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Objectives

● understand the difference between message passing and shared memory 
models;

● learn of basic models for utilizing both message passing and shared 
memory approaches to parallel programming;

● learn how to program a basic hybrid program and execute it on local 
resources;

● learn of basic issues regarding the hybridization of existing serial, all-MPI, 
or all-OpenMP codes;
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What is Hybridization?

● the use of inherently different models of programming in a complimentary 
manner, in order to achieve some benefit not possible otherwise;

● a way to use different models of parallelization in a way that takes 
advantage of the good points of each;
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How Does Hybridization Help?

● introducing MPI into OpenMP applications can help scale across multiple 
SMP nodes;

● introducing OpenMP into MPI applications can help make more efficient 
use of the shared memory on SMP nodes, thus mitigating the need for 
explicit intra-node communication;

● introducing MPI and OpenMP during the design/coding of a new application 
can help maximize efficiency, performance, and scaling;
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When Does Hybridization Make Sense?

● when one wants to scale a shared memory OpenMP application for use on 
multiple SMP nodes in a cluster;

● when one wants to reduce an MPI application's sensitivity to becoming 
communication bound;

● when one is designing a parallel program from the very beginning;
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Hybridization Using MPI and OpenMP

● facilitates cooperative shared memory (OpenMP) programming across 
clustered SMP nodes;

● MPI facilitates communication among SMP nodes;

● OpenMP manages the workload on each SMP node;

● MPI and OpenMP are used in tandem to manage the overall concurrency of 
the application;
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MPI

● provides a familiar and explicit means to use message passing on 
distributed memory clusters;

● has implementations on many architectures and topologies;

● is the defacto standard for distributed memory communications;

● requires that program state synchronization must be handled explicitly 
due to the nature of distributed memory;

● data goes to the process;

● program correctness is an issue, but not big compared to those inherent to 
OpenMP;
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OpenMP

● allows for implicit intra-node communication, which is a shared memory 
paradigm; 

● provides for efficient utilization of shared memory SMP systems;

● facilitates relatively easy threaded programming;

● does not incur the overhead of message passing, since communication 
among threads is implicit;

● is the defacto standard, and is supported by most major compilers (Intel, 
IBM, gcc, etc);

● the process goes to the data

● program correctness is an issue since all threads can update shared 
memory locations;
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The Best From Both Worlds

● MPI allows for inter-node 
communication;

● MPI facilitates efficient inter-node 
reductions and sending of 
complex data structures;

● Program state synchronization is 
explicit;

● OpenMP allows for high 
performance intra-node threading;

● OpenMP provides an interface for 
the concurrent utilization of each 
SMP's shared memory;

● Program state synchronization is 
implicit;
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A Common Execution Scenario

1) a single MPI process is launched on each SMP node in the cluster;

2) each process spawns N threads on each SMP node;

3) at some global sync point, the master thread on each SMP communicate 
with one another;

4) the threads belonging to each process continue until another sync point or 
completion;
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What Does This Scenario Look Like?
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Basic Hybrid “Stub”
#include <omp.h>
#include "mpi.h"
#include <stdio.h>
#define _NUM_THREADS 4 

/*  Each MPI process spawns a distinct OpenMP
 *  master thread; so limit the number of MPI 
 *  processes to one per node
 */

int main (int argc, char *argv[]) {
  int p,my_rank,c;

  /* set number of threads to spawn */
  omp_set_num_threads(_NUM_THREADS);

  /* initialize MPI stuff */
  MPI_Init(&argc, &argv);
  MPI_Comm_size(MPI_COMM_WORLD,&p);
  MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);

  /* the following is a parallel OpenMP
   * executed by each MPI process
   */

  #pragma omp parallel reduction(+:c)
  {
    c = omp_get_num_threads();
  }

  /* expect a number to get printed for each MPI process */
  printf("%d\n",c);
  /* finalize MPI */
  MPI_Finalize();
  return 0;
}
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Compiling

● IBM p5 575s:  

– mpcc_r, mpCC_r, mpxlf_r, mpxlf90_r, mpxlf95_r

● x86 Clusters:

– mpicc, mpiCC, mpicxx, mpif77, mpif90

%mpcc_r ­qsmp=omp test.c
%OMP_NUM_THREADS=4 poe ./a.out ­rmpool 1 ­nodes 1 ­procs 2

%mpicc ­openmp test.cbash

bash
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PBS (Linux)
#!/bin/bash
#PBS -q checkpt
#PBS -A your_allocation
#PBS -l nodes=4:ppn=8
#PBS -l cput=2:00:00
#PBS -l walltime=2:00:00
#PBS -o /work/yourdir/myoutput2
#PBS -j oe # merge stdout and stderr
#PBS -N myhybridapp
export WORK_DIR=/work/yourdir
# create a new machinefile file which only contains unique nodes
cat $PBS_NODEFILE | uniq > hostfile
# get number of MPI processes and create proper machinefile
export NPROCS=`wc -l hostfile | gawk '//{print $1}'`
ulimit -s hard
# setting number of OpenMP threads
cd $WORK_DIR
export OMP_NUM_THREADS=8
mpirun -machinefile ./hostfile -np $NPROCS ./hybrid.x

*Shangli Ou, https://docs.loni.org/wiki/Running_a_MPI/OpenMP_hybrid_Job
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LoadLeveler (AIX)
#!/usr/bin/ksh
# @ job_type = parallel
# @ input = /dev/null
# @ output = /work/default/ou/flower/output/out.std
# @ error = /work/default/ou/flower/output/out.err
# @ initialdir = /work/default/ou/flower/run
# @ notify_user = ou@baton.phys.lsu.edu
# @ class = checkpt
# @ notification = always
# @ checkpoint = no
# @ restart = no
# @ wall_clock_limit = 10:00:00
# @ node = 4,4
# @ network.MPI = sn_single,shared,US
# @ requirements = ( Arch == "Power5" )
# @ node_usage = not_shared
# @ tasks_per_node = 1
# @ environment=MP_SHARED_MEMORY=yes; COPY_ALL          
# @ queue
# the following is run as a shell script
export OMP_NUM_THREADS=8
mpirun -NP 4 ./hybrid.x

*Shangli Ou, https://docs.loni.org/wiki/Running_a_MPI/OpenMP_hybrid_Job
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Retro-fitting MPI Apps With OpenMP

● involves most commonly the work-sharing of simple looks;

● is the easiest of the two “retro-fit” options because the program state 
synchronization is already handled in an explicit way; adding OpenMP 
directives admits the need for implicit state synchronization, which is 
easier;

● benefits depend on how many simple loops may be work-shared; 
otherwise, the effects tend towards using fewer MPI processes;

● the number of MPI processes per SMP node will depend on how many 
threads one wants to use per process;

● most beneficial for communication bound applications, since it reduces the 
number of MPI processes needing to communicate; however, CPU 
processor utilization on each node becomes an issue;
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Retro-fitting OpenMP Apps With MPI

● not as straightforward as retro-fitting an MPI application with OpenMP 
because global program state must be explicitly handled with MPI;

● requires careful thought about how each process will communicate 
amongst one another;

● may require a complete reformulation of the parallelization, with a need to 
possibly redesign it from the ground up;

● successful retro-fitting of OpenMP applications with MPI will usually yield 
greater improvement in performance and scaling, presumably because the 
original shared memory program takes great advantage of the entire SMP 
node;
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General Retro-fitting Guidelines

● adding OpenMP to MPI applications is fairly straightforward because the 
distributed memory of multiple SMP nodes has already been handled;

● MPI applications that are communication bound and have many simple 
loops that may be work-shared will benefit greatly due to the reduction in 
need for communication among SMP nodes;

● adding MPI to OpenMP applications is not very straightforward, but will 
yield better scaling and higher performing application in many cases;

● OpenMP applications handle program state implicitly, thus introducing MPI 
requires the explicit handling of program state – which is not easy do “bolt 
on” after the fact;

● in general, adding MPI to OpenMP applications should initiate a redesign of 
the application from the ground up in order to handle the need for explicit 
synchronizations across distribute memory;

● fortunately, much of the old OpenMP application code may be reused;
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Designing Hybrid Apps From Scratch

● redesigning an application, whether originally using OpenMP or MPI, is the 
ideal situation; although, this is not always possible or desired;

● benefits are greatest when considering the introduction of MPI into shared 
memory programs;

● great care should be taken to find the right balance of MPI computation 
and OpenMP “work”;  it is the shared memory parts that do the work; MPI 
is used to simply keep everyone on the same page;

● Prioritized list of some considerations

i. the ratio of communication among nodes and time spend keeping the 
processors on a single node should be minimized in order to maximize 
scaling;

ii. the shared memory computations on each node should utilize as many 
threads as possible during the computation parts; 

iii.MPI is most efficient at communicating a small number of larger data 
structures; therefore, many small messages will introduce a 
communication overhead unnecessarily;
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Example Concept 1
ROOT MPI Process Controls All Communications

● most straightforward paradigm;

● maps one MPI process to one SMP node;

● each MPI process spawns a fixed number of shared memory threads;

● communication among MPI processes is handled by the main MPI process 
only, at fixed predetermined intervals;

● allows for tight control of all communications;

// do only if master thread, else wait
#pragma omp master 
{ if (0 == my_rank)
    // some MPI_ call as ROOT process
  else
    // some MPI_ call as non-ROOT process
}
// end of omp master
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What Does Example 1 Look Like?
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Example 1 Code Stub
#include <omp.h>
#include "mpi.h"
#include <stdio.h>

#define _NUM_THREADS 4 

int main (int argc, char *argv[]) {
  int p,my_rank,c;

  /* set number of threads to spawn */
  omp_set_num_threads(_NUM_THREADS);

  /* initialize MPI stuff */
  MPI_Init(&argc, &argv);
  MPI_Comm_size(MPI_COMM_WORLD,&p);
  MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);

  /* the following is a parallel OpenMP
   * executed by each MPI process
   */
  #pragma omp parallel reduction(+:c)
  {
    #pragma omp master
    {
      if ( 0 == my_rank) 
        // some MPI_ call as ROOT process
        c = 1;
      else
        // some MPI_ call as non-ROOT process
        c = 2
    }
  }
  /* expect a number to get printed for each MPI process */
  printf("%d\n",c);
  /* finalize MPI */
  MPI_Finalize();
  return 0;
}
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Example Concept 2
Master OpenMP Thread Controls All Communications

● each MPI process uses its own OpenMP master thread ( 1 per SMP node) to 
communicate;

● allows for more asynchronous communications;

● not nearly as rigid as example 1;

● more care needs to be taken to ensure efficient communications, but the 
flexibility may yield efficiencies elsewhere;

// do only if master thread, else wait
#pragma omp master 
{
 // some MPI_ call as an MPI process     
}
// end of omp master
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What Does a Example 2 Look Like?
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Example 2 Code Stub
#include <omp.h>
#include "mpi.h"
#include <stdio.h>
#define _NUM_THREADS 4 

int main (int argc, char *argv[]) {
  int p,my_rank;
  int c = 0;
  /* set number of threads to spawn */
  omp_set_num_threads(_NUM_THREADS);

  /* initialize MPI stuff */
  MPI_Init(&argc, &argv);
  MPI_Comm_size(MPI_COMM_WORLD,&p);
  MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);

  /* the following is a parallel OpenMP
   * executed by each MPI process
   */
  #pragma omp parallel
  {
    #pragma omp master
    {
      // some MPI_ call as an MPI process
      c = 1;
    }
  }

  /* expect a number to get printed for each MPI process */
  printf("%d\n",c);
  /* finalize MPI */
  MPI_Finalize();
  return 0;
}
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Example Concept 3
All OpenMP Threads May Use MPI Calls

● this is by far the most flexible communication scheme;

● enables true distributed behavior similar to that which is possible using 
pure MPI;

● the greatest risk of inefficiencies are contained using this approach;

● great care must be made in explicitly accounting for which thread of which 
MPI process is communication;

● requires a addressing scheme that denotes the tuple of which  MPI 
processes participating in communication and which thread of the MPI 
process is involved; e.g., <my_rank,omp_thread_id>;

● neither MPI nor OpenMP have built-in facilities for tracking this;

● critical sections, potentially named, may be utilized for some level of 
control and correctness; 
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What Does Example 3 Look Like?
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Example 3 Code Stub
#include <omp.h>
#include "mpi.h"
#include <stdio.h>
#define _NUM_THREADS 4 

int main (int argc, char *argv[]) {
  int p,my_rank;
  int c = 0;
  /* set number of threads to spawn */
  omp_set_num_threads(_NUM_THREADS);

  /* initialize MPI stuff */
  MPI_Init(&argc, &argv);
  MPI_Comm_size(MPI_COMM_WORLD,&p);
  MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);

  /* the following is a parallel OpenMP
   * executed by each MPI process
   */
  #pragma omp parallel
  {
    #pragma omp critical /* not required */
    {
      // some MPI_ call as an MPI process
      c = 1;
    }
  }

  /* expect a number to get printed for each MPI process */
  printf("%d\n",c);
  /* finalize MPI */
  MPI_Finalize();
  return 0;
}
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Comparison of Examples
// do only if master thread, else wait
#pragma omp master 
{ if (0 == my_rank)
    // some MPI_ call as ROOT process
  else
    // some MPI_ call as non-ROOT process
}
// end of omp master
   
// do only if master thread, else wait
#pragma omp master 
{
 // some MPI_ call as an MPI process     
}
// end of omp master
   
// each thread makes a call; can utilize
// critical sections for some control
#pragma omp critical 
{
 // some MPI_ call as an MPI process     
}

1.

2.

3.
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General Design Guidelines

● the ratio of communications to time spent computing on each SMP node 
should be minimized in order to improve the scaling characteristics of the 
hybrid code;

● introducing OpenMP into MPI is much easier, but the benefits are not as 
great or likely as vice-versa;

● the greatest benefits are seen when an application is redesigned from 
scratch; fortunately, much of the existing code is salvageable;

● there are many, many communication paradigms that may be employed; 
we covered just 3; it is prudent to investigate all options;

● great care must be taken to ensure program correctness and efficient 
communications;
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Summary

● simply compiling MPI and OpenMP into the same program is easy;

● adding OpenMP to an MPI app is easy, but the benefits may not be that 
great (but give it a shot!);

● adding MPI to an OpenMP app is hard, but usually worth it;

● designing a hybrid application from scratch is ideal, and allows one to best 
balance the strengths of both MPI and OpenMP to create an optimal 
performing and scaling application;

● there are a lot of schemes that incorporate both shared and distributed 
memory, so it is worth the time to investigate them wrt the intended 
applications;
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Additional Resources

● http://docs.loni.org 

– https://docs.loni.org/wiki/Running_a_MPI/OpenMP_hybrid_Job   
● sys-help@loni.org 

● otrs@loni.org 
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