
Information Technology Services

Parallel Computing Concepts

Le Yan

Interim Manager of User Services
LONI HPC

2/16/2012 LONI Fortran Programming Workshop, LSU Feb
13-16, 2012

1

Information Technology Services

Outline

• Introduction
• Parallel programming models
• Parallel programming hurdles
• Heterogeneous computing

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

2

Information Technology Services

Why parallel computing

• Parallel computing might be the only way to
achieve certain goals
– Problem size (memory, disk etc.)
– Time needed to solve problems

• Parallel computing allows us to take advantage of
ever-growing parallelism at all levels
– Multi-core, many-core, cluster, grid, cloud…

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

3

Information Technology Services

Latest Top 500 List
• Released on 6/20/11
• Japan claims the top spot, again

– Built by Fujitsu
– 8 PetaFLOPS (1015) sustained

• 10.5 PetaFLOPS sustained as of 11/3/2011
– More than half million cores
– Power close to 10 MW

• Only one US machine in the top 5 for the first
time in 5 years (in history?)
– (At least) four US supercomputers in the 10

PetaFLOPS range are announced/being built

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

4

Information Technology Services

Supercomputing on a cell phone?
• Quad-core processors are

coming to your phone
– Nvidia, TI, QualComm…
– Processing power in the

neighborhood of 10
GigaFLOPS

– Would make the top 500
list 15 years ago

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

5

Information Technology Services

What is parallel computing
• Multiple processing units work together to solve a task

– The processing units can be tightly or loosely coupled
– Not every part of the task is parallelizable
– In most cases, communication among processing units is

necessary for the purpose of coordination
• Embarrassingly Parallel

– Subtasks are independent, therefore communication is
unnecessary

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

6

Information Technology Services

An example of parallel computing
(not really)

• A group of people move a pile of boxes from location A
to location B

• The benefit of going parallel: for a fixed number of
boxes, more workers mean less time

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

7

Worker Location A Location B

1

2

3

4

Information Technology Services

Evaluating parallel programs (1)
• Speedup

– Probably the most import metric (that matters)
– Let Nproc be the number of parallel processes

– Speedup (Nproc) = 𝑇𝑇𝑇𝑇 𝑢𝑢𝑇𝑢 𝑏𝑏 𝑏𝑇𝑢𝑏 𝑢𝑇𝑠𝑇𝑠𝑠 𝑝𝑠𝑝𝑝𝑠𝑠𝑇
𝑇𝑇𝑇𝑇 𝑢𝑢𝑇𝑢 𝑏𝑏 𝑝𝑠𝑠𝑠𝑠𝑠𝑇𝑠 𝑝𝑠𝑝𝑝𝑠𝑠𝑇

– Between 0 and Nproc (for most cases)
• Efficiency

– Efficiency(Nproc)=Speedup/Nproc

– Between 0 and 1

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

8

Information Technology Services

Evaluating parallel programs (2)
• For our box moving example

– Assuming we have 20 boxes total and it takes 1 minute for
1 worker to move 1 box, ideally we will see:

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

9

Number of
workers

Time used
(minutes) Speedup Efficiency

1 20 1 1

2 10 2 1

5 4 5 1

10 2 10 1

20 1 20 1

40 0.5? 1? ? ?

… ? ? ?

Information Technology Services

Speedup as a function of Nproc
• Ideally

– The speedup will be linear
• Even better

– (in very rare cases) we can
have superlinear speedup

• But in reality
– Efficiency decreases with

increasing number of
processes

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

10

Ideal

Reality

Sp
ee

du
p

Nproc

Information Technology Services

Amdahl’s law (1)
• Let f be the fraction of the serial program that cannot be

parallelized
• Assume that the rest of the serial program can be perfectly

parallelized (linear speedup)
• Then

– 𝑇𝑇𝑇𝑇𝑝𝑠𝑠𝑠𝑠𝑠𝑇𝑠 = 𝑇𝑇𝑇𝑇𝑢𝑇𝑠𝑇𝑠𝑠 ∙ (𝑓 + 1−𝑓
𝑁𝑝𝑝𝑝𝑝

)

• Or

– 𝑆𝑆𝑇𝑇𝑆𝑆𝑆 = 1

𝑓+ 1−𝑓
𝑁𝑝𝑝𝑝𝑝

≤ 1
𝑓

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

11

Information Technology Services

Maximal Possible Speedup

2/16/2012 LONI Fortran Programming Workshop, LSU Feb
13-16, 2012

12

Source: Stout & Jablonowski, Parallel computing 101, SC10

Information Technology Services

Amdahl’s law (2)
• What Amdahl’s law says

– It puts an upper bound on speedup (for a given f), no
matter how many processes are thrown at it

• Beyond Amdahl’s law
– Parallelization adds overhead (communication)
– f could be a variable too

• It may drop when problem size and Nproc increase
– Parallel algorithm is different from the serial one

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

13

Information Technology Services

Writing a parallel program step by step

• Step 1. Start from serial programs as a baseline
– Something to check correctness and efficiency against

• Step 2. Analyze and profile the serial program
– Identify the “hotspot”
– Identify the parts that can be parallelized

• Step 3. Parallelize code incrementally
• Step 4. Check correctness of the parallel code
• Step 5. Iterate step 3 and 4

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

14

Information Technology Services

An REAL example of parallel
computing

• Dense matrix multiplication MmdxNdn=Pmn

• Formula

• For our 4x4 example

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

15

2,2
M

N

P

𝑆𝑇,𝑗 = �𝑇𝑇,𝑘 ∙ 𝑛𝑘,𝑗

𝑢

𝑘=1

p2,2=m2,1*n1,2+
 m2,2*n2,2+
 m2,3*n3,2+
 m2,4*n4,2

Information Technology Services

Parallelizing matrix multiplication
• Divide work among processors
• In our 4x4 example

– Assuming 4 processors
– Each responsible for a 2x2 tile

(submatrix)
– Can we do 4x1 or 1x4?

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

16

1 2

3 4

Information Technology Services

Pseudo code

2/16/2012 LONI Fortran Programming Workshop, LSU Feb
13-16, 2012

17

Serial Parallel

for i = 1 to 4
 for j = 1 to 4
 for k = 1 to 4
 P(i,j) += M(i,k)*N(i,k);

Each process figures out its own
starting and ending indices;
for i = istart to iend
 for j = jstart to jend
 for k = 1 to 4
 P(i,j) += M(i,k)*N(i,k);

Information Technology Services

Outline

• Introduction
• Parallel programming models
• Parallel programming hurdles
• Heterogeneous computing

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

18

Information Technology Services

Single Program Multiple Data (SPMD)

• All program instances execute same program
• Data parallel - Each instance works on different

part of the data
• The majority of parallel programs are of this type
• Can also have

– SPSD: serial program
– MPSD: rare
– MPMD

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

19

Information Technology Services

Memory system models

• Different ways of sharing data among
processors
– Distributed Memory
– Shared Memory
– Other memory models

• Hybrid model
• PGAS (Partitioned Global Address Space)

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

20

Information Technology Services

Distributed memory model
• Each process has its own

address space
– Data is local to each process

• Data sharing achieved via
explicit message passing
(through network)

• Example: MPI (Message Passing
Interface)

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

21

C

M

Node interconnect

C

M

C

M

C

M
data

Information Technology Services

Shared memory model
• All threads can access the

global address space
• Data sharing achieved via

writing to/reading from the
same memory location

• Example: OpenMP

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

22

C C C C

M
data

Information Technology Services

Distributed vs. shared memory
Distributed
• Pro

– Memory amount is scalable
– Cheaper to build

• Con
– Slow data sharing

• Hard to balance the load

• Pro and con?
– Explicit data transfer

Shared
• Pro

– Easy to use
– Fast data sharing

• Con
– Memory amount is not

scalable
– Expensive to build

• Pro and con?
– Implicit data transfer

2/16/2012 LONI Fortran Programming Workshop, LSU Feb
13-16, 2012

23

Information Technology Services

Hybrid model
• Clusters of SMP (symmetric

multi-processing) nodes
dominate nowadays

• Hybrid model matches the
physical structure of SMP
clusters
– OpenMP within nodes
– MPI between nodes

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

24

C C C C
M

Node interconnect

C C C C
M

C C C C
M

C C C C
M

Information Technology Services

Potential benefits of hybrid model
• Message-passing within nodes (loopback) is eliminated
• Number of MPI processes is reduced, which means

– Message size increases
– Message number decreases

• Memory usage could be reduced
– Eliminate replicated data

• Those are good, but in reality, (most) pure MPI
programs run as fast (sometimes faster than) as hybrid
ones…

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

25

Information Technology Services

Reasons why NOT using hybrid model

• Some (most?) MPI libraries already use internally
different protocols
– Shared memory data exchange within SMP nodes
– Network communication between SMP nodes

• Overhead associated with thread management
– Thread fork/join
– Additional synchronization with hybrid programs

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

26

Information Technology Services

Partitioned Global Address Space
(PGAS)

• PGAS languages present programmers a global address
space, regardless the type of the underlying system
– Simulates hardware with software
– Logically shared, physically distributed

• Examples
– Unified Parallel C (UPC), CoArray Fortran (CAF), Fortress,

Chapel, X10…
• Limitation

– Lack of standard

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

27

Information Technology Services

Outline

• Introduction
• Parallel programming models
• Parallel programming hurdles
• Heterogeneous computing

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

28

Information Technology Services

Parallel Programming Hurdles

• Hidden serializations
• Overhead caused by parallelization
• Load balancing
• Synchronization issues

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

29

Information Technology Services

Hidden Serialization (1)
• Back to our box moving example
• What if there is a long and narrow corridor that allows

only one work to pass at a time between Location A
and B?

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

30

Worker Location A Location B

1

2

3

4

Information Technology Services

Hidden Serialization (2)

• It is not the part in serial programs that is hard
or impossible to parallelize
– Intrinsic serialization (the f in Amdahl’s law)

• Examples of hidden serialization:
– System resources contention, e.g. I/O hotspot
– Internal serialization, e.g. library functions that

cannot be executed in parallel for correctness

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

31

Information Technology Services

Communication overhead
• Sharing data across network is slow

– Mainly a problem for distributed memory systems
• There are two parts of it

– Latency: startup cost for each transfer
– Bandwidth: extra cost for each byte

• Reduce communication overhead
– Avoid unnecessary message passing
– Reduce number of messages by combining them

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

32

Information Technology Services

Memory Hierarchy

• Avoid unnecessary data transfer
• Load data in blocks (spatial locality)
• Reuse loaded data (temporal locality)
• All these apply to serial programs as well

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

33

CPU
register Cache Memory Disk Other

computers

small size big

fast speed slow

Information Technology Services

Load balancing (1)
• Back to our box moving example, again
• Anyone sees a problem?

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

34

Worker Location A Location B

1

2

3

4

Information Technology Services

Load balancing (2)
• Work load not evenly distributed

– Some are working while others are idle
– The slowest worker dominates in extreme cases

• Solutions
– Explore various decomposition techniques
– Dynamic load balancing

• Hard for distributed memory
• Adds overhead

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

35

Information Technology Services

Synchronization issues - deadlock

2/16/2012 LONI Fortran Programming Workshop, LSU Feb
13-16, 2012

36

Source: Stout & Jablonowski, Parallel computing 101, SC10

Information Technology Services

Deadlock
• Often caused by “blocking” communication

operations
– “Blocking” means “I will not proceed until the current

operation is over”
• Solution

– Use “non-blocking” operations
– Caution: tradeoff between data safety and

performance

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

37

Information Technology Services

Outline

• Introduction
• Parallel programming models
• Parallel programming hurdles
• Heterogeneous computing

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

38

Information Technology Services

Heterogeneous computing
• A heterogeneous system solves tasks using different

types of processing units
– CPUs
– GPUs
– DSPs
– Co-processors
– …

• As opposed to homogeneous systems, e.g. SMP nodes
with CPUs only

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

39

Information Technology Services

The free (performance) lunch is over

2/16/2012 LONI Fortran Programming Workshop, LSU Feb
13-16, 2012

40

Source: Herb Sutter, The Free Lunch is Over, http://www.gotw.ca/publications/concurrency-
ddj.htm

Information Technology Services

Power efficiency is the key
• We have been able to make computer run faster by

adding more transistors
– Moore’s law

• Unfortunately, not any more
– Power consumption/heat generation limits packing density
– Power ~ speed2

• Solution
– Reduce each core’s speed and use more cores – increased

parallelism

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

41

Information Technology Services

Graphic Processing Units (GPUs)
• Massively parallel many-core architecture

– Thousands of cores capable of running millions of threads
– Data parallelism

• GPUs are traditionally dedicated for graphic rendering, but
become more versatile thanks to
– Hardware: faster data transfer and more on-board memory
– Software: libraries that provide more general purposed

functions
• GPU vs CPU

– GPUs are very effectively for certain type of tasks, but we still
need the general purpose CPUs

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

42

Information Technology Services

GPUs and HPC
• Latest trend in HPC

– SMP nodes with GPUs installed
– 3 of the top 5 machines in the top 500 list are accelerated

by GPUs
• Why people love them

– Tremendous performance gain – single to double digit
speedup compared to cpu-only versions

• Why people hate them (well, just a little bit)
– Still (relatively) hard to program, even harder to optimize

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

43

Information Technology Services

GPU programming strategies
• GPUs need to copy data from main memory to its on-

board memory and copy them back
– Data transfer over PCIe is the bottleneck, so one needs to

• Avoid data transfer and reuse data
• Overlap data transfer and computation

• Massively parallel, so it is a crime to do anything anti-
parallel
– Need to launch enough threads in parallel to keep the

device busy
– Threads need to access contiguous data
– Thread divergence needs to be eliminated

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

44

Information Technology Services

Fused processing unit
• CPU and GPU cores on

the same die
• GPU cores can access

main memory
– Hence no PCIe

bottleneck
• Much less GPU cores

than a discrete graphic
card can carry
– Less processing power

2/16/2012 LONI Fortran Programming Workshop, LSU
Feb 13-16, 2012

45

AMD “Llano” Accelerated Processing Unit (APU)

Information Technology Services

Questions?

2/16/2012 LONI Fortran Programming Workshop, LSU Feb
13-16, 2012

46

	Parallel Computing Concepts
	Outline
	Why parallel computing	
	Latest Top 500 List
	Supercomputing on a cell phone?
	What is parallel computing
	An example of parallel computing �(not really)
	Evaluating parallel programs (1)
	Evaluating parallel programs (2)
	Speedup as a function of Nproc
	Amdahl’s law (1)
	Maximal Possible Speedup
	Amdahl’s law (2)
	Writing a parallel program step by step
	An REAL example of parallel computing
	Parallelizing matrix multiplication
	Pseudo code
	Outline
	Single Program Multiple Data (SPMD)
	Memory system models
	Distributed memory model
	Shared memory model
	Distributed vs. shared memory
	Hybrid model
	Potential benefits of hybrid model
	Reasons why NOT using hybrid model
	Partitioned Global Address Space (PGAS)
	Outline
	Parallel Programming Hurdles
	Hidden Serialization (1)
	Hidden Serialization (2)
	Communication overhead
	Memory Hierarchy
	Load balancing (1)
	Load balancing (2)
	Synchronization issues - deadlock
	Deadlock
	Outline
	Heterogeneous computing
	The free (performance) lunch is over
	Power efficiency is the key
	Graphic Processing Units (GPUs)
	GPUs and HPC
	GPU programming strategies
	Fused processing unit
	Questions?

