
Advanced Concepts in Fortran 90

Alexander B. Pacheco

User Services Consultant
LSU HPC & LONI
sys-help@loni.org

LONI Workshop: Fortran Programming
Louisiana State University

Baton Rouge
Feb 13-16, 2012

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 1 / 107

Outline

1 Review

2 Intrinsic Functions

3 Control Constructs
Conditionals
Switches
Loops

4 Arrays

5 Procedures

6 Derived Types and Pointers

7 Object Based Programming

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 2 / 107

Outline

1 Review

2 Intrinsic Functions

3 Control Constructs
Conditionals
Switches
Loops

4 Arrays

5 Procedures

6 Derived Types and Pointers

7 Object Based Programming

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 3 / 107

Review I

Logical Structure

1 program name
2 declaration of variable types
3 read input
4 do calculations
5 write output
6 end program

Example Code

program hello
implicit none
character(len=100) :: your_name

print *, ’Your name please’
read *, your_name
print *, ’Hello ’, your_name

end program hello

Output

%>ifort -o hello hello.f90
%>./hello

Your Name Please
“Alex Pacheco”
Hello Alex Pacheco

%>

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 4 / 107

Review II

Fortran Free Source Form

Fortran 90/95/2003: free form source, a line can contain up to 132 characters

Inline comments initiated by !

Statements are continued by appending &

program name and variables: up to 31 letters, digits and underscores (_)

names must begin with a letter; digits and underscores are not allowed

multiple commands on single line separated by semi-colon (;)

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 5 / 107

Review III

Coding Style

always use implicit none

avoid using mixed cases i.e. upper and lower case

Some coders prefer fortran keywords, intrinsic functions and user defined entities as
upper case while rest of the code in lower case. I prefer everything in lower case!

For visibility, all intrinsic functions and user defined entities are in bold except when
displaying a code available from the exercise directories

Remember someone else will continue the development of your code, so

INDENT your code, it makes it easier to read

Add meaningfull comments where ever possible

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 6 / 107

Review IV

Declarations and Attributes

Can state implicit none: all variables must be declared

♦ Syntax:

<type> [,<attribute-list>] [::] <variable-list> [=<value>]

<type> : data types i.e. integer, real, complex, character or logical

attributes : dimension, parameter, pointer, target, allocatable, optional, intent

Examples of valid declarations

subroutine aroutine(x,i,j)
implicit none
real, intent(in) :: x
logical :: what
real,dimension(10,10) :: y, z(10)
character(len=*),parameter :: somename
integer, intent(out) :: i,j
· · ·

end subroutine aroutine

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 7 / 107

Review V

Data Types

INTEGER: exact whole numbers

REAL: real, fractional numbers

COMPLEX: complex, fractional numbers

LOGICAL: boolean values

CHARACTER: strings

Arithmetic Operators

+ : addition

- : subtraction

* : multiplication

/ : division

** : exponentiation

Relational Operators

== : equal to

/= : not equal to

< : less than

<= : less than or equal to

> : greater than

>= : greater than or equal to

Logical Expressions

.TRUE.

.FALSE.

.AND.

.OR.

.NOT.

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 8 / 107

Review VI

Operator Precedence

Operator Precedence Example
expression in () Highest (a+b)

user-defined monadic - .inverse.a
** - 10**4

* or / - 10*20
monadic + or - - -5
dyadic + or - - 1+5

// - str1//str2
relational operators - a > b

.not. - .not.allocated(a)
.and. - a.and.b
.or. - a.or.b

.eqv. or .neqv. - a.eqv.b
user defined dyadic Lowest x.dot.y

x = a + b/5.0 - c**2 + 2.0*e

exponentiation (**) has highest precedence followed by / and *

The above expression is equivalent to

x = a + b/5.0 - c’ + 2.0*e = a + b’ - c’ + 2.0*e = a + b’ - c’ + e’

where b’ = b/5.0 , c’ = c**2 and e’ = 2.0*e

x = a + b/5.0 - c**2 + (2.0*e)

equivalent to x = a + b/5.0 - c**2 + e’ = a + b/5.0 - c’ + e’ = a + b’ - c’ + e’

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 9 / 107

Guidelines for Slides

Code in this block

Generic Code explaining Fortran
Programming Structure or Style

Code in this block

Code in Exercises directory
/work/apacheco/F90-workshop/Exercises

Code in this block

Code written only to explain content on cur-
rent or previous slide

Code in this block

Code from Exercises directory but modified
to describe content on current or previous
slide

Output from code

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 10 / 107

Outline

1 Review

2 Intrinsic Functions

3 Control Constructs
Conditionals
Switches
Loops

4 Arrays

5 Procedures

6 Derived Types and Pointers

7 Object Based Programming

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 11 / 107

Intrinsic Functions

Fortran provides a set of intrinsic functions

Arithmetic Functions

Function Action Example
INT conversion to integer J=INT(X)

REAL conversion to real X=REAL(J)
CMPLX conversion to complex A=CMPLX(X,Y)

ABS absolute value Y=ABS(X)
MOD remainder when I divided by J K=MOD(I,J)
SQRT square root Y=SQRT(X)
EXP exponentiation Y=EXP(X)
LOG natural logarithm Y=LOG(X)

LOG10 logarithm to base 10 Y=LOG10(X)

Trignometric Functions

Function Action Example
SIN sine X=SIN(Y)
COS cosine X=COS(Y)
TAN tangent X=TAN(Y)
ASIN arcsine X=ASIN(Y)
ACOS arccosine X=ACOS(Y)
ATAN arctangent X=ATAN(Y)
ATAN2 arctangent(a/b) X=ATAN2(A,B)

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 12 / 107

KIND Parameter I

kind parameters provide a way to parameterize the selection of different possible
machine representations for each intrinsic data types.

The kind parameter is an integer which is processor dependent.

There are only 2(3) kinds of reals: 4-byte, 8-byte (and 16-byte), respectively known as
single, double (and quadruple) precision.

The corresponding kind numbers are 4, 8 and 16 (most compilers)

The value of the kind parameter is usually not the number of decimal digits of precision
or range; on many systems, it is the number of bytes used to represent the value.

The intrinsic functions selected_int_kind and selected_real_kind may be used to select
an appropriate kind for a variable or named constant.

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 13 / 107

KIND Parameter II

program kind_function

implicit none
integer,parameter :: dp = selected_real_kind(15)
integer,parameter :: ip = selected_int_kind(15)
integer(kind=4) :: i
integer(kind=8) :: j
integer(ip) :: k
real(kind=4) :: a
real(kind=8) :: b
real(dp) :: c

print ’(a,i2,a,i4)’, ’Kind of i = ’,kind(i), ’ with range =’, range(i)
print ’(a,i2,a,i4)’, ’Kind of j = ’,kind(j), ’ with range =’, range(j)
print ’(a,i2,a,i4)’, ’Kind of k = ’,kind(k), ’ with range =’, range(k)
print ’(a,i2,a,i2,a,i4)’, ’Kind of real a = ’,kind(a),&

’ with precision = ’, precision(a),&
’ and range =’, range(a)

print ’(a,i2,a,i2,a,i4)’, ’Kind of real b = ’,kind(b),&
’ with precision = ’, precision(b),&
’ and range =’, range(b)

print ’(a,i2,a,i2,a,i4)’, ’Kind of real c = ’,kind(c),&
’ with precision = ’, precision(c),&
’ and range =’, range(c)

end program kind_function

[apacheco@qb4 examples] ./kindfns
Kind of i = 4 with range = 9
Kind of j = 8 with range = 18
Kind of k = 8 with range = 18
Kind of real a = 4 with precision = 6 and range = 37
Kind of real b = 8 with precision = 15 and range = 307
Kind of real c = 8 with precision = 15 and range = 307

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 14 / 107

Outline

1 Review

2 Intrinsic Functions

3 Control Constructs
Conditionals
Switches
Loops

4 Arrays

5 Procedures

6 Derived Types and Pointers

7 Object Based Programming

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 15 / 107

Control Constructs

A Fortran program is executed sequentially

program somename
variable declarations
statement 1
statement 2
· · ·

end program somename

Control Constructs change the sequential execution order of the program
1 Conditionals: IF
2 Loops: DO
3 Switches: SELECT/CASE
4 Branches: GOTO (obsolete in Fortran 95/2003, use CASE instead)

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 16 / 107

If Statement

The general form of the if statement

if (logical expression) statement

When the if statement is executed, the logical expression is evaluated.

If the result is true, the statement following the logical expression is executed; otherwise,
it is not executed.

The statement following the logical expression cannot be another if statement. Use the
if-then-else construct instead.

if (value < 0) value = 0

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 17 / 107

If-then-else Construct I

The if-then-else construct permits the selection of one of a number of blocks
during execution of a program

The if-then statement is executed by evaluating the logical expression.

If it is true, the block of statements following it are executed. Execution of this block
completes the execution of the entire if construct.

If the logical expression is false, the next matching else if, else or end if statement
following the block is executed.

if (logical expression) then
block of statements

else if (logical expression) then
block of statements

else if · · ·
...

else
block of statements

end if

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 18 / 107

If-then-else Construct II

Examples:

Letter Grade

if (x < 50) then
GRADE = ’F’

else if (x < 60) then
GRADE = ’D’

else if (x < 70) then
GRADE = ’C’

else if (x < 80) then
GRADE = ’B’

else
GRADE = ’A’

end if

Find minimum of a,b and c

if (a < b .and. a < c) then
result = a

else if (b < a .and. b < c) then
result = b

else
result = c

end if

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 19 / 107

If-then-else Construct III

The else if and else statements and blocks may be omitted.

If else is missing and none of the logical expressions are true, the if-then-else construct
has no effect.

The end if statement must not be omitted.

The if-then-else construct can be nested and named.

no else if

[construct name:] if (logical expression) then
block of statements

else
block of statements
[name:] if (logical expression) then

block of statements
end if [name]

end if [construct name]

no else

if (logical expression) then
block of statements

else if (logical expression) then
block of statements

else if (logical expression) then
block of statements

end if

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 20 / 107

Finding roots of quadratic equation I

program roots_of_quad_eqn

implicit none

real(kind=8) :: a,b,c
real(kind=8) :: roots(2),d

print *, ’==’
print *, ’ Program to solve a quadratic equation’
print *, ’ ax^2 + bx + c = 0 ’
print *, ’ If d = b^2 - 4ac >= 0 ’
print *, ’ then solutions are: ’
print *, ’ (-b +/- sqrt(d))/2a ’
print *, ’==’

! read in coefficients a, b, and c
write(*,*) ’Enter coefficients a,b and c’
read(*,*) a,b,c
write(*,*)
write(*,*) ’ Quadratic equation to solve is: ’
write(*,fmt=’(a,f5.3,a,f5.3,a,f5.3,a)’) ’ ’,a,’x^2 + ’,b,’x + ’,c,’ = 0’
write(*,*)

outer: if (a == 0d0) then
middle: if (b == 0.d0) then

inner: if (c == 0.d0) then
write(*,*) ’Input equation is 0 = 0’

else
write(*,*) ’Equation is unsolvable’
write(*,fmt=’(a,f5.3,a)’) ’ ’,c,’ = 0’

end if inner
else

write(*,*) ’Input equation is a Linear equation with ’
write(*,fmt=’(a,f6.3)’) ’ Solution: ’, -c/b

end if middle
else

d = b*b - 4d0*a*c
dis0: if (d > 0d0) then

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 21 / 107

Finding roots of quadratic equation II

d = sqrt(d)
roots(1) = -(b + d)/(2d0*a) ; roots(2) = -(b - d)/(2d0*a)
write(*,fmt=’(a,2f12.6)’) ’Solution: ’, roots(1),roots(2)

else if (d == 0.d0) then
write(*,fmt=’(a,f12.6)’) ’Both solutions are equal: ’, -b/(2d0*a)

else
write(*,*) ’Solution is not real’
d = sqrt(abs(d))
roots(1) = d/(2d0*a)
roots(2) = -d/(2d0*a)
write(*,fmt=’(a,ss,f6.3,sp,f6.3,a2,a,ss,f6.3,sp,f6.3,a2)’) &

’ (’,-b/(2d0*a),sign(roots(1),roots(1)),’i)’,’ and (’,-b/(2d0*a),sign(roots(2),roots(2)),’i)’
end if dis0

end if outer
end program roots_of_quad_eqn

[apacheco@qb4 examples] ./root.x
==
Program to solve a quadratic equation

ax^2 + bx + c = 0
If d = b^2 - 4ac >= 0
then solutions are:
(-b +/- sqrt(d))/2a

==
Enter coefficients a,b and c
1 2 1

Quadratic equation to solve is:
1.000x^2 + 2.000x + 1.000 = 0

Both solutions are equal: -1.000000

[apacheco@qb4 examples] ./root.x
==
Program to solve a quadratic equation

ax^2 + bx + c = 0
If d = b^2 - 4ac >= 0
then solutions are:
(-b +/- sqrt(d))/2a

==
Enter coefficients a,b and c
0 1 2

Quadratic equation to solve is:
0.000x^2 + 1.000x + 2.000 = 0

Input equation is a Linear equation with
Solution: -2.000

[apacheco@qb4 examples] ./root.x
==
Program to solve a quadratic equation

ax^2 + bx + c = 0
If d = b^2 - 4ac >= 0
then solutions are:
(-b +/- sqrt(d))/2a

==
Enter coefficients a,b and c
2 1 1

Quadratic equation to solve is:
2.000x^2 + 1.000x + 1.000 = 0

Solution is not real
(-0.250+0.661i) and (-0.250-0.661i)

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 22 / 107

Case Construct I

The case construct permits selection of one of a number of different block of instructions.

The value of the expression in the select case should be an integer or a character string.

[construct name:] select case (expression)
case (case selector)
block of statements

case (case selector)
block of statements
...

[case default
block of statements]

end select [construct name]

The case selector in each case statement is a list of items, where each item is either a
single constant or a range of the same type as the expression in the select case statement.

A range is two constants separated by a colon and stands for all the values between and
including the two values.

The case default statement and its block are optional.

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 23 / 107

Case Construct II

The select case statement is executed as follows:
1 Compare the value of expression with the case selector in each case. If a match is

found, execute the following block of statements.
2 If no match is found and a case default exists, then execute those block of

statements.

Notes

The values in case selector must be unique.

Use case default when possible, since it ensures that there is something to do in case of
error or if no match is found.

case default can be anywhere in the select case construct. The preferred location is the
last location in the case list.

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 24 / 107

Case Construct III

case selector: character

select case (traffic_light)
case ("red")
print *, "Stop"

case ("yellow")
print *, "Caution"

case ("green")
print *, "Go"

case default
print *, "Illegal value:",&

traffic_light
end select

case selector: integer

select case (month)
case (1,3,5,7:8,10,12)
number_of_days = 31

case (4,6,9,11)
number_of_days = 30

case (2)
if (leap_year) then
number_of_days = 29

else
number_of_days = 28

end if
end select

MD Code: Choose between Lennard-Jones or Morse Potential
select case(pot)
case("lj", "LJ")

call ljpot(r,f,V)
case("mp", "MP")

call morse(r,f,V)
case default

call ljpot(r,f,V)
end select

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 25 / 107

Do Construct

The looping construct in fortran is the do construct.
The block of statements called the loop body or do construct body is executed
repeatedly as indicated by loop control.

A do construct may have a construct name on its first statement

Do Loop

[construct name:] do [loop control]
block of statements

end do [construct name]

There are two types of loop control:
1 Counting: a variable takes on a progression of integer values until some limit is

reached.
♦ variable = start, end[, stride]
♦ stride may be positive or negative integer, default is 1 which can be omitted.

2 General: a loop control is missing

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 26 / 107

Do Construct: Counting I

Before a do loop starts, the expression start, end and stride are evaluated. These values
are not re-evaluated during the execution of the do loop.

stride cannot be zero.

If stride is positive, this do counts up.
1 The variable is set to start
2 If variable is less than or equal to end, the block of statements is executed.
3 Then, stride is added to variable and the new variable is compared to end
4 If the value of variable is greater than end, the do loop completes, else repeat

steps 2 and 3

If stride is negative, this do counts down.
1 The variable is set to start
2 If variable is greater than or equal to end, the block of statements is executed.
3 Then, stride is added to variable and the new variable is compared to end
4 If the value of variable is less than end, the do loop completes, else repeat steps 2

and 3

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 27 / 107

Do Construct: Counting II

program factorial2

implicit none
integer, parameter :: &

dp = selected_int_kind(15)
integer(dp) :: i,n,start,factorial

print *, ’Enter an integer < 15 ’
read *, n

if ((n/2)*2 == n) then
start = 2 ! n is even

else
start = 1 ! n is odd

endif
factorial = 1_dp
do i = start,n,2

factorial = factorial * i
end do
write(*,’(i4,a,i15)’) n,’!!=’,factorial

end program factorial2

[apacheco@qb4 examples] ./fact2
Enter an integer < 15

10
10!!= 3840

program factorial1

implicit none
integer, parameter :: dp = selected_int_kind(15)
integer(dp) :: i,n,factorial

print *, ’Enter an integer < 15 ’
read *, n

factorial = n
do i = n-1,1,-1

factorial = factorial * i
end do
write(*,’(i4,a,i15)’) n,’!=’,factorial

end program factorial1

[apacheco@qb4 examples] ./fact1
Enter an integer < 15

10
10!= 3628800

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 28 / 107

Do Construct: Nested

The exit statement causes termination of execution of a loop.
If the keyword exit is followed by the name of a do construct, that named loop (and all
active loops nested within it) is exited.
The cycle statement causes termination of the execution of one iteration of a loop.
The do body is terminated, the do variable (if present) is updated, and control is
transferred back to the beginning of the block of statements that comprise the do body.
If the keyword cycle is followed by the name of a construct, all active loops nested
within that named loop are exited and control is transferred back to the beginning of the
block of statements that comprise the named do construct.

program nested_doloop

implicit none
integer,parameter :: dp = selected_real_kind(15)
integer :: i,j
real(dp) :: x,y,z,pi

pi = 4d0*atan(1.d0)

outer: do i =1,180
inner: do j = 1,180
x = real(i)*pi/180d0
y = real(j)*pi/180d0
if (j == 90) cycle inner
z = sin(x) / cos(y)
print ’(2i6,3f12.6)’, i,j,x,y,z
end do inner

end do outer

end program nested_doloop

[apacheco@qb4 examples] ./nested
0 0 0.000000 0.000000 0.000000
0 45 0.000000 0.785398 0.000000
0 135 0.000000 2.356194 -0.000000
0 180 0.000000 3.141593 -0.000000
45 0 0.785398 0.000000 0.707107
45 45 0.785398 0.785398 1.000000
45 135 0.785398 2.356194 -1.000000
45 180 0.785398 3.141593 -0.707107
90 0 1.570796 0.000000 1.000000
90 45 1.570796 0.785398 1.414214
90 135 1.570796 2.356194 -1.414214
90 180 1.570796 3.141593 -1.000000
135 0 2.356194 0.000000 0.707107
135 45 2.356194 0.785398 1.000000
135 135 2.356194 2.356194 -1.000000
135 180 2.356194 3.141593 -0.707107
180 0 3.141593 0.000000 0.000000
180 45 3.141593 0.785398 0.000000
180 135 3.141593 2.356194 -0.000000
180 180 3.141593 3.141593 -0.000000

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 29 / 107

Do Construct: General

The General form of a do construct is

[construct name:] do
block of statements

end do [construct name]

The block of statements will be executed repeatedly.

To exit the do loop, use the exit or cycle statement.

The exit statement causes termination of execution of a loop.

The cycle statement causes termination of the execution of one iteration of a loop.

finite: do
i = i + 1
inner: if (i < 10) then

print *, i
cycle finite

end if inner
if (i > 100) exit finite

end do finite

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 30 / 107

Do While Construct

If a condition is to be tested at the top of a loop, a do ... while loop can be used

do while (logical expression)
block of statements

end do

The loop only executes if the logical expression evaluates to .true.

finite: do while (i <= 100)
i = i + 1
inner: if (i < 10) then

print *, i
end if inner

end do finite

finite: do
i = i + 1
inner: if (i < 10) then

print *, i
cycle finite

end if inner
if (i > 100) exit finite

end do finite

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 31 / 107

Outline

1 Review

2 Intrinsic Functions

3 Control Constructs
Conditionals
Switches
Loops

4 Arrays

5 Procedures

6 Derived Types and Pointers

7 Object Based Programming

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 32 / 107

Arrays I

Arrays (or matrices) hold a collection of different values at the same time.

Individual elements are accessed by subscripting the array.

A 10 element array is visualized as

1 2 3 · · · 8 9 10

while a 4x3 array as

Each array has a type and each element of holds a value of that type.

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 33 / 107

Arrays II

Array Declarations

The dimension attribute declares arrays.

Usage: dimension(lower_bound:upper_bound)

Lower bounds of one (1:) can be omitted

Examples:
♦ integer, dimension(1:106) :: atomic_number
♦ real, dimension(3,0:5,-10:10) :: values
♦ character(len=3),dimension(12) :: months

Alternative form for array declaration
♦ integer :: days_per_week(7), months_per_year(12)
♦ real :: grid(0:100,-100:0,-50:50)
♦ complex :: psi(100,100)

Another alternative form which can be very confusing for readers
♦ integer, dimension(7) :: days_per_week, months_per_year(12)

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 34 / 107

Arrays III

Array Visualization

Define arrays a,b,c and d as follows

real,dimension(15) :: a

real,dimension(-4:0,0:2) :: b

real,dimension(5,3) :: c

real,dimension(4:8,2:4) :: d

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 35 / 107

Arrays IV

Array Conformance

Array or sub-arrays must conform with all other objects in an expression
1 a scalar conforms to an array of any shape with the same value for every element

c = 1.0 is the same as c(:,:) = 1.0
2 two array references must conform in their shape.

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 36 / 107

Arrays V

Array Element Ordering

Fortran is a column major form i.e. elements are added to the columns seqeuntially. This
ordering can be changed using the reshape intrinsic.

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 37 / 107

Array Terminology

real :: a(0:20), b(3,0:5,-10:10)

Rank: Number of dimensions.

a has rank 1 and b has rank 3

Bounds: upper and lower limits of each dimension of the array.

a has bounds 0:20 and b has bounds 1:3, 0:5 and -10:10

Extent: Number of element in each dimension

a has extent 21 and b has extents 3,6 and 21

Size: Total number of elements.

a has size 21 and b has 30

Shape: The shape of an array is its rank and extent

a has shape 21 and b has shape (3,6,21)

Arrays are conformable if they share a shape.

The bounds do not have to be the same

c(4:6) = d(1:3)

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 38 / 107

Array Constructors

Used to give arrays or sections of arrays specific values

implicit none

integer :: i

integer, dimension(10) :: imatrix

character(len=5),dimension(3) :: colors

real, dimension(4) :: height

height = (/5.10, 5.4, 6.3, 4.5 /)

colors = (/’red ’, ’green’, ’blue ’ /)

ints = (/ 30, (i = 1, 8), 40 /)

constructors and array sections must conform.

ints = (/ 30, (i = 1, 10), 40/) is invalid

strings should be padded so that character variables have correct length.

use reshape intrinsic for arrays for higher ranks

(i = 1, 8) is an implied do.

You can also specify a stride in the implied do.

ints = (/ 30, (i = 1, 16, 2), 40 /)

There should be no space between / and (or)

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 39 / 107

Reshape

reshape(source, shape, pad, order) constructs an array with a specified
shape shape starting from the elements in a given array source.

If pad is not included then the size of source has to be at least product (shape).

If pad is included it has to have the same type as source.

If order is included, it has to be an integer array with the same shape as shape and
the values must be a permutation of (1,2,3,...,N), where N is the number of elements in
shape , it has to be less than, or equal to 7.

0 0 0
0 a a
a 0 a
a a 0

rcell = reshape((/ &

0.d0, 0.d0, a, a, &
0.d0, a, 0.d0, a, &
0.d0, a, a, 0.d0 &
/),(/4,3/))

rcell = reshape((/ &
0.d0, 0.d0, 0.d0 &
0.d0, a , a &
a, 0.d0, a &
a, a, 0.d0 &
/),(/4,3/),order=(/2,1/))

In Fortran, for a multidimensional array, the first dimension has the fastest index while the last
dimension has the slowest index i.e. memory locations are continuous for the last dimension.
The order statement allows the programmer to change this order. The last example above sets
the memory location order which is consistent to that in C/C++.

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 40 / 107

Array Contructors in Intialization Statements

Arrays can be initialized as follows during variable declaration

integer, dimension(4) :: imatrix = (/ 2, 4, 6, 8/)

character(len=*),dimension(3) :: colors = (/’red ’, ’green’, ’blue ’/)

All strings must be the same length

real, dimension(4) :: height = (/5.10, 5.4, 6.3, 4.5/)

integer, dimension(10) :: ints = (/ 30, (i = 1, 8), 40/)

real, dimension(4,3), parameter :: rcell = reshape((/0.d0, 0.d0, 0.d0, 0.d0,&

a, a, a,0.d0, a, a, a, 0.d0 /),(/4,3/),order=(/2,1/))

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 41 / 107

Array Syntax I

whole arrays
♦ a = 0.0

sets whole array a to zero
♦ b = c + d

adds c to d and assigns result to b

elements
♦ a(1) = 0.0

sets one element of a to zero
♦ b(1,3) = a(3) + c(5,1)

sets an element of b to the sum of two other array elements.

array sections
♦ a(0:3) = 5.0

sets a(0), a(1), a(2) and a(3) to five
♦ b(-2:2,4:6) = c(1:5,6:8) + 2.0

adds two to the subsection of c and assigns the result to the subsection of b

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 42 / 107

Array Syntax II

Arrays can be treated as a single variable:
♦ can use intrinsic operators between conformable arrays (or sections)

b = c * d + b**2
this is equivalent to
b(-4,0) = c(1,1) * d(4,2) + b(-4,0)**2
b(-3,0) = c(2,1) * d(5,2) + b(-3,0)**2
· · ·
b(-4,0) = c(1,1) * d(4,2) + b(-4,0)**2
b(-4,1) = c(1,2) * d(4,3) + b(-4,1)**2
· · ·
b(-3,2) = c(4,3) * d(7,4) + b(-3,2)**2
b(-4,2) = c(5,3) * d(8,4) + b(-4,2)**2

♦ elemental intrinsic functions can be used
b = sin(c) + cos(d)

All operations/functions are applied element by element

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 43 / 107

Array Sections I

real, dimension(6:6) :: a

a(1:3,1:3) = a(1:6:2,2:6:2) and

a(1:3,1:3) = 1.0 are valid

a(2:5,5) = a(2:5,1:6:2) and

a(2:5,1:6:2) = a(1:6:2,2:6:2) are not

a(2:5,5) is a 1D section while

a(2:5,1:6:2) is a 2D section

The general form for specifying sub-arrays or sections is

[<bound1>]:[<bound2>][:<stride>]

The section starts at <bound1> and ends at or before <bound2>.

<stride> is the increment by which the locations are selected, by default stride=1

<bound1>, <bound2>, <stride> must all be scalar integer expressions.

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 44 / 107

Array Sections II

real, dimension(1:20) :: a

integer :: m,n,k

a(:) the whole array
a(3:9) elements 3 to 9 in increments of 1
a(3:9:1) as above
a(m:n) elements m through n
a(m:n:k) elements m through n in increments of k
a(15:3:-2) elements 15 through 3 in increments of -2
a(15:3) zero size array
a(m:) elements m through 20, default upper bound
a(:n) elements 1, default lower bound through n
a(::2) all elements from lower to upper bound in increments of 2
a(m:m) 1 element section
a(m) array element not a section
are valid sections.

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 45 / 107

Array I/O I

real,dimension(4,4) :: a

Arrays are printed in the order that they appear in memory

♦ print *, a

would produce on output

a(1,1),a(2,1),a(3,1),a(4,1),a(1,2),a(2,2),· · ·,a(3,4),a(4,4)
♦ read *, a

would read from input and assign array elements in the same order as above

The order of array I/O can be changed using intrinsic functions such as reshape,
transpose or cshift.

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 46 / 107

Array I/O II

Example

Consider a 3x3 matrix
1 4 7
2 5 8
3 6 9

The following print statements

print *, ’array element = ’,a(3,3)

print *, ’array section = ’,a(:,2)

print *, ’sub-array = ’,a(:3,:2)

print *, ’whole array = ’,a

print *, ’array transpose = ’,transpose(a)

would produce the following output

array element = 9

array section = 4 5 6

sub-array = 1 2 3 4 5 6

whole array = 1 2 3 4 5 6 7 8 9

array transpose = 1 4 7 2 5 8 3 6 9

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 47 / 107

Array Intrinsic Functions I

size(x[,n]) The size of x (along the nth dimension, optional)

shape(x) The shape of x

lbound(x[,n]) The lower bound of x

ubound(x[,n]) The upper bound of x

minval(x) The minimum of all values of x

maxval(x) The maximum of all values of x

minloc(x) The indices of the minimum value of x

maxloc(x) The indices of the maximum value of x

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 48 / 107

Array Intrinsic Functions II

sum(x[,n]) The sum of all elements of x (along the nth dimension, optional)

sum(x) =
∑

i,j,k,··· xi,j,k,···

product(x[,n]) The product of all elements of x (along the nth dimension, optional)

prod(x) =
∏

i,j,k,··· xi,j,k,···

transpose(x) Transpose of array x: xi,j ⇒ xj,i

dot_product(x,y) Dot Product of arrays x and y:
∑

i xi ∗ yi

matmul(x,y) Matrix Multiplication of arrays x and y which can be 1 or 2 dimensional
arrays: zi,j =

∑
k xi,k ∗ yk,j

conjg(x) Returns the conjugate of x: a + ıb⇒ a− ıb

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 49 / 107

Allocatable Arrays I

Why?

At compile time we may not know the size an array needs to be

We may want to change the problem size without recompiling

The molecular dynamics code was written for 108 atoms. If you want to run a simulation
for 256 and 1024 atoms, do you need to recompile and create two executables?

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 50 / 107

Allocatable Arrays II

Allocatable arrays allow us to set the size at run time.

real, allocatable :: force(:,:)

real, dimension(:),allocatable :: vel

We set the size of the array using the allocate statement.

allocate(force(natoms,3))

We may want to change the lower bound for an array

allocate(grid(-100,100))

We may want to use an array once somewhere in the program, say during initialization.
Using allocatable arrays also us to dynamically create the array when needed and when
not in use, free up memory using the deallocate statement

deallocate(force,grid)

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 51 / 107

Allocatable Arrays III

Sometimes, we want to check whether an array is allocated or not at a particular part of
the code

Fortran provides an intrinsic function, allocated which returns a scalar logical value
reporting the status of an array

if (allocated(grid))deallocate(grid)

if (.not. allocated(force)) allocate(force(natoms,3))

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 52 / 107

Masked Array Assignment: Where Statement

Masked array assignment is achieved using the where statement

where (c < 2) a = b/c

the left hand side of the assignment must be array valued.

the mask, (logical expression) and the right hand side of the assignment must all conform

Fortran 95/2003 introduced the where ... elsewhere ... end where
functionality

where statement cannot be nested

MD code: subroutine integrate

where (r > boxl)
r = r - boxl
end where
where (r < 0d0)

r = r + boxl
end where

original code: subroutine integrate

do j=1,3
if (r(j) .gt. boxl(j)) then

r(j) = r(j) - boxl(j)
endif

if (r(j) .lt. 0.d0) then
r(j) = r(j) + boxl(j)

endif
enddo

enddo

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 53 / 107

Vector valued subscripts

A 1D array can be used to subscript an array in a dimension

real, dimension(15) :: a

integer, dimension(5) :: v = (/ 1,4,8,10,15/)

integer, dimension(3) :: w = (/ 1,2,3/)

♦ a(v) is a(1), a(4), a(8), a(10) and a(15)

♦ a(v) = 1.2 is valid

♦ only 1D vector subscripts are allowed

a(1) = prod(c(v,w))

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 54 / 107

Break

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 55 / 107

Outline

1 Review

2 Intrinsic Functions

3 Control Constructs
Conditionals
Switches
Loops

4 Arrays

5 Procedures

6 Derived Types and Pointers

7 Object Based Programming

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 56 / 107

Program Units I

Most programs are hundreds or more lines of code.

Use similar code in several places.

A single large program is extremely difficult to debug and maintain.

Solution is to break up code blocks into procedures
Subroutines: Some out-of-line code that is called exactly where it is coded

Functions: Purpose is to return a result and is called only when the result is
needed

Modules: A module is a program unit that is not executed directly, but contains
data specifications and procedures that may be utilized by other
program units via the use statement.

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 57 / 107

Program Units II

program main

use module1

implicit none
variable declarations

...
call routine1(arg1,arg2,arg3)
...
abc = func(arg1,arg2)
...

contains

subroutine routine1(arg1,arg2)
...

end subroutine routine1

function func(arg1,arg2)
...

end function func

end program main

program name

specify which modules to use

variable declarations

block of statements

call subroutine routine1 with arguments
block of statements
abc is some function of arg1 and arg2
block of statements

contains internal procedures described below

contents of subroutine routine1
...

contents of function func
...

last end statement

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 58 / 107

Program Units III

MD Main Program
program md
use param

implicit none
integer :: k, iseed(1)
real(dp) :: pener,v2t,etot,avtemp
real(dp),dimension(:,:),allocatable :: coord,coord0,vel,force

interface
subroutine setup(coord,vel,coord0)
use param,only:dp
implicit none
real(dp),dimension(:,:),intent(out) :: coord,coord0,vel

end subroutine setup
subroutine verlet(coord,force,pener)
use param,only:dp
implicit none
real(dp),dimension(:,:),intent(in) :: coord
real(dp),dimension(:,:),intent(out) :: force
real(dp),intent(out) :: pener

end subroutine verlet
subroutine integrate(coord,force,coord0,vel)
use param,only:dp
implicit none
real(dp),dimension(:,:),intent(inout)::coord,coord0,vel
real(dp),dimension(:,:),intent(in)::force

end subroutine integrate
subroutine rescale(vel)
use param,only:dp
implicit none
real(dp),dimension(:,:),intent(inout) :: vel

end subroutine rescale
end interface

inp=40
outp=50

iseed(1) = 12345
call random_seed
call random_seed(size=k)
call random_seed(put=iseed(1:k))
call init
iprint = nstep / 10
allocate(coord(npart,3),coord0(npart,3),vel(npart,3),force(npart,3))
call setup(coord,vel,coord0)
do istep = 1,nstep

call verlet(coord,force,pener)
call integrate(coord,force,coord0,vel)
v2t = 0.d0
! Can you use intrinsic functions to simplify this calculation
do i=1,npart

v2t = v2t + dot_product(vel(i,:),vel(i,:))
enddo
etot = pener + 0.5d0*v2t
avtemp = v2t / real(3 * npart, dp)
! output energies/velocities, deal with this later
write(44,1000)real(istep,dp)*tstep,pener,v2t,etot,avtemp
! if (istep .gt. iprint) then
! if (mod(istep,500) .eq. 0) then
call rescale(vel)
! endif
! endif

1000 format(5(1x,1pe15.8,1x))
enddo

end program md

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 59 / 107

Subroutines I

CALL Statement

The call statement evaluates its arguments and transfers control to the subroutine
Upon return, the next statement is executed.

SUBROUTINE Statement

The subroutine statement declares the procedure and its arguments.
These are also known as dummy arguments.

The subroutine’s interface is defined by

The subroutine statement itself

The declarations of its dummy arguments

Anything else that the subroutine uses

In the previous example, the subroutine verlet is an external procedure and can
be called by any program unit with the program.

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 60 / 107

Subroutines II

Statement Order

1 A subroutine statement starts a subroutine
2 Any use statements come next
3 implicit none comes next, followed by
4 rest of the declarations,
5 executable statements
6 End with a end subroutine statement

Dummy Arguments

Their names exist only in the procedure and are declared as local variables.

The dummy arguments are associated with the actual arguments passed to the
subroutines.

The dummy and actual argument lists must match, i.e. the number of arguments must be
the same and each argument must match in type and rank.

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 61 / 107

Subroutines III

Example
subroutine verlet(coord_t,force_t,pener)

use param,only : dp,npart,boxl
use lennjones

implicit none
integer :: i,j
real(dp) :: f(3),r(3)
real(dp),dimension(:,:),intent(in) :: coord_t
real(dp),dimension(:,:),intent(out) :: force_t
real(dp),intent(out) :: pener

pener = 0.d0
force_t = 0d0

do i=1,npart-1
do j=i+1,npart

r(:) = coord_t(i,:) - coord_t(j,:)
!
! periodic boundary conditions
!
r(:) = r(:) - nint(r(:)/boxl(:))*boxl(:)
!
! calculate lennard-jones forces and energies
!
r2 = 1.0d0 / (r(1)*r(1) + r(2)*r(2) + r(3)*r(3))
r6 = r2 * r2 * r2

f(:) = dvdr(r2,r6)*r(:)
force_t(i,:) = force_t(i,:) + f
force_t(j,:) = force_t(j,:) - f
pener = pener + epot(r2,r6)

enddo
enddo

end subroutine verlet

How It’s Called
program md

use param
implicit none
integer :: k,iseed(1)
real(dp) :: pener,v2t,etot,avtemp
real(dp),dimension(:,:),allocatable :: coord,coord0,vel,force

interface
...
subroutine verlet(coord,force,pener)
use param,only:dp
implicit none
real(dp),dimension(:,:),intent(in) :: coord
real(dp),dimension(:,:),intent(out) :: force
real(dp),intent(out) :: pener

end subroutine verlet
...

end interface

inp=40
outp=50

iseed(1) = 12345
call random_seed
call random_seed(size=k)
call random_seed(put=iseed(1:k))
call init
iprint = nstep / 10
allocate(coord(npart,3),coord0(npart,3),vel(npart,3),force(npart,3))
call setup(coord,vel,coord0)
do istep = 1,nstep

call verlet(coord,force,pener)
call integrate(coord,force,coord0,vel)
...

enddo
end program md

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 62 / 107

Internal Procedures

Internal procedures appear just before the last end statement and are preceeded by the
contains statement.

Internal procedures can be either subroutines or functions which can be accessed only by
the program, subroutine or module in which it is present

Internal procedures have declaration of variables passed on from the parent program unit

If an internal procedure declares a variable which has the same name as a variable from
the parent program unit then this supersedes the variable from the outer scope for the
length of the procedure.

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 63 / 107

Functions

functions operate on the same principle as subroutines

The only difference is that function returns a value and does not require the call
statement

Example
module lennjones
use precision
implicit none
real(dp) :: d2,d6

contains
function dvdr(d2,d6)
implicit none
real(dp) :: dvdr
dvdr = 48*d2*d6*(d6 - 0.5d0)

end function dvdr
function epot(d2,d6)
implicit none
real(dp) :: epot
epot = 4.d0*d6*(d6 - 1.d0)

end function epot
end module lennjones

How It’s Called
subroutine verlet(coord,force,pener)
use param,only : dp,npart,boxl
use lennjones

implicit none
integer :: i,j
real(dp) :: f(3),r(3)
real(dp),dimension(:,:),intent(in) :: coord
real(dp),dimension(:,:),intent(out) :: force
real(dp),intent(out) :: pener

pener = 0.d0
force = 0d0
do i=1,npart-1

do j=i+1,npart
r(:) = coord(i,:) - coord(j,:)
! periodic boundary conditions
r(:) = r(:) - nint(r(:)/boxl(:))*boxl(:)
! calculate lennard-jones forces and energies
r2 = 1.0d0 / (r(1)*r(1) + r(2)*r(2) + r(3)*r(3))
r6 = r2 * r2 * r2

f(:) = dvdr(r2,r6)*r(:)
force(i,:) = force(i,:) + f
force(j,:) = force(j,:) - f
pener = pener + epot(r2,r6)

enddo
enddo

end subroutine verlet

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 64 / 107

Array-valued Functions

function can also return arrays

Example
module lennjones
use precision
implicit none
real(dp) :: d2,d6

contains
function dvdr(r,d2,d6)
implicit none
real(dp),dimension(:),intent(in) :: r
real(dp),dimension(size(r,1)) :: dvdr
real(dp) :: dvr
dvr = 48*d2*d6*(d6 - 0.5d0)
dvdr = dvr * r

end function dvdr
function epot(d2,d6)
implicit none
real(dp) :: epot
epot = 4.d0*d6*(d6 - 1.d0)

end function epot
end module lennjones

How It’s Called
subroutine verlet(coord,force,pener)
use param,only : dp,npart,boxl
use lennjones

implicit none
integer :: i,j
real(dp) :: f(3),r(3)
real(dp),dimension(:,:),intent(in) :: coord
real(dp),dimension(:,:),intent(out) :: force
real(dp),intent(out) :: pener

pener = 0.d0
force = 0d0
do i=1,npart-1

do j=i+1,npart
r(:) = coord(i,:) - coord(j,:)
! periodic boundary conditions
r(:) = r(:) - nint(r(:)/boxl(:))*boxl(:)
! calculate lennard-jones forces and energies
r2 = 1.0d0 / (r(1)*r(1) + r(2)*r(2) + r(3)*r(3))
r6 = r2 * r2 * r2

force(i,:) = force(i,:) + dvdr(r,r2,r6)
force(j,:) = force(j,:) - dvdr(r,r2,r6)
pener = pener + epot(r2,r6)

enddo
enddo

end subroutine verlet

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 65 / 107

Recursive Procedures

In Fortran 90, recursion is supported as a feature
1 recursive procedures call themselves
2 recursive procedures must be declared explicitly
3 recursive function declarations must contain a result keyword, and
4 one type of declaration refers to both the function name and the result variable.

program fact

implicit none
integer :: i
print *, ’enter integer whose factorial you want to calculate’
read *, i

print ’(i5,a,i20)’, i, ’! = ’, factorial(i)

contains
recursive function factorial(i) result(i_fact)
integer, intent(in) :: i
integer :: i_fact

if (i > 0) then
i_fact = i * factorial(i - 1)

else
i_fact = 1

end if
end function factorial

end program fact

[apacheco@qb4 examples] ./factorial
enter integer whose factorial you want to calculate
10

10! = 3628800
[apacheco@qb4 examples] ./fact1
Enter an integer < 15
10
10!= 3628800

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 66 / 107

Argument Association

Recall from MD code example the invocation

call subroutine verlet(coord,force,pener)

and the subroutine declaration

subroutine verlet(coord_t,force_t,pener)

coord is an actual argument and is associated with the dummy argument coord_t

In subroutine verlet, the name coord_t is an alias for coord

If the value of a dummy argument changes, then so does the value of the actual argument

Also, recall the dvdr function on the previous slide.

The actual and dummy arguments must correspond in type, kind and rank.

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 67 / 107

Local Objects

In subroutine verlet,

i,j,r and f are local objects.

Local Objects
♦ are created each time a procedure is

invoked
♦ are destroyed when the procedure

completes
♦ do not retain their values between calls
♦ do not exist in the programs memory

between calls.

Example
subroutine verlet(coord,force,pener)

use param,only : dp,npart,boxl
use lennjones

implicit none
integer :: i,j
real(dp) :: f(3),r(3)
real(dp),dimension(:,:),intent(in) :: coord
real(dp),dimension(:,:),intent(out) :: force
real(dp),intent(out) :: pener

...

end subroutine verlet

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 68 / 107

Keyword Arguments

Keyword Arguments
allow arguments to be specified in any order
makes it easy to add an extra argument - no need to modify any calls
helps improve readability of the program
are used when a procedure has optional arguments

once a keyword is used, all subsequent arguments must be keyword arguments

if used with external procedures then the interface must be explicit within the
procedure in which it is invoked.

subroutine verlet(coord_t,force_t,pener_t)

...
real(dp),intent(in),dimension(:,:) :: coord_t
real(dp),intent(out),dimension(:,:) :: force_t
real(dp),intent(out) :: pener_t
...

end subroutine force

program md
...

call verlet(coord,force,pener)
...

end program md

program md can invoke subroutine verlet using
1 using the positional argument invocation (see right block)
2 using keyword arguments

call force(force_t=force, pener_t=pener, coord_t=coord)
call force(coord, force_t=force, pener_t=pener)

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 69 / 107

Optional Arguments

Optional Arguments
allow defaults to be used for missing arguments
make some procedures easier to use

once an argument has been omitted all subsequent arguments must be keyword
arguments

the present intrinsic can be used to check for missing arguments

if used with external procedures then the interface must be explicit within the
procedure in which it is invoked.

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 70 / 107

Dummy Array Arguments

There are two main types of dummy array argument:
1 explicit-shape: all bounds specified

real, dimension(4,4), intent(in) :: explicit_shape
The actual argument that becomes associated with an explicit shape
dummy must conform in size and shape

2 assumed-shape: no bounds specified, all inherited from the actual argument
real, dimension(:,:), intent(out) :: assumed_shape
An explicit interface must be provided

dummy arguments cannot be (unallocated) allocatable arrays.

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 71 / 107

Explicit-shape Arrays

program md

implicit none
integer :: inp,outp,nstep,istep,iprint,i,j,nunit,npart
real(kind=8) :: boxl(3),tstep,temp,avtemp
real(kind=8) :: pener,v2t,etot
real(kind=8),dimension(:,:),allocatable :: coord,coord0,vel,force

...
allocate(coord(npart,3),coord0(npart,3),vel(npart,3),force(npart,3))
call setup(coord,vel,npart,nunit,boxl,coord0,tstep,temp)
...

end program md

subroutine setup(coord,vel,npart,nunit,boxl,coord0,tstep,temp)

implicit none
real(kind=8) :: coord(npart,3)
real(kind=8) :: vel(npart,3)
real(kind=8) :: coord0(npart,3)
...

end subroutine setup

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 72 / 107

Assumed-Shape Arrays

program md

use param

implicit none
real(dp) :: pener,v2t,etot,avtemp
real(dp),dimension(:,:),allocatable :: coord,coord0,vel,force

interface
subroutine setup(coord,vel,coord0)
use param,only:dp
implicit none
real(dp),dimension(:,:),intent(out) :: coord,coord0,vel

end subroutine setup
...

end interface

...
allocate(coord(npart,3),coord0(npart,3),vel(npart,3),force(npart,3))
call setup(coord,vel,coord0)
...

end program md

subroutine setup(coord,vel,coord0)

use param, only : dp,npart,boxl,tstep,temp,nunit

implicit none
real(dp),dimension(:,:),intent(out) :: coord,coord0,vel
...

end subroutine setup

The actual arguments cannot be vector subscribed array.

The actual argument cannot be an assumed-size array

In the procedure, bounds begin at 1

If using external procedure, an explicit interface must be described

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 73 / 107

Automatic Arrays

Automatic Arrays: Arrays which depend on dummy arguments
1 their size is determined by dummy arguments
2 they cannot have the save attribute or be initialized.

The size intrinsic or dummy arguments can be used to declare automatic arrays.

program main
implicit none
integer :: i,j
real, dimension(5,6) :: a
...
call routine (a,i,j)
...

contains
subroutine routine(c,m,n)
integer :: m,n
real, dimension(:,:), intent(inout) :: c ! assumed shape array
real :: b1(m,n) ! automatic array
real, dimension(size(c,1),size(c,3)) :: b2 ! automatic array
...

end subroutine routine
end program main

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 74 / 107

Save Attribute and Arrays

Declaring a variable (or array) as save gives it a static storage memory.

i.e information about variables is retained in memory between procedure calls.

subroutine something(iarg1)
implicit none
integer, intent(in) :: iarg1
real,dimension(:,:),allocatable,save :: a
real, dimension(:,:),allocatable :: b
...
if (.not.allocated(a))allocate(a(i,j))
allocate(b(j,i))
...
deallocate(b)

end subroutine something

Array a is saved when something exits.

Array b is not saved and needs to be allocated every time in something and
deallocated, to free up memory, before something exits.

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 75 / 107

Intent

intent attribute was introduced in Fortran 90 and is recommended as it
1 allows compilers to check for coding errors
2 facilitates efficient compilation and optimization

Declare if a parameter is
♦ Input: intent(in)
♦ Output: intent(out)
♦ Both: intent(inout)

subroutine integrate(coord,coord0,force,vel)
use precision
implicit none
real(dp),intent(inout),dimension(:,:) :: coord,coord0
real(dp),intent(in),dimension(:,:) :: force
real(dp),intent(out),dimension(:,:) :: vel
...

end subroutine integrate

A variable declared as intent(in) in a procedure cannot be changed during the
execution of the procedure (see point 1 above)

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 76 / 107

Interfaces I

The interface statement is the first statement in an interface block.

The interface block is a powerful structure that was introduced in FORTRAN 90.

When used, it gives a calling procedure the full knowledge of the types and
characteristics of the dummy arguments that are used inside of the procedure that it
references.

This can be a very good thing as it provides a way to execute some safety checks when
compiling the program.

Because the main program knows what argument types should be sent to the referenced
procedure, it can check to see whether or not this is the case.

If not, the compiler will return an error message when you attempt to compile the
program.

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 77 / 107

Interfaces II

subroutine verlet(coord0,coord,vel,force,pener)
use param,only : dp,npart,tstep,boxl

implicit none
integer :: i,j
real(dp) :: r(3)
real(dp),dimension(:,:),intent(inout)::coord,coord0
real(dp),dimension(:,:),intent(out)::vel,force
real(dp),intent(out)::pener

interface
subroutine pot_force(coord,force,pener)
use precision
implicit none
real(dp),dimension(:,:),intent(in) :: coord
real(dp),dimension(:,:),intent(out) :: force
real(dp),intent(out) :: pener

end subroutine pot_force
end interface
! get potential and force
call pot_force(coord,force,pener)
! update positions using the verlet algorithm
do i=1,npart

r(:) = 2*coord(i,:) - coord0(i,:) + force(i,:)*tstep*tstep
vel(i,:) = (r(:) - coord0(i,:)) / (2*tstep)
! periodic boundary conditions
where (r > boxl)

r = r - boxl
end where
where (r < 0d0)

r = r + boxl
end where
! update coordinates
coord0(i,:) = coord(i,:)
coord(i,:) = r(:)

enddo
! output coordinates
...

end subroutine verlet

subroutine pot_force(coord,force,pener)
use param,only : dp,npart,boxl,pot
use lennjones

implicit none
integer :: i,j
real(dp) :: f(3),r(3),V
real(dp),dimension(:,:),intent(in) :: coord
real(dp),dimension(:,:),intent(out) :: force
real(dp),intent(out) :: pener

pener = 0.d0
force = 0d0

do i=1,npart-1
do j=i+1,npart

r(:) = coord(i,:) - coord(j,:)
! periodic boundary conditions
r(:) = r(:) - nint(r(:)/boxl(:))*boxl(:)
! calculate lennard-jones forces and energies
select case(pot)
case("lj", "LJ")

call ljpot(r,f,V)
case("mp", "MP")

call morse(r,f,V)
case default

call ljpot(r,f,V)
end select
pener = pener + V
force(i,:) = force(i,:) + f(:)
force(j,:) = force(j,:) - f(:)

enddo
enddo

end subroutine pot_force

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 78 / 107

Interfaces III

subroutine verlet(coord0,coord,vel,force,pener)
use param,only : dp,npart,tstep,boxl

implicit none
integer :: i,j
real(dp) :: r(3)
real(dp),dimension(:,:),intent(inout)::coord,coord0
real(dp),dimension(:,:),intent(out)::vel,force
real(dp),intent(out)::pener

! get potential and force
call pot_force(coord,force,pener)
! update positions using the verlet algorithm
do i=1,npart

r(:) = 2*coord(i,:) - coord0(i,:) + force(i,:)*tstep*tstep
vel(i,:) = (r(:) - coord0(i,:)) / (2*tstep)
! periodic boundary conditions
where (r > boxl)

r = r - boxl
end where
where (r < 0d0)

r = r + boxl
end where
! update coordinates
coord0(i,:) = coord(i,:)
coord(i,:) = r(:)

enddo
! output coordinates

contains

subroutine pot_force(coord,force,pener)
use lennjones

real(dp) :: f(3),r(3),V

pener = 0.d0
force = 0d0

do i=1,npart-1
do j=i+1,npart

r(:) = coord(i,:) - coord(j,:)
! periodic boundary conditions
r(:) = r(:) - nint(r(:)/boxl(:))*boxl(:)
! calculate lennard-jones forces and energies
select case(pot)
case("lj", "LJ")

call ljpot(r,f,V)
case("mp", "MP")

call morse(r,f,V)
case default

call ljpot(r,f,V)
end select
pener = pener + V
force(i,:) = force(i,:) + f(:)
force(j,:) = force(j,:) - f(:)

enddo
enddo

end subroutine pot_force

end subroutine verlet

Here since subroutine pot_force is an internal procedure, no interface is
required since it is already implicit and all variable declarations are carried over from
subroutine verlet

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 79 / 107

Modules I

Modules were introduced in Fortran 90 and have a wide range of applications.

Modules allow the user to write object based code.

A module is a program unit whose functionality can be exploited by other programs
which attaches to it via the use statement.

A module can contain the following
1 global object declaration: replaces Fortran 77 COMMON and INCLUDE

statements
2 interface declaration: all external procedures using assumed shape arrrays, intent

and keyword/optional arguments must have an explicit interface
3 procedure declaration: include procedures such as subroutines or functions in

modules. Since modules already contain explicit interface, an interface statement
is not required

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 80 / 107

Modules II

module precision

implicit none
integer,parameter :: dp = selected_real_kind(15)

end module precision

module param
use precision

implicit none
integer :: inp,outp,nstep,istep,i,j,nunit,npart
real(dp) :: boxl(3),tstep,temp
character(len=2) :: pot

end module param

module lennjones
use precision

implicit none
real(dp) :: r2,r6,d2,d6

contains
subroutine ljpot(r,f,p)
implicit none
real(dp),dimension(:),intent(in) :: r
real(dp),dimension(:),intent(out) :: f
real(dp),intent(out) :: p

r2 = 1.0d0 / dot_product(r,r)
r6 = r2 * r2 * r2

f(:) = dvdr(r2,r6)*r(:)
p = epot(r2,r6)

end subroutine ljpot

subroutine morse(r,f,p)
implicit none
real(dp),dimension(:),intent(in) :: r
real(dp),dimension(:),intent(out) :: f
real(dp),intent(out) :: p

f(:) = morseforce(dot_product(r,r))*r(:)
p = morsepot(dot_product(r,r))

end subroutine morse
function dvdr(r2,r6)
implicit none
real(dp) :: dvdr
real(dp),intent(in) :: r2,r6
dvdr = 48*r2*r6*(r6 - 0.5d0)

end function dvdr

function epot(r2,r6)
implicit none
real(dp) :: epot
real(dp),intent(in) :: r2,r6
epot = 4.d0*r6*(r6 - 1.d0)

end function epot

function morsepot(d2)
implicit none
real(dp),intent(in) :: d2
real(dp) :: morsepot
real(dp) :: de,re,a
de = 0.176d0 ; a = 1.40d0 ; re = 1d0
morsepot = de * (1d0 - exp(-a*(sqrt(d2)-re)))**2

end function morsepot

function morseforce(d2)
implicit none
real(dp),intent(in) :: d2
real(dp) :: morseforce
real(dp) :: de,re,a,r
de = 0.176d0 ; a = 1.40d0 ; re = 1d0 ; r = sqrt(d2)
morseforce = 2d0 * de * a * (1d0 - exp(-a*(r-re)))* &

exp(-a*(r-re))
end function morseforce

end module lennjones

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 81 / 107

Modules III

within a module, functions and subroutines are called module procedures.

module procedures can contain internal procedures

module objects that retain their values should be given a save attribute

modules can be used by procedures and other modules, see module precision.

modules can be compiled separately. They should be compiled before the program unit
that uses them.

Observe that in my examples with all code in single file, the modules appear before the
main program and subroutines.

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 82 / 107

Modules IV

Visibility of module procedures

By default, all module procedures are public i.e. they can accessed by program units that
use the module using the use statement

To restrict the visibility of the module procedure only to the module, use the private
statement

In the module lennjones, all functions which calculate forces can be declared as
private as follows

module lennjones
use precision

implicit none
real(dp) :: r2,r6,d2,d6
public :: ljpot, morse,epot,moresepot
private :: dvdr, morseforce
...

Program Units in the MD code can directly call ljpot,morse,epot and
moresepot but cannot access dvdr and morseforce

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 83 / 107

Modules V

use statement

The use statement names a module whole public definitions are to be made accessible.

To use all variables from module param in program md:

program md
use param
...

end program md

module entities can be renamed

To rename pot and tstep to more user readable variables:

use param, pot => potential, tstep => timestep

It’s good programming practice to use only those variables from modules that are
neccessary to avoid name conflicts and overwrite variables.

For this, use the use <module name>, only statement

subroutine verlet(coord,force,pener)
use param,only : dp,npart,boxl,tstep
...

end subroutine verlet

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 84 / 107

Compiling Modules I

Consider the MD code containing a main program md.f90, modules
precision.f90, param.f90 and lennjones.f90 and subroutines
init.f90, setup.f90, verlet.f90, rescale.f90, gaussran.f90
and pot_force.f90.

In general, the code can be compiled as

ifort -o md md.f90 precision.f90 param.f90 lennjones.f90 init.f90 setup.f90 verlet.f90 rescale.f90 gaussran.f90 pot_force.f90

Most compilers are more restrictive in the order in which the modules appear.

In general, the order in which the sub programs should be compiled is the following
1 Modules that do not use any other modules.
2 Modules that use one or more of the modules already compiled.
3 Repeat the above step until all modules are compiled and all dependencies are

resolved.
4 Main program followed by all subroutines and functions (if any).

In the MD code, the module precision does not depend on any other modules and
should be compiled first

The modules param and lennjones only depend on precision and can be
compiled in any order

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 85 / 107

Compiling Modules II

The main program and subroutines can then be compiled

ifort -o md precision.f90 param.f90 lennjones.f90 md.f90 init.f90 setup.f90 verlet.f90 rescale.f90 gaussran.f90 pot_force.f90

modules are designed to be compiled independently of the main program and create a
.mod files which need to be linked to the main executable.

ifort -c precision.f90 param.f90 lennjones.f90

creates precision.mod param.mod lennjones.mod

The main program can now be compiled as

ifort -o md md.f90 init.f90 setup.f90 verlet.f90 rescale.f90 gaussran.f90 pot_force.f90 -I{path to directory containing the .mod

files}

The next tutorial on Makefiles will cover this aspect in more detail.

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 86 / 107

Outline

1 Review

2 Intrinsic Functions

3 Control Constructs
Conditionals
Switches
Loops

4 Arrays

5 Procedures

6 Derived Types and Pointers

7 Object Based Programming

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 87 / 107

Derived Types I

Defined by user (also called structures)

Can include different intrinsic types and other derived types

Components are accessed using the percent operator (%)

Only assignment operator (=) is defined for derived types

Can (re)define operators - see function overloading

Derived type definitions should be placed in a module.
Previously defined type can be used as components of other derived types.

type line_type
real :: x1, y1, x2, y2

end type line_type
type (line_type) :: a, b
type vector_type
type(line_type) :: line ! position of center of sphere
integer :: direction ! 0=no direction, 1=(x1,y1)->(x2,y2) or 2

end type vector_type
type (vector_type) :: c, d

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 88 / 107

Derived Types II

values can be assigned to derived types in two ways
1 component by component

individual component may be selected using the % operator
2 as an object

the whole object may be selected and assigned to using a constructor

a%x1 = 0.0 ; a%x2 = 0.5 ; a%y1 = 0.0 ; a%y2 = 0.5

c%direction = 0 ; c%line%x1 = 0.0 ; c%line%x2 = 1.0 ; c%line%y1 = -1.0 ; c%line%y2 = 0.0

b = line_type(0.0, 0.0, 0.5, 0.5)

d%line = line_type(0.0, -1.0, 1.0, 0.0)

d = vector_type(d%line, 1) or

d = vector_type(line_type(0.0, -1.0, 1.0, 0.0), 1)

Assigment between two objects of the same derived type is intrinsically defined

In the previous example: a = b is allowed but a = c is not.

subroutine setup

coord_t0(pnum+cell)\%x = rcell(cell,1) + real(xx-1,dp)/cells
coord_t0(pnum+cell)\%y = rcell(cell,2) + real(yy-1,dp)/cells
coord_t0(pnum+cell)\%z = rcell(cell,3) + real(zz-1,dp)/cells

x = rcell(cell,1) + real(xx-1,dp)/cells
y = rcell(cell,1) + real(yy-1,dp)/cells
z = rcell(cell,1) + real(zz-1,dp)/cells
coord_t0(pnum+cell) = dynamics(x, y, z)

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 89 / 107

Derived Types III

I/O on Derived Types

Can do normal I/O on derived types

print *, a will produce the result

1.0 0.5 1.5

print *, c will produce the result

2.0 0.0 0.0 0.0

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 90 / 107

Derived Types IV

Arrays and Derived Types

Can define derived type objects which contain non-allocatable arrays and arrays of
derived type objects

MD code
module dynamic_data
use precision

implicit none
type dynamics

real(dp) :: x,y,z
end type dynamics

type(dynamics),dimension(:),allocatable :: coord,vel,force
end module dynamic_data

From one of my old codes
type atomic

character(2)::symbol
real(dp)::mass,charge,alpc,delc,alpd,alpq,betaone,delta
integer::number,ls_nprime(2,4),n_shell(0:2),&

prim_counter(0:3,20),npp(0:3),nls(1:3)
real(dp)::g_exp(20,0:3,6,20),g_coeff(20,0:3,6,20),&

g_norm(20,0:3,6,20),sr_coef(0:2,4),&
sr_exp(0:2,4),ls_coef(2,4),ls_exp(2,4),centerdim

end type atomic

Derived Type Valued Functions

Functions can return results of an arbitrary defined type.

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 91 / 107

Derived Types V

Private Derived Types

A derived type can be wholly private or some of its components hidden

module data
type :: position
real, private :: x,y,z

end type position
type, private :: acceleration
real :: x,y,z

end type acceleration
contains

...
end module data

Program units that use data have position exported but not it’s components x,y,z
and the derived type acceleration

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 92 / 107

Pointers I

In Fortran, a pointer variable or simply a pointer is best thought of as a
“free-floating” name that may be associated with or “aliased to” some object.

The object may already have one or more other names or it may be an unnamed object.

The object represent data (a variable, for example) or be a procedure.

A pointer is any variable that has been given the pointer attribute.

A variable with the pointer attribute may be used like any ordinary variable.

Each pointer is in one of the following three states:

undefined condition of each pointer at the beginning of a program, unless it has
been initialized

null not an alias of any data object

associated it is an alias of some target data object

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 93 / 107

Pointers II

pointer objects must be declared with the pointer attribute

real, pointer :: p

Any variable aliased or “pointed to” by a pointer must be given the target attribute

real, target :: r

To make p an alias to r, use the pointer assignment statement

p => r

The variable declared as a pointer may be a simple variable as above, an array or a
structure

real, dimension(:), pointer :: v

pointer v declared above can now be aliased to a 1D array of reals or a row or column
of a multi-dimensional array

real, dimension(100,100), target :: a

v => a(5,:)

pointer variables can be used as any other variables

For example, print *, v and print *, a(5,:) are equivalent

v = 0.0 is the same as a(5,:) = 0.0’

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 94 / 107

Pointers III

pointer variables can also be an alias to another pointer variable

Consider the following example

real, target :: r

real, pointer :: p1, p2

r = 4.7

p1 => r

p2 => r

print *, r, p1, p2

r = 7.4

print *, r, p1, p2

The output on the screen will be

4.7 4.7 4.7

7.4 7.4 7.4

Changing the value of r to 7.4 causes the
value of both p1 and p2 to change to 7.4

Consider the following example

real, target :: r1, r2

real, pointer :: p1, p2

r1 = 4.7; r2 = 7.4

p1 => r1 ; p2 => r2

print *, r1, r2, p1, p2

p1 = p2

print *, r1, r2, p1, p2

The output on the screen will be

4.7 7.4 4.7 7.4

4.7 4.7 4.7 4.7

The assignment statement p2 = p1 has
the same effect of r2 = r1 since p1 is
an alias to r1 and p2 is an alias to r2

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 95 / 107

Pointers IV

The allocate statement can be used to create space for a value and cause a pointer to
refer to that space.

allocate(p1) creates a space for one real number and makes p1 an alias to that
space.

No real value is stored in that space so it is neccessary to assign a value to p1

p1 = 4.7 assigns a value 4.7 to that allocated space

Before a value is assigned to p1, it must either be associated with an unnamed target
using the allocate statement or be aliased with a target using the pointer assignment
statement.

deallocate statement dissociates the pointer from any target and nullifies it

deallocate(p1)

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 96 / 107

Pointer Intrinsic Functions

null intrinsic

pointer variables are undefined unless they are initialized

pointer variable must not be reference to produce a value when it is undefined.

It is sometime desirable to have a pointer variable in a state of not pointing to anything

The null intrinsic function nullifies a pointer assignment so that it is in a state of not
pointing to anything

p1 => null()

If the target of p1 and p2 are the same, then nullifying p1 does not nullify p2

If p1 is null and p2 is pointing to p1, then p2 is also nullified.

associated intrinsic

The associated intrinsic function queries whether a pointer varibale is pointing to, or
is an alias for another object.

associated(p1,r1) and associated(p2,r2) are true, but

associated(p1,r2) and associated(p2,r1) are false

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 97 / 107

Outline

1 Review

2 Intrinsic Functions

3 Control Constructs
Conditionals
Switches
Loops

4 Arrays

5 Procedures

6 Derived Types and Pointers

7 Object Based Programming

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 98 / 107

OOP Concepts

Fortran 90 has some Object Oriented facilites such as

1 data abstraction: user defined types (covered)
2 data hiding - private and public attributes (covered)
3 encapsulation - modules and data hiding facilities (covered)
4 inheritance and extensibility - super-types, operator overloading and generic procedures
5 polymorphism - user can program his/her own polymorphism by generic overloading
6 resuability - modules

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 99 / 107

Overloading Procedures I

In Fortran, most intrinsic functions are generic in that their type is determined by their
argument(s)

For example, the abs(x) intrinsic function comprises of
1 cabs : called when x is complex
2 abs : called when x is real
3 iabs : called when x is integer

These sets of functions are called overload sets

Fortran users may define their own overload sets in an interface block

interface clear
module procedure clear_real, clear_type, clear_type1D

end interface

The generic name clear is associated with specific names clear_real,
clear_type, clear_type1D

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 100 / 107

Overloading Procedures II

module dynamic_data
...
type dynamics

real(dp) :: x,y,z
end type dynamics
interface dot_product

module procedure dprod
end interface dot_product
interface clear

module procedure clear_real, clear_type, clear_type1D
end interface

contains
function dprod(a,b) result(c)
type(dynamics),intent(in) :: a,b
real(dp) :: c
c = a%x * b%x + a%y * b%y + a%z * b%z

end function dprod
subroutine clear_real(a)
real(dp),dimension(:,:),intent(out) :: a
a = 0d0

end subroutine clear_real

subroutine clear_type(a)
type(dynamics),dimension(:),intent(out) :: a
a%x = 0d0 ; a%y = 0d0 ; a%z = 0d0

end subroutine clear_type

subroutine clear_type1D(a)
type(dynamics),intent(out) :: a
a%x = 0d0 ; a%y = 0d0 ; a%z = 0d0

end subroutine clear_type1D
end module dynamic_data

program md
use dynamic_data
...
type(dynamics),dimension(:),allocatable :: coord,coord0,vel,force
...
allocate(coord(npart),coord0(npart),vel(npart),force(npart))
...

do i=1,npart
v2t = v2t + dot_product(vel(i),vel(i))

enddo
...

end program md

subroutine setup(coord,vel,coord0)
...
type(dynamics) :: vt
...
call clear(coord)
call clear(coord0)
call clear(vel)
...
call clear(vt)
...

end subroutine setup

The dot_product intrinsic function is overloaded to inlcude derived types

The procedure clear is overloaded to set all components of derived types and all
elements of 2D real arrays to zero.

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 101 / 107

Operator Overloading I

Intrinsic operators such as +, -, * and / can be overloaded to apply to all types of data

Recall, for derived types only the assignment (=) operator is defined

In the MD code, coord_t(i) = coord_t0(i) is well defined, but

vel_t(i) = vel_t(i) * scalef is not

Operator overloading as follows
1 specify the generic operator symbol in an interface operator statement
2 specify the overload set in a generic interface
3 declare the module procedures (functions) which define how the

operations are implemented.
4 these functions must have one or two non-optional arguments with intent(in)

which correspond to monadic or dyadic operators

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 102 / 107

Operator Overloading II

module dynamic_data
...
type dynamics

real(dp) :: x,y,z
end type dynamics

interface operator (*)
module procedure scale_tr, scale_rt

end interface operator (*)
interface operator (+)

module procedure add
end interface operator (+)

contains
type(dynamics) function scale_tr(a,b) result(c)
type(dynamics),intent(in)::a
real(dp),intent(in) :: b
type(dynamics) :: c
c%x = a%x * b
c%y = a%y * b
c%z = a%z * b

end function scale_tr
type(dynamics) function scale_rt(b,a) result(c)
type(dynamics),intent(in)::a
real(dp),intent(in) :: b
type(dynamics) :: c
c%x = b * a%x
c%y = b * a%y
c%z = b * a%z

end function scale_rt
type(dynamics) function add(a,b) result(c)
type(dynamics),intent(in) :: a,b
type(dynamics) :: c
c%x = a%x + b%x
c%y = a%y + b%y
c%z = a%z + b%z

end function add
end module dynamic_data

♦ The following operator are not defined for
derived types a,b,c and scalar r

1 c = a * r

2 c = r * a

3 c = a + b

♦ If operator overloading is not defined, the
above operations would have to be executed
as follows whereever needed

1 c%x = a%x * r ; · · ·
2 c%x = r * a%x ; · · ·

3 c%x = a%x + b%x ; · · ·

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 103 / 107

Extended Data Types I

Recall the derived type example which has as a component another derived type

type, public :: line_type
real :: x1, y1, x2, y2

end type line_type
type, public :: vector_type
type(line_type) :: line ! position of center of sphere
integer :: direction ! 0=no direction, 1=(x1,y1)->(x2,y2) or 2

end type vector_type

An object, c, of type vector_type is referenced as c%line%x1, c%line%y1,
c%line%x2, c%line%y2 and c%direction which can be cumbersome.

In Fortran, it is possible to extend the base type line_type to other types such as
vector_type and painted_line_type as follows

type, public, extends(line_type) :: vector_type
integer :: direction

end type vector_type
type, public, extends(line_type) :: painted_line_type
integer :: r, g, b ! rgb values

end type painted_line_type

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 104 / 107

Extended Data Types II

An object,c of type vector_type inherits the components of the type line_type
and has components x1,y1,x2,y2 and direction and is reference as c%x1,
c%y1, c%x1, c%y2 and c%direction

Similarly, an object, d of type painted_line_type is reference as d%x1, d%y2,
d%x2, d%y2, d%r, d%g and d%b

The three derived types constitute a class; the name of the class is the name of the base
type line_type

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 105 / 107

References

Fortran 95/2003 Explained, Michael Metcalf

Modern Fortran Explaned, Michael Metcalf

Guide to Fortran 2003 Programming, Walter S. Brainerd

Introduction to Programming with Fortran: with coverag of Fortran 90, 95, 2003 and 77,
I. D. Chivers

Fortran 90 course at University of Liverpool,
http://www.liv.ac.uk/HPC/F90page.html

Introduction to Modern Fortran, University of Cambridge, http:
//www.ucs.cam.ac.uk/docs/course-notes/unix-courses/Fortran

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 106 / 107

http://www.liv.ac.uk/HPC/F90page.html
http://www.ucs.cam.ac.uk/docs/course-notes/unix-courses/Fortran
http://www.ucs.cam.ac.uk/docs/course-notes/unix-courses/Fortran

Hands-On Exercise: Molecular Dynamics

Molecular Dynamics code for melting of solid Hydrogen using Lennard-Jones Potential

Code can be obtained from QueenBee and Tezpur:

/work/apacheco/F90-workshop/Exercise/code

Original (F77) code is in the orig directory.

Solutions in directories day1, day2 and day3.

Input file in bench directory, fort.44 and fort.77 are the correct results.

There is no “correct solution”.

Up to you to decide where you want to finish coding.

Goal of this Hands-On Exercise should be to use as many features/Concepts of Fortran
90/95 that you have learned and still get the correct result.

Next
Break for Lunch

Make System

Advanced Concepts in Fortran 90 Feb 13-16, 2012

HPC@LSU - http://www.hpc.lsu.edu 107 / 107

	Review
	Intrinsic Functions
	Control Constructs
	Conditionals
	Switches
	Loops

	Arrays
	Procedures
	Derived Types and Pointers
	Object Based Programming

