilization of shared memory SMP systems;

● facilitates relatively easy threaded programming;

● does not incur the overhead of message passing, since communication
among threads is implicit;

● is the defacto standard, and is supported by most major compilers (Intel,
IBM, gcc, etc);

● the process goes to the data

● program correctness is an issue since all threads can update shared
memory locations;

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

The Best From Both Worlds

● MPI allows for inter-node
communication;

● MPI facilitates efficient inter-node
reductions and sending of
complex data structures;

● Program state synchronization is
explicit;

● OpenMP allows for high
performance intra-node threading;

● OpenMP provides an interface for
the concurrent utilization of each
SMP's shared memory;

● Program state synchronization is
implicit;

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

A Common Execution Scenario

1) a single MPI process is launched on each SMP node in the cluster;

2) each process spawns N threads on each SMP node;

3) at some global sync point, the master thread on each SMP communicate
with one another;

4) the threads belonging to each process continue until another sync point or
completion;

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

What Does This Scenario Look Like?
P

0

0 1 2 3

P
1

0 1 2 3

P
2

0 1 2 3

P
3

0 1 2 3

SMP 0 SMP 1 SMP 2 SMP 3

t
0

t
1

t
2

t
3

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

Basic Hybrid “Stub”
#include <omp.h>
#include "mpi.h"
#include <stdio.h>
#define _NUM_THREADS 4

/* Each MPI process spawns a distinct OpenMP
 * master thread; so limit the number of MPI
 * processes to one per node
 */

int main (int argc, char *argv[]) {
 int p,my_rank,c;

 /* set number of threads to spawn */
 omp_set_num_threads(_NUM_THREADS);

 /* initialize MPI stuff */
 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD,&p);
 MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);

 /* the following is a parallel OpenMP
 * executed by each MPI process
 */

 #pragma omp parallel reduction(+:c)
 {
 c = omp_get_num_threads();
 }

 /* expect a number to get printed for each MPI process */
 printf("%d\n",c);
 /* finalize MPI */
 MPI_Finalize();
 return 0;
}

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

Compiling

● IBM p5 575s:

– mpcc_r, mpCC_r, mpxlf_r, mpxlf90_r, mpxlf95_r

● x86 Clusters:

– mpicc, mpiCC, mpicxx, mpif77, mpif90

%mpcc_r ­qsmp=omp test.c
%OMP_NUM_THREADS=4 poe ./a.out ­rmpool 1 ­nodes 1 ­procs 2

%mpicc ­openmp test.cbash

bash

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

PBS (Linux)
#!/bin/bash
#PBS -q checkpt
#PBS -A your_allocation
#PBS -l nodes=4:ppn=8
#PBS -l cput=2:00:00
#PBS -l walltime=2:00:00
#PBS -o /work/yourdir/myoutput2
#PBS -j oe # merge stdout and stderr
#PBS -N myhybridapp
export WORK_DIR=/work/yourdir
create a new machinefile file which only contains unique nodes
cat $PBS_NODEFILE | uniq > hostfile
get number of MPI processes and create proper machinefile
export NPROCS=`wc -l hostfile | gawk '//{print $1}'`
ulimit -s hard
setting number of OpenMP threads
cd $WORK_DIR
export OMP_NUM_THREADS=8
mpirun -machinefile ./hostfile -np $NPROCS ./hybrid.x

*Shangli Ou, https://docs.loni.org/wiki/Running_a_MPI/OpenMP_hybrid_Job

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

LoadLeveler (AIX)
#!/usr/bin/ksh
@ job_type = parallel
@ input = /dev/null
@ output = /work/default/ou/flower/output/out.std
@ error = /work/default/ou/flower/output/out.err
@ initialdir = /work/default/ou/flower/run
@ notify_user = ou@baton.phys.lsu.edu
@ class = checkpt
@ notification = always
@ checkpoint = no
@ restart = no
@ wall_clock_limit = 10:00:00
@ node = 4,4
@ network.MPI = sn_single,shared,US
@ requirements = (Arch == "Power5")
@ node_usage = not_shared
@ tasks_per_node = 1
@ environment=MP_SHARED_MEMORY=yes; COPY_ALL
@ queue
the following is run as a shell script
export OMP_NUM_THREADS=8
mpirun -NP 4 ./hybrid.x

*Shangli Ou, https://docs.loni.org/wiki/Running_a_MPI/OpenMP_hybrid_Job

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

Retro-fitting MPI Apps With OpenMP

● involves most commonly the work-sharing of simple looks;

● is the easiest of the two “retro-fit” options because the program state
synchronization is already handled in an explicit way; adding OpenMP
directives admits the need for implicit state synchronization, which is
easier;

● benefits depend on how many simple loops may be work-shared;
otherwise, the effects tend towards using fewer MPI processes;

● the number of MPI processes per SMP node will depend on how many
threads one wants to use per process;

● most beneficial for communication bound applications, since it reduces the
number of MPI processes needing to communicate; however, CPU
processor utilization on each node becomes an issue;

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

Retro-fitting OpenMP Apps With MPI

● not as straightforward as retro-fitting an MPI application with OpenMP
because global program state must be explicitly handled with MPI;

● requires careful thought about how each process will communicate
amongst one another;

● may require a complete reformulation of the parallelization, with a need to
possibly redesign it from the ground up;

● successful retro-fitting of OpenMP applications with MPI will usually yield
greater improvement in performance and scaling, presumably because the
original shared memory program takes great advantage of the entire SMP
node;

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

General Retro-fitting Guidelines

● adding OpenMP to MPI applications is fairly straightforward because the
distributed memory of multiple SMP nodes has already been handled;

● MPI applications that are communication bound and have many simple
loops that may be work-shared will benefit greatly due to the reduction in
need for communication among SMP nodes;

● adding MPI to OpenMP applications is not very straightforward, but will
yield better scaling and higher performing application in many cases;

● OpenMP applications handle program state implicitly, thus introducing MPI
requires the explicit handling of program state – which is not easy do “bolt
on” after the fact;

● in general, adding MPI to OpenMP applications should initiate a redesign of
the application from the ground up in order to handle the need for explicit
synchronizations across distribute memory;

● fortunately, much of the old OpenMP application code may be reused;

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

Designing Hybrid Apps From Scratch

● redesigning an application, whether originally using OpenMP or MPI, is the
ideal situation; although, this is not always possible or desired;

● benefits are greatest when considering the introduction of MPI into shared
memory programs;

● great care should be taken to find the right balance of MPI computation
and OpenMP “work”; it is the shared memory parts that do the work; MPI
is used to simply keep everyone on the same page;

● Prioritized list of some considerations

i. the ratio of communication among nodes and time spend keeping the
processors on a single node should be minimized in order to maximize
scaling;

ii. the shared memory computations on each node should utilize as many
threads as possible during the computation parts;

iii.MPI is most efficient at communicating a small number of larger data
structures; therefore, many small messages will introduce a
communication overhead unnecessarily;

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

Example Concept 1
ROOT MPI Process Controls All Communications

● most straightforward paradigm;

● maps one MPI process to one SMP node;

● each MPI process spawns a fixed number of shared memory threads;

● communication among MPI processes is handled by the main MPI process
only, at fixed predetermined intervals;

● allows for tight control of all communications;

// do only if master thread, else wait
#pragma omp master
{ if (0 == my_rank)
 // some MPI_ call as ROOT process
 else
 // some MPI_ call as non-ROOT process
}
// end of omp master

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

What Does Example 1 Look Like?
P

0

0 1 2 3

P
1

0 1 2 3

P
2

0 1 2 3

P
3

0 1 2 3

SMP 0 SMP 1 SMP 2 SMP 3

t
0

t
1

t
2

t
3

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

Example 1 Code Stub
#include <omp.h>
#include "mpi.h"
#include <stdio.h>

#define _NUM_THREADS 4

int main (int argc, char *argv[]) {
 int p,my_rank,c;

 /* set number of threads to spawn */
 omp_set_num_threads(_NUM_THREADS);

 /* initialize MPI stuff */
 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD,&p);
 MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);

 /* the following is a parallel OpenMP
 * executed by each MPI process
 */
 #pragma omp parallel reduction(+:c)
 {
 #pragma omp master
 {
 if (0 == my_rank)
 // some MPI_ call as ROOT process
 c = 1;
 else
 // some MPI_ call as non-ROOT process
 c = 2
 }
 }
 /* expect a number to get printed for each MPI process */
 printf("%d\n",c);
 /* finalize MPI */
 MPI_Finalize();
 return 0;
}

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

Example Concept 2
Master OpenMP Thread Controls All Communications

● each MPI process uses its own OpenMP master thread (1 per SMP node) to
communicate;

● allows for more asynchronous communications;

● not nearly as rigid as example 1;

● more care needs to be taken to ensure efficient communications, but the
flexibility may yield efficiencies elsewhere;

// do only if master thread, else wait
#pragma omp master
{
 // some MPI_ call as an MPI process
}
// end of omp master

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

What Does a Example 2 Look Like?
P

0

0 1 2 3

P
1

0 1 2 3

P
2

0 1 2 3

P
3

0 1 2 3

SMP 0 SMP 1 SMP 2 SMP 3

t
0

t
1

t
2

t
3

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

Example 2 Code Stub
#include <omp.h>
#include "mpi.h"
#include <stdio.h>
#define _NUM_THREADS 4

int main (int argc, char *argv[]) {
 int p,my_rank;
 int c = 0;
 /* set number of threads to spawn */
 omp_set_num_threads(_NUM_THREADS);

 /* initialize MPI stuff */
 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD,&p);
 MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);

 /* the following is a parallel OpenMP
 * executed by each MPI process
 */
 #pragma omp parallel
 {
 #pragma omp master
 {
 // some MPI_ call as an MPI process
 c = 1;
 }
 }

 /* expect a number to get printed for each MPI process */
 printf("%d\n",c);
 /* finalize MPI */
 MPI_Finalize();
 return 0;
}

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

Example Concept 3
All OpenMP Threads May Use MPI Calls

● this is by far the most flexible communication scheme;

● enables true distributed behavior similar to that which is possible using
pure MPI;

● the greatest risk of inefficiencies are contained using this approach;

● great care must be made in explicitly accounting for which thread of which
MPI process is communication;

● requires a addressing scheme that denotes the tuple of which MPI
processes participating in communication and which thread of the MPI
process is involved; e.g., <my_rank,omp_thread_id>;

● neither MPI nor OpenMP have built-in facilities for tracking this;

● critical sections, potentially named, may be utilized for some level of
control and correctness;

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

What Does Example 3 Look Like?
P

0

0 1 2 3

P
1

0 1 2 3

P
2

0 1 2 3

P
3

0 1 2 3

SMP 0 SMP 1 SMP 2 SMP 3

t
0

t
1

t
2

t
3

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

Example 3 Code Stub
#include <omp.h>
#include "mpi.h"
#include <stdio.h>
#define _NUM_THREADS 4

int main (int argc, char *argv[]) {
 int p,my_rank;
 int c = 0;
 /* set number of threads to spawn */
 omp_set_num_threads(_NUM_THREADS);

 /* initialize MPI stuff */
 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD,&p);
 MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);

 /* the following is a parallel OpenMP
 * executed by each MPI process
 */
 #pragma omp parallel
 {
 #pragma omp critical /* not required */
 {
 // some MPI_ call as an MPI process
 c = 1;
 }
 }

 /* expect a number to get printed for each MPI process */
 printf("%d\n",c);
 /* finalize MPI */
 MPI_Finalize();
 return 0;
}

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

Comparison of Examples
// do only if master thread, else wait
#pragma omp master
{ if (0 == my_rank)
 // some MPI_ call as ROOT process
 else
 // some MPI_ call as non-ROOT process
}
// end of omp master

// do only if master thread, else wait
#pragma omp master
{
 // some MPI_ call as an MPI process
}
// end of omp master

// each thread makes a call; can utilize
// critical sections for some control
#pragma omp critical
{
 // some MPI_ call as an MPI process
}

1.

2.

3.

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

General Design Guidelines

● the ratio of communications to time spent computing on each SMP node
should be minimized in order to improve the scaling characteristics of the
hybrid code;

● introducing OpenMP into MPI is much easier, but the benefits are not as
great or likely as vice-versa;

● the greatest benefits are seen when an application is redesigned from
scratch; fortunately, much of the existing code is salvageable;

● there are many, many communication paradigms that may be employed;
we covered just 3; it is prudent to investigate all options;

● great care must be taken to ensure program correctness and efficient
communications;

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

Summary

● simply compiling MPI and OpenMP into the same program is easy;

● adding OpenMP to an MPI app is easy, but the benefits may not be that
great (but give it a shot!);

● adding MPI to an OpenMP app is hard, but usually worth it;

● designing a hybrid application from scratch is ideal, and allows one to best
balance the strengths of both MPI and OpenMP to create an optimal
performing and scaling application;

● there are a lot of schemes that incorporate both shared and distributed
memory, so it is worth the time to investigate them wrt the intended
applications;

Information Technology Services

 B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

Additional Resources

● http://docs.loni.org

– https://docs.loni.org/wiki/Running_a_MPI/OpenMP_hybrid_Job
● sys-help@loni.org

● otrs@loni.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

