INFORMATION
TECHNOLOGY
SERVICES

Make Tutorial

Le Yan
) User Services
ﬁ;ﬁ High Performance Computing @ LSU/LONI e '
~ \\‘\ . Jnﬁf
LSL) 5
CENTER FOR COMPUTATION B -

& TECHNOLOGY — P %,
LONI Fortran Programming Workshop, LSU

Feb 13-16, 2012

2/14/2012

Outline

e What is make

* How to use make
— How to write a makefile

— How to use the “make” command

o

i .
il -
3 i
<~ W s
LsU B
CENTER FOR COMPUTATION BN i
& TECHNOLOGY L, ., BN

LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

2/14/2012

What is Make

e Atool that

— Controls the generation of executable and other non-source files (libraries
etc.)

— Simplifies (a lot) the management of a program that has multiple source files
* Have many variants

— GNU make (we will focus on it today)

— BSD make

e Other utilities that do similar things

— Cmake
— Zmake
i Y
’ﬂ_\ T
Lsu R
CENTER FOR COMPUTATION NG -
& TECHNOLOGY L, ., BN

LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

2/14/2012

What is Make

e Atool that

— Controls the generation of executable and other non-source files (libraries
etc.)

— Simplifies (a lot) the management of a program that has multiple source files
* Have many variants

— GNU make (we will focus on it today)

— BSD make

e Other utilities that do similar things

— Cmake
— Zmake
i v
Lsu R
CENTER FOR COMPUTATION NG -
& TECHNOLOGY L, ., BN

LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

2/14/2012

£

L5U

Why having multiple source files

e |tis very important to keep different modules
of functionalities in different source files,
especially for a large program

— Easier to edit and understand

— Easier version control

— Easier to share code with others

— Allow to write a program with different languages

’ﬂ_\ SR
LSL)

CENTER FOR COMPUTATION Ly
& TECHNOLOGY L, ., BN

LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

2/14/2012

LSLJ

From source files to executable

* Two-step process

— The compiler generates the object files from the
source files

— The linker generates the executable from the
object files

 Most compilers do both steps by default

o ”

— Use “-c” to suppress linking

L \\‘\ ° Jl&"”'.{“
LSL)

CENTER FOR COMPUTATION Ly
& TECHNOLOGY L, ., BN

LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

2/14/2012

£

L5U

Compiling multiple source files

e Compiling single source file is straightforward
— <compiler> <flags> <source file>

e Compiling multiple source files

— Need to analyze file dependencies to decide the
order of compilation

— Can be done with one command as well
e <compiler> <flags> <source file 1> <source file 2>...

i 0
LSU R

Ld
) L3
CENTER FOR COMPUTATION e A
& TECHNOLOGY L, ., BN

LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

2/14/2012

INFORMATION
TECHNOLOGY
SERVICES

A “Hello world” example (1)

main.o adjust.o hello.o

adjust.fo0

hello.f90

Common.mod

Common.f90
Soucefle lPupose

Common.f90 Declares a character variable to store the message

r Hello.f90 Prints the message to screen
£ Adjust.fo0 Modifies the message and prints it to screen = '
fs—[' Main.f90 Calls functions in hello.f90 and adjust.f90 S
e 4

2/14/2012 LONI Fortran Programming Workshop, LSU Feb

13-16, 2012

INFORMATION
TECHNOLOGY
SERVICES

A “Hello world” example (2)

main.o adjust.o hello.o

hello.f90

Common.mod

Common.f90

[lyanl@eric2 make]$ Is
adjust.fO0 common.f90 hello.f90 main.f90

[lyanl@eric2 make]$ 1fort common.f90 hello.f90
adjust.f9O0 main.f90

adjust.fo0

A [lyanl@eric2 make]$./a.out g
i Hello, world! & '!!
— Joe
LSU Hello, world!
f e o o &
e 14

CENTER FOR COMPUTATION
& TECHNOLOGY

LONI Fortran Programming Workshop, LSU Feb

2/14/2012 13-16. 2012

LSLJ

Command line compilation

e Command line compilation works, but it is

— Cumbersome

* Does not work very well when one has a source tree with
many source files in many sub-directories

— Not flexible

e What if different source files need to be compiled using
different flags?

e Use Make instead!

il "9
A .
E @ ° .'
CENTER FOR COMPUTATION BN i
& TECHNOLOGY L, ., BN

LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

2/14/2012

How Make works

* Two parts

— The Makefile
* A text file that describes the dependency

— The “make” command

e Compile the program using the dependency provided
by the Makefile

[lyanl@eric2 make]$ Is
adjust.f90 common.f90 hello.f90 main.f90
Makefile
[lyanl@eric2 make]$ make
A ifort common.f90 hello.f90 adjust.f90 main.f90
'ﬂ ' [lyanl@eric2 make]$ Is
; adjust.f90 a.out common.f90 common.mod hello.fI0WN
LSU main.f90 MakeTfile £
CENTER FOR COMPUTATION

& TECHNOLOGY

LONI Fortran Programming Workshop, LSU
2/14/2012 Feb 13-16, 2012

INFORMATION
TECHNOLOGY
SERVICES

A Makefile with only one rule

Target Action: shell commands that will be executed

[lyanl@ericz make]$ cat Makefile
all:

ifort common.f90 hello.f90 adjust.f90 main.f90

Explicit rule

A mandatory tab

A .
il &
LSU R

CENTER FOR COMPUTATION NG
& TECHNOLOGY L, ., BN

LONI Fortran Programming Workshop, LSU Feb
13-16, 2012

2/14/2012

Exercise 1

e Copy all files under
/home/lyanl/traininglab/make to your own

user space
e Check the Makefile and use it to build the
executable
£ -
i L
LSU) ‘*
N

LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

2/14/2012

Makefile components

e Explicit rules

— Purpose: create a target or re-create a target when
any of prerequisites changes

— Syntax: target: prerequisites
(tab) action

e |mplicit rules
e Variable definition

* Directives
T b 4
A —
~ y e JE‘N.{“ !
LsU ,
CENTER FOR COMPUTATION PGS -
& TECHNOLOGY — gy L,

LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

2/14/2012

Explicit rules (1)

 Multiple rules can exist in the same Makefile
— The “make” command builds the first target by default

— To build other targets, one needs to specify the target name
* make <target name>

e Asingle rule can have multiple targets separated by space

e An action (or recipe) can consist of multiple commands

— They can be on multiple lines, or on the same line separated by
semicolons

— Wildcards can be used

— By default all executed commands will be printed to screen
e Can be suppressed by adding “@” before the commands

£

il

~

LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

2/14/2012 LONI Fortran Programming Workshop, LSU

Feb 13-16, 2012

Explicit rules (2)

* How file dependencies are handled
— Targets and prerequisites are often file names
— A target is considered out-of-date if

* |t does not exist, or
 |tis older than any of the prerequisites

il -
3 .
<~ W s
LsU B
CENTER FOR COMPUTATION BN i
& TECHNOLOGY L, ., BN

LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

2/14/2012

INFORMATION
TECHNOLOGY
SERVICES

A Makefile with many rules

| main.o | | adjust.o | | hello.o |

[Common.mod]

Common.f90

all: main.o adjust.o hello.o
ifort main.o adjust.o hello.o
main.o: main.f90
ifort —c main.f90
adjust.o: adjust.f90 common.mod
ifort —c adjust.f90

o hello.o: hello.f90 common.mod —
il ifort —c hello.f90 &
~ & Jnﬁ
LS common.mod: common.¥90 ‘
CENTER FOR COMPUTATION ifort —c common.f90 Lih'f ~
& TECHNOLOGY TP,

LONI Fortran Programming Workshop, LSU Feb
13-16, 2012

2/14/2012

Exercise 2

 Write a Makefile using the template provided on
the previous slide and “make”

e Run “make” again and see what happens

e Modify the message (common.f90) and “make”
again

 Add a new rule “clean” which deletes all but the
source and makefiles (the executable, object files
and common.mod), and try “make clean”

’ﬂ_\ kA g

LSU

] L]
CENTER FOR COMPUTATION b
& TECHNOLOGY

LONI Fortran Programming Workshop, LSU

2/14/2012

Feb 13-16, 2012

Variables in Makefile (1)

 These kinds of
duplication are

error-prone

e One can solve

this problem by
using variables

4
il

~
LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

2/14/2012

main.o:

all: main.o adjust.o hello.o

ifort main.o adjust.o hello.o
main.Fo0
i1fort —c main.f90

adjust.o: adjust.f90 common.mod

ifort —c adjust.f90

hello.o: hello.f90 common.mod

ifort —c hello.f90

common.mod: common.f90

i1fort —c common.f90

LONI Fortran Programming Workshop, LSU

Feb 13-16

2012

Variables in Makefile (2)

e Similar to shell variables
— Define once as a string and reuse later

all: main.o adjust.o hello.o

ifort main.o adjust.o hello.o
main.o: main.f90

ifort —c main.f90

Without variables

FC=1fort
OBJ=main.o adjust.o hello.o

With variables all: $(0BJ)
£ $(FC) $(0BJ)
'ﬁfl main.o: main.f90 o
$(FC) —c main.f90 | - =
LSU
CENTER FOR COMPUTATION ‘ = \ ‘ ?
& TECHNOLOGY : ES .

LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

2/14/2012

Automatic variables

 The values of automatic variables change every time a
rule is executed

e Automatic variables only have values within a rule
 Most frequently used ones

— S@: The name of the current target

— SM: The names of all the prerequisites

— S$?: The names of all the prerequisites that are newer than
the target

— S<: The name of the first prerequisite
A

il

~

LSU

CENTER FOR COMPUTATION "
& TECHNOLOGY

2/14/2012 LONI Fortran Programming Workshop, LSU

Feb 13-16, 2012

Implicit rules (1)

e Tells Make system how to build a certain type of targets
— GNU make has a few built-in implicit rules

e Syntax is similar to an ordinary rule, except that “%” is used
in the target

— “%” stands for the same thing in the prerequisites as it does in
the target

%.0: %.cC
(tab) action

— There can also be unvarying prerequisites
— Automatic variables can be used here as well

LI
ﬁl ®
3 g
CENTER FOR COMPUTATION e
& TECHNOLOGY 8

LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

2/14/2012

Implicit rules (2)

CC=1cc
CFLAGS

%.0

data.o

=-03

- %.C

@$(CC) $(CFLAGS) -c —0 $@ $<

- data.h

e |n this example, any .o target has a corresponding .c file
as an implied prerequisite

e |f a target needs additional prerequisites, write a action-
less rule with those prerequisites

5
il

~
LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

2/14/2012

LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

Exercise 3

e Rewrite the Makefile from Exercise 2

— Define an implicit rule so that no more than 3
explicit rules are necessary (excluding “clean”)

— Use variables so that no file name appears in the
action section of any rule

£

il

~

LSU

CENTER FOR COMPUTATION ‘ ~ -

& TECHNOLOGY

LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

2/14/2012

Directives

 Make directives are similar to the C preprocessor
directives

— E.g. include, define, conditionals

e Include directive

— Read the contents of other Makefiles before
proceeding within the current one

— Often used to read

e Top level and common definitions when there are multiple
sub-directories and makefiles

LI

il

~
LSU

) L]
CENTER FOR COMPUTATION o
& TECHNOLOGY

LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

2/14/2012

LSLJ

Command line options of make (1)

e -f<file name>
— Specify the name of the file to be used as the makefile

— Default is GNUmakefile, makefile and Makefile (in that
order)

— Multiple makefiles may be useful for compilation on
multiple platforms

* -
— Turn on silent mode (as if all commands start with an “@”)

il "9
A .
E @ ° .'
CENTER FOR COMPUTATION BN i
& TECHNOLOGY L, ., BN

LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

2/14/2012

LSLJ

Command line options of make (2)

e -j<number of jobs>
— Build multiple targets in parallel
° -
— lgnore all errors
— A warning message will be printed out for each error

. k

— Continue as much as possible after an error.

i o
LSU R

oY
CENTER FOR COMPUTATION e A
& TECHNOLOGY L, ., BN

LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

2/14/2012

Exercise 4

e Take a look at a real life makefile
— /home/lyanl/traininglab/valgrind/Makefile

— Makefile for a memory profiler Valgrind

il -
3 .
<~ W s
LsU B
CENTER FOR COMPUTATION BN i
& TECHNOLOGY L, ., BN

LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

2/14/2012

Questions?

o

il S

. \ .}
CENTER FOR COMPUTATION BN i
& TECHNOLOGY L, ., BN

LONI Fortran Programming Workshop, LSU Feb
13-16, 2012

2/14/2012

	Make Tutorial
	Outline
	What is Make
	What is Make
	Why having multiple source files
	From source files to executable
	Compiling multiple source files
	A “Hello world” example (1)
	A “Hello world” example (2)
	Command line compilation
	How Make works
	A Makefile with only one rule
	Exercise 1
	Makefile components
	Explicit rules (1)
	Explicit rules (2)
	A Makefile with many rules
	Exercise 2
	Variables in Makefile (1)
	Variables in Makefile (2)
	Automatic variables
	Implicit rules (1)
	Implicit rules (2)
	Exercise 3
	Directives
	Command line options of make (1)
	Command line options of make (2)
	Exercise 4
	Slide Number 29

