
Make Tutorial

Le Yan

User Services
High Performance Computing @ LSU/LONI

2/14/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

Outline

• What is make
• How to use make

– How to write a makefile
– How to use the “make” command

2/14/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

What is Make
• A tool that

– Controls the generation of executable and other non-source files (libraries
etc.)

– Simplifies (a lot) the management of a program that has multiple source files
• Have many variants

– GNU make (we will focus on it today)
– BSD make
– …

• Other utilities that do similar things
– Cmake
– Zmake
– …

2/14/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

What is Make
• A tool that

– Controls the generation of executable and other non-source files (libraries
etc.)

– Simplifies (a lot) the management of a program that has multiple source files
• Have many variants

– GNU make (we will focus on it today)
– BSD make
– …

• Other utilities that do similar things
– Cmake
– Zmake
– …

2/14/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

Why having multiple source files

• It is very important to keep different modules
of functionalities in different source files,
especially for a large program
– Easier to edit and understand
– Easier version control
– Easier to share code with others
– Allow to write a program with different languages

2/14/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

From source files to executable

• Two-step process
– The compiler generates the object files from the

source files
– The linker generates the executable from the

object files
• Most compilers do both steps by default

– Use “-c” to suppress linking

2/14/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

Compiling multiple source files

• Compiling single source file is straightforward
– <compiler> <flags> <source file>

• Compiling multiple source files
– Need to analyze file dependencies to decide the

order of compilation
– Can be done with one command as well

• <compiler> <flags> <source file 1> <source file 2>…

2/14/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

A “Hello world” example (1)

2/14/2012 LONI Fortran Programming Workshop, LSU Feb
13-16, 2012

Source file Purpose

Common.f90 Declares a character variable to store the message

Hello.f90 Prints the message to screen

Adjust.f90 Modifies the message and prints it to screen

Main.f90 Calls functions in hello.f90 and adjust.f90

main.f90 adjust.f90 hello.f90 Common.mod

Common.f90

main.o adjust.o hello.o

a.out

A “Hello world” example (2)

2/14/2012 LONI Fortran Programming Workshop, LSU Feb
13-16, 2012

[lyan1@eric2 make]$ ls
adjust.f90 common.f90 hello.f90 main.f90
[lyan1@eric2 make]$ ifort common.f90 hello.f90
adjust.f90 main.f90
[lyan1@eric2 make]$./a.out
 Hello, world!
 Hello, world!

main.f90 adjust.f90 hello.f90 Common.mod

Common.f90

main.o adjust.o hello.o

a.out

Command line compilation

• Command line compilation works, but it is
– Cumbersome

• Does not work very well when one has a source tree with
many source files in many sub-directories

– Not flexible
• What if different source files need to be compiled using

different flags?

• Use Make instead!

2/14/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

How Make works
• Two parts

– The Makefile
• A text file that describes the dependency

– The “make” command
• Compile the program using the dependency provided

by the Makefile

2/14/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

[lyan1@eric2 make]$ ls
adjust.f90 common.f90 hello.f90 main.f90
Makefile
[lyan1@eric2 make]$ make
ifort common.f90 hello.f90 adjust.f90 main.f90
[lyan1@eric2 make]$ ls
adjust.f90 a.out common.f90 common.mod hello.f90
main.f90 Makefile

A Makefile with only one rule

2/14/2012 LONI Fortran Programming Workshop, LSU Feb
13-16, 2012

[lyan1@eric2 make]$ cat Makefile
all:
 ifort common.f90 hello.f90 adjust.f90 main.f90

Target Action: shell commands that will be executed

Explicit rule

A mandatory tab

Exercise 1

• Copy all files under
/home/lyan1/traininglab/make to your own
user space

• Check the Makefile and use it to build the
executable

2/14/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

Makefile components
• Explicit rules

– Purpose: create a target or re-create a target when
any of prerequisites changes

– Syntax:

• Implicit rules
• Variable definition
• Directives

2/14/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

target: prerequisites
(tab) action

Explicit rules (1)
• Multiple rules can exist in the same Makefile

– The “make” command builds the first target by default
– To build other targets, one needs to specify the target name

• make <target name>
• A single rule can have multiple targets separated by space
• An action (or recipe) can consist of multiple commands

– They can be on multiple lines, or on the same line separated by
semicolons

– Wildcards can be used
– By default all executed commands will be printed to screen

• Can be suppressed by adding “@” before the commands

2/14/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

Explicit rules (2)

• How file dependencies are handled
– Targets and prerequisites are often file names
– A target is considered out-of-date if

• It does not exist, or
• It is older than any of the prerequisites

2/14/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

A Makefile with many rules

2/14/2012 LONI Fortran Programming Workshop, LSU Feb
13-16, 2012

main.f90 adjust.f90 hello.f90 Common.mod

Common.f90

main.o adjust.o hello.o

a.out

all: main.o adjust.o hello.o
 ifort main.o adjust.o hello.o
main.o: main.f90
 ifort –c main.f90
adjust.o: adjust.f90 common.mod
 ifort –c adjust.f90
hello.o: hello.f90 common.mod
 ifort –c hello.f90
common.mod: common.f90
 ifort –c common.f90

Exercise 2
• Write a Makefile using the template provided on

the previous slide and “make”
• Run “make” again and see what happens
• Modify the message (common.f90) and “make”

again
• Add a new rule “clean” which deletes all but the

source and makefiles (the executable, object files
and common.mod), and try “make clean”

2/14/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

Variables in Makefile (1)

• These kinds of
duplication are
error-prone

• One can solve
this problem by
using variables

2/14/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

all: main.o adjust.o hello.o
 ifort main.o adjust.o hello.o
main.o: main.f90
 ifort –c main.f90
adjust.o: adjust.f90 common.mod
 ifort –c adjust.f90
hello.o: hello.f90 common.mod
 ifort –c hello.f90
common.mod: common.f90
 ifort –c common.f90

Variables in Makefile (2)
• Similar to shell variables

– Define once as a string and reuse later

2/14/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

all: main.o adjust.o hello.o
 ifort main.o adjust.o hello.o
main.o: main.f90
 ifort –c main.f90

FC=ifort
OBJ=main.o adjust.o hello.o

all: $(OBJ)
 $(FC) $(OBJ)
main.o: main.f90
 $(FC) –c main.f90

Without variables

With variables

Automatic variables
• The values of automatic variables change every time a

rule is executed
• Automatic variables only have values within a rule
• Most frequently used ones

– $@: The name of the current target
– $^: The names of all the prerequisites
– $?: The names of all the prerequisites that are newer than

the target
– $<: The name of the first prerequisite

2/14/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

Implicit rules (1)
• Tells Make system how to build a certain type of targets

– GNU make has a few built-in implicit rules
• Syntax is similar to an ordinary rule, except that “%” is used

in the target
– “%” stands for the same thing in the prerequisites as it does in

the target

– There can also be unvarying prerequisites
– Automatic variables can be used here as well

2/14/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

%.o: %.c
(tab) action

Implicit rules (2)

• In this example, any .o target has a corresponding .c file
as an implied prerequisite

• If a target needs additional prerequisites, write a action-
less rule with those prerequisites

2/14/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

CC=icc
CFLAGS=-O3

%.o : %.c
 @$(CC) $(CFLAGS) -c –o $@ $<

data.o: data.h

Exercise 3

• Rewrite the Makefile from Exercise 2
– Define an implicit rule so that no more than 3

explicit rules are necessary (excluding “clean”)
– Use variables so that no file name appears in the

action section of any rule

2/14/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

Directives
• Make directives are similar to the C preprocessor

directives
– E.g. include, define, conditionals

• Include directive
– Read the contents of other Makefiles before

proceeding within the current one
– Often used to read

• Top level and common definitions when there are multiple
sub-directories and makefiles

2/14/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

Command line options of make (1)
• -f <file name>

– Specify the name of the file to be used as the makefile
– Default is GNUmakefile, makefile and Makefile (in that

order)
– Multiple makefiles may be useful for compilation on

multiple platforms
• -s

– Turn on silent mode (as if all commands start with an “@”)

2/14/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

Command line options of make (2)

• -j <number of jobs>
– Build multiple targets in parallel

• -i
– Ignore all errors
– A warning message will be printed out for each error

• -k
– Continue as much as possible after an error.

2/14/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

Exercise 4

• Take a look at a real life makefile
– /home/lyan1/traininglab/valgrind/Makefile
– Makefile for a memory profiler Valgrind

2/14/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

Questions?

2/14/2012 LONI Fortran Programming Workshop, LSU Feb
13-16, 2012

	Make Tutorial
	Outline
	What is Make
	What is Make
	Why having multiple source files
	From source files to executable
	Compiling multiple source files
	A “Hello world” example (1)
	A “Hello world” example (2)
	Command line compilation
	How Make works
	A Makefile with only one rule
	Exercise 1
	Makefile components
	Explicit rules (1)
	Explicit rules (2)
	A Makefile with many rules
	Exercise 2
	Variables in Makefile (1)
	Variables in Makefile (2)
	Automatic variables
	Implicit rules (1)
	Implicit rules (2)
	Exercise 3
	Directives
	Command line options of make (1)
	Command line options of make (2)
	Exercise 4
	Slide Number 29

