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Why parallel computing  

• Parallel computing might be the only way to 
achieve certain goals 
– Problem size (memory, disk etc.) 
– Time needed to solve problems 

• Parallel computing allows us to take advantage of 
ever-growing parallelism at all levels 
– Multi-core, many-core, cluster, grid, cloud… 
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Latest Top 500 List 
• Released on 6/20/11 
• Japan claims the top spot, again 

– Built by Fujitsu 
– 8 PetaFLOPS (1015) sustained 

• 10.5 PetaFLOPS sustained as of 11/3/2011 
– More than half million cores 
– Power close to 10 MW 

• Only one US machine in the top 5 for the first 
time in 5 years (in history?) 
– (At least) four US supercomputers in the 10 

PetaFLOPS range are announced/being built  
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Supercomputing on a cell phone? 
• Quad-core processors are 

coming to your phone 
– Nvidia, TI, QualComm… 
– Processing power in the 

neighborhood of 10 
GigaFLOPS  

– Would make the top 500 
list 15 years ago 
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What is parallel computing 
• Multiple processing units work together to solve a task 

– The processing units can be tightly or loosely coupled 
– Not every part of the task is parallelizable 
– In most cases, communication among processing units is 

necessary for the purpose of coordination 
• Embarrassingly Parallel 

– Subtasks are independent, therefore communication is 
unnecessary 
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An example of parallel computing  
(not really) 

• A group of people move a pile of boxes from location A 
to location B 

• The benefit of going parallel: for a fixed number of 
boxes, more workers mean less time 
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Evaluating parallel programs (1) 
• Speedup 

– Probably the most import metric (that matters) 
– Let Nproc be the number of parallel processes 

– Speedup (Nproc) = 𝑇𝑇𝑇𝑇 𝑢𝑢𝑇𝑢 𝑏𝑏 𝑏𝑇𝑢𝑏 𝑢𝑇𝑠𝑇𝑠𝑠 𝑝𝑠𝑝𝑝𝑠𝑠𝑇 
𝑇𝑇𝑇𝑇 𝑢𝑢𝑇𝑢 𝑏𝑏 𝑝𝑠𝑠𝑠𝑠𝑠𝑇𝑠 𝑝𝑠𝑝𝑝𝑠𝑠𝑇

 

– Between 0 and Nproc (for most cases) 
• Efficiency 

– Efficiency(Nproc)=Speedup/Nproc 

– Between 0 and 1 

2/16/2012 LONI Fortran Programming Workshop, LSU  
Feb 13-16, 2012 

8 



Information Technology Services 

Evaluating parallel programs (2) 
• For our box moving example 

– Assuming we have 20 boxes total and it takes 1 minute for 
1 worker to move 1 box, ideally we will see: 
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Number of 
workers 

Time used 
(minutes) Speedup Efficiency 

1 20 1 1 

2 10 2 1 

5 4 5 1 

10 2 10 1 

20 1 20 1 

40 0.5? 1?  ? ? 

… ? ? ? 
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Speedup as a function of Nproc 
• Ideally 

– The speedup will be linear 
• Even better 

– (in very rare cases) we can 
have superlinear speedup 

• But in reality 
– Efficiency decreases with 

increasing number of 
processes 

2/16/2012 LONI Fortran Programming Workshop, LSU  
Feb 13-16, 2012 

10 

Ideal 

Reality 

Sp
ee

du
p 

Nproc 



Information Technology Services 

Amdahl’s law (1) 
• Let f be the fraction of the serial program that cannot be 

parallelized 
• Assume that the rest of the serial program can be perfectly 

parallelized (linear speedup) 
• Then 

– 𝑇𝑇𝑇𝑇𝑝𝑠𝑠𝑠𝑠𝑠𝑇𝑠 = 𝑇𝑇𝑇𝑇𝑢𝑇𝑠𝑇𝑠𝑠 ∙ (𝑓 + 1−𝑓
𝑁𝑝𝑝𝑝𝑝

) 

• Or 

– 𝑆𝑆𝑇𝑇𝑆𝑆𝑆 = 1

𝑓+ 1−𝑓
𝑁𝑝𝑝𝑝𝑝

≤ 1
𝑓
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Maximal Possible Speedup 
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Source: Stout & Jablonowski, Parallel computing 101, SC10 
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Amdahl’s law (2) 
• What Amdahl’s law says 

– It puts an upper bound on speedup (for a given f), no 
matter how many processes are thrown at it 

• Beyond Amdahl’s law 
– Parallelization adds overhead (communication) 
– f could be a variable too 

• It may drop when problem size and Nproc increase 
– Parallel algorithm is different from the serial one 
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Writing a parallel program step by step 

• Step 1. Start from serial programs as a baseline 
– Something to check correctness and efficiency against 

• Step 2. Analyze and profile the serial program 
– Identify the “hotspot” 
– Identify the parts that can be parallelized 

• Step 3. Parallelize code incrementally 
• Step 4. Check correctness of the parallel code 
• Step 5. Iterate step 3 and 4 
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An REAL example of parallel 
computing 

• Dense matrix multiplication MmdxNdn=Pmn 

• Formula 
 

• For our 4x4 example 
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2,2 
M 

N 

P 

𝑆𝑇,𝑗 = �𝑇𝑇,𝑘 ∙ 𝑛𝑘,𝑗

𝑢

𝑘=1

 

p2,2=m2,1*n1,2+ 
        m2,2*n2,2+ 
        m2,3*n3,2+ 
        m2,4*n4,2 
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Parallelizing matrix multiplication 
• Divide work among processors 
• In our 4x4 example 

– Assuming 4 processors 
– Each responsible for a 2x2 tile 

(submatrix) 
– Can we do 4x1 or 1x4? 
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Pseudo code 
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Serial Parallel 

for i = 1 to 4 
  for j = 1 to 4 
    for k = 1 to 4 
      P(i,j) += M(i,k)*N(i,k); 

Each process figures out its own 
starting and ending indices; 
for i = istart to iend 
  for j = jstart to jend 
    for k = 1 to 4 
      P(i,j) += M(i,k)*N(i,k); 
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Single Program Multiple Data (SPMD) 

• All program instances execute same program 
• Data parallel - Each instance works on different 

part of the data  
• The majority of parallel programs are of this type 
• Can also have 

– SPSD: serial program 
– MPSD: rare 
– MPMD  
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Memory system models 

• Different ways of sharing data among 
processors 
– Distributed Memory 
– Shared Memory 
– Other memory models 

• Hybrid model 
• PGAS (Partitioned Global Address Space)  
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Distributed memory model 
• Each process has its own 

address space 
– Data is local to each process 

• Data sharing achieved via 
explicit message passing 
(through network) 

• Example: MPI (Message Passing 
Interface) 
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Shared memory model 
• All threads can access the 

global address space 
• Data sharing achieved via 

writing to/reading from the 
same memory location 

• Example: OpenMP 
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Distributed vs. shared memory 
Distributed 
• Pro 

– Memory amount is scalable 
– Cheaper to build 

• Con 
– Slow data sharing 

• Hard to balance the load 

• Pro and con? 
– Explicit data transfer 

Shared 
• Pro 

– Easy to use 
– Fast data sharing 

• Con 
– Memory amount is not 

scalable 
– Expensive to build 

• Pro and con? 
– Implicit data transfer 
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Hybrid model 
• Clusters of SMP (symmetric 

multi-processing) nodes 
dominate nowadays 

• Hybrid model matches the 
physical structure of SMP 
clusters 
– OpenMP within nodes 
– MPI between nodes 
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Potential benefits of hybrid model 
• Message-passing within nodes (loopback) is eliminated 
• Number of MPI processes is reduced, which means 

– Message size increases 
– Message number decreases 

• Memory usage could be reduced 
– Eliminate replicated data 

• Those are good, but in reality, (most) pure MPI 
programs run as fast (sometimes faster than) as hybrid 
ones… 
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Reasons why NOT using hybrid model 

• Some (most?) MPI libraries already use internally 
different protocols 
– Shared memory data exchange within SMP nodes 
– Network communication between SMP nodes 

• Overhead associated with thread management 
– Thread fork/join 
– Additional synchronization with hybrid programs  
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Partitioned Global Address Space 
(PGAS) 

• PGAS languages present programmers a global address 
space, regardless the type of the underlying system 
– Simulates hardware with software 
– Logically shared, physically distributed 

• Examples 
– Unified Parallel C (UPC), CoArray Fortran (CAF), Fortress, 

Chapel, X10… 
• Limitation 

– Lack of standard 
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Parallel Programming Hurdles 

• Hidden serializations 
• Overhead caused by parallelization 
• Load balancing 
• Synchronization issues 
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Hidden Serialization (1) 
• Back to our box moving example 
• What if there is a long and narrow corridor that allows 

only one work to pass at a time between Location A 
and B? 
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Hidden Serialization (2) 

• It is not the part in serial programs that is hard 
or impossible to parallelize 
– Intrinsic serialization (the f in Amdahl’s law) 

• Examples of hidden serialization: 
– System resources contention, e.g. I/O hotspot 
– Internal serialization, e.g. library functions that 

cannot be executed in parallel for correctness 
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Communication overhead 
• Sharing data across network is slow 

– Mainly a problem for distributed memory systems 
• There are two parts of it 

– Latency: startup cost for each transfer 
– Bandwidth: extra cost for each byte 

• Reduce communication overhead 
– Avoid unnecessary message passing 
– Reduce number of messages by combining them 
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Memory Hierarchy 

• Avoid unnecessary data transfer 
• Load data in blocks (spatial locality) 
• Reuse loaded data (temporal locality) 
• All these apply to serial programs as well 
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Load balancing (1) 
• Back to our box moving example, again 
• Anyone sees a problem? 
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Load balancing (2) 
• Work load not evenly distributed 

– Some are working while others are idle 
– The slowest worker dominates in extreme cases 

• Solutions 
– Explore various decomposition techniques 
– Dynamic load balancing 

• Hard for distributed memory 
• Adds overhead 
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Synchronization issues - deadlock 
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Deadlock 
• Often caused by “blocking” communication 

operations 
– “Blocking” means “I will not proceed until the current 

operation is over” 
• Solution 

– Use “non-blocking”  operations 
– Caution: tradeoff between data safety and 

performance 
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Heterogeneous computing 
• A heterogeneous system solves tasks using different 

types of processing units 
– CPUs 
– GPUs 
– DSPs 
– Co-processors 
– … 

• As opposed to homogeneous systems, e.g. SMP nodes 
with CPUs only 
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The free (performance) lunch is over 
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Power efficiency is the key 
• We have been able to make computer run faster by 

adding more transistors 
– Moore’s law 

• Unfortunately, not any more 
– Power consumption/heat generation limits packing density 
– Power ~ speed2 

• Solution 
– Reduce each core’s speed and use more cores – increased 

parallelism 
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Graphic Processing Units (GPUs) 
• Massively parallel many-core architecture 

– Thousands of cores capable of running millions of threads 
– Data parallelism 

• GPUs are traditionally dedicated for graphic rendering, but 
become more versatile thanks to  
– Hardware: faster data transfer and more on-board memory 
– Software: libraries that provide more general purposed 

functions 
• GPU vs CPU 

– GPUs are very effectively for certain type of tasks, but we still 
need the general purpose CPUs 
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GPUs and HPC 
• Latest trend in HPC 

– SMP nodes with GPUs installed 
– 3 of the top 5 machines in the top 500 list are accelerated 

by GPUs 
• Why people love them 

– Tremendous performance gain – single to double digit 
speedup compared to cpu-only versions 

• Why people hate them (well, just a little bit) 
– Still (relatively) hard to program, even harder to optimize 
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GPU programming strategies 
• GPUs need to copy data from main memory to its on-

board memory and copy them back 
– Data transfer over PCIe is the bottleneck, so one needs to  

• Avoid data transfer and reuse data 
• Overlap data transfer and computation  

• Massively parallel, so it is a crime to do anything anti-
parallel 
– Need to launch enough threads in parallel to keep the 

device busy 
– Threads need to access contiguous data 
– Thread divergence needs to be eliminated 
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Fused processing unit 
• CPU and GPU cores on 

the same die 
• GPU cores can access 

main memory 
– Hence no PCIe 

bottleneck 
• Much less GPU cores 

than a discrete graphic 
card can carry 
– Less processing power 
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Questions? 
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