
Introduction to MPI
Programming – Part 1

6/5/2012 LONI Parallel Programming Workshop 2012 1

Outline

• Introduction – what is MPI and why MPI
• MPI program structure
• Point-to-point communication

6/5/2012 LONI Parallel Programming Workshop 2012 2

Memory system models

• Different ways of sharing data among
processors
– Distributed Memory
– Shared Memory
– Other memory models

• Hybrid model
• PGAS (Partitioned Global Address Space)

6/5/2012 LONI Parallel Programming Workshop 2012 3

Message Passing

• Context: distributed memory parallel
computers
– Each processor has its own memory space and

cannot access the memory of other processors
– Any data to be shared must be explicitly

transferred from one to another

6/5/2012 LONI Parallel Programming Workshop 2012 4

Distributed memory model
• Each process has its own

address space
– Data is local to each process

• Data sharing achieved via
explicit message passing
(through network)

• Example: MPI (Message Passing
Interface)

6/5/2012 LONI Parallel Programming Workshop 2012 5

C

M

Node interconnect

C

M

C

M

C

M
data

Shared memory model
• All threads can access the

global address space
• Data sharing achieved via

writing to/reading from the
same memory location

• Example: OpenMP

6/5/2012 LONI Parallel Programming Workshop 2012 6

C C C C

M
data

Message Passing Interface

• MPI defines a standard API for message passing
– What’s in the standard

• The syntax and semantics of a core set of functions
– What’s not in the standard

• Implementation details
• Runtime details (how many processes the code with run

with etc.)

• MPI provides C/C++ and Fortran bindings

6/5/2012 LONI Parallel Programming Workshop 2012 7

Why MPI?
• Standardized

– With efforts to keep it evolving (MPI 3.0 draft came out in 2010)
• Portability

– MPI implementations are available on almost all platforms
• Scalability

– In the sense that it is not limited by the number of processors
that can access the same memory space

• Popularity
– Many packages are based on MPI

6/5/2012 LONI Parallel Programming Workshop 2012 8

When NOT to use MPI

• Not suitable for small-scale loop level
parallelization
– Shared memory parallelism and accelerator are

better

6/5/2012 LONI Parallel Programming Workshop 2012 9

MPI Functions
• Point-to-point communication functions

– Message transfer from one process to another
• Collective communication functions

– Message transfer involving all processes in a
communicator

• Environment management functions
– Initialization and termination
– Process group and topology

6/5/2012 LONI Parallel Programming Workshop 2012 10

MPI Program Structure

6/5/2012 LONI Parallel Programming Workshop 2012 11

program hello
…
include “mpif.h”
integer :: nprocs,myid,ierr
…
call mpi_init(ierr)
…
call mpi_comm_size(mpi_comm_world,nprocs,ierr)
call mpi_comm_rank(mpi_comm_world,myid,ierr)
Write(*,’(“There are”,I3,” processes”)’) nprocs
write(*,’(”Process”,I3,” says Hello World!”)’) myid
…
call mpi_finalize(ierr)
…

Header file
Initialization

Computation and
communication

Termination

MPI Program Structure

6/5/2012 LONI Parallel Programming Workshop 2012 12

program hello
…
include “mpif.h”
integer :: nprocs,myid,ierr
…
call mpi_init(ierr)
…
call mpi_comm_size(mpi_comm_world,nprocs,ierr)
call mpi_comm_rank(mpi_comm_world,myid,ierr)
Write(*,’(“There are”,I3,” processes”)’) nprocs
write(*,’(”Process”,I3,” says Hello World!”)’) myid
…
call mpi_finalize(ierr)
…

Header file
Initialization

Computation and
communication

Termination

[lyan1@qb563 ex]$ mpirun -np 4 ./a.out
There are 4 processes.
There are 4 processes.
There are 4 processes.
There are 4 processes.
Process 3 says Hello World!
Process 1 says Hello World!
Process 0 says Hello World!
Process 2 says Hello World!

C vs. Fortran
• Header file

– C: mpi.h
– Fortran: mpif.h

• Function names
– C: MPI_Xxx_Yyyy
– Fortran: mpi_xxx_yyyy (doesn’t really matter)

• Error handles
– C returns the error value, while Fortran passes it as an argument

• C: int err = MPI_Xxx(arg1,arg2,…,argN)
• Fortran: call mpi_xxx(arg1,arg2,…,argN,ierr)

6/5/2012 LONI Parallel Programming Workshop 2012 13

Initialization and Termination
• Initialization

– Must be called before any other MPI calls
– C: MPI_Init()
– Fortran: MPI_INIT(ierr)

• Termination
– Clean up data structures, terminate incomplete calls etc.
– C: MPI_Finalize()
– Fortran: MPI_FINALIZE(ierr)

6/5/2012 LONI Parallel Programming Workshop 2012 14

Communicators (1)

• A communicator is an identifier associated with a
group of processes
– Can be regarded as an ordered list of processes
– Each process has a unique rank, which starts from 0

(root)
– It is the context of MPI communicators and operations

• When a function is called to send data to all processes, MPI
needs to understand what “all” means

6/5/2012 LONI Parallel Programming Workshop 2012 15

Communicators (2)

• MPI_COMM_WORLD: the default
communicator that contains all processes
running the MPI program

• There can be many communicators
• A process can belong to multiple

communicators
– The rank is usually different

6/5/2012 LONI Parallel Programming Workshop 2012 16

Getting Communicator Information
• Get the rank of a communicator

– C: MPI_Comm_Rank(MPI_Comm comm, int
*rank)

– Fortran: MPI_COMM_RANK(COMM,RANK,ERR)
• Get the size in a communicator

– C: MPI_Comm_Size(MPI_Comm comm, int
*size)

– Fortran: MPI_COMM_SIZE(COMM,SIZE,ERR)

6/5/2012 LONI Parallel Programming Workshop 2012 17

Compiling and Running MPI Programs

• Not a part of the standard
– Could vary from platform to platform
– Or even from implementation to implementation on the same

platform
• On LONI Linux systems:

– Compile
• C: mpicc –o <executable name> <source file>
• Fortran: mpif90 –o <executable name> <source file>

– Run
• mpirun –machinefile $PBS_NODEFILE –np <number
of procs> <executable name> <input parameters>

6/5/2012 LONI Parallel Programming Workshop 2012 18

Exercise 1a: Process Color

• Write a MPI program where
– Processes with odd rank print to screen “Process x

has the color green”
– Processes with even rank print to screen “Process

x has the color red”

6/5/2012 LONI Parallel Programming Workshop 2012 19

Exercise 1b: Laplace Solver version 0

• Goal: Distribute the work load among
processes in 1-d manner
– Find out the size of sub-matrix for each process
– Let each process report which part of the domain

it will work on, e.g. “Process x will process column
(row) x through column (row) y.”

• Row-wise (C) or column-wise (Fortran)

6/5/2012 LONI Parallel Programming Workshop 2012 20

Point-to-point Communication
• Communication between a pair of processes, so two functions calls

are required
– The sending process calls the MPI_SEND function

• C: int MPI_Send(void *buf, int count, MPI_Datatype
dtype, int dest, int tag, MPI_Comm comm);

• Fortran: MPI_SEND(BUF, COUNT, DTYPE, DEST, TAG, COMM,
IERR)

– The receiving process calls the MPI_RECV function
• C: int MPI_Recv(void *buf, int count, MPI_Datatype
dtype, int source, int tag, MPI_Comm comm, MPI_Status
*status);

• Fortran: MPI_RECV(BUF, COUNT, DTYPE, SOURCE, TAG, COMM,
STATUS, IERR)

• The function arguments characterize the message being transferred

6/5/2012 LONI Parallel Programming Workshop 2012 21

MPI Message
• A MPI message consists of two parts

– Message body
• Buffer: starting location in memory for outgoing data (send) or incoming data

(receive)
• Data type: type of data to be sent or received
• Count: number of items of type datatype to be sent or received

– Message envelope
• Destination (source): rank of the destination (source) of the message
• Tag: what MPI uses to match messages between processes
• Communicator

• The status argument contains information on the message that is
received
– Only for MPI_RECV

6/5/2012 LONI Parallel Programming Workshop 2012 22

Example: Gathering Array Data

• Goal: gather some array data from each process
and place it in the memory of the root process

6/5/2012 LONI Parallel Programming Workshop 2012 23

P0 0 1 P1 2 3 P2 4 5 P3 6 7

P0 0 1 2 3 4 5 6 7

Example: Gathering Array Data

6/5/2012 LONI Parallel Programming Workshop 2012 24

…
integer,allocatable :: array(:)
! Initialize MPI
call mpi_init(ierr)
call mpi_comm_size(mpi_comm_world,nprocs,ierr)
call mpi_comm_rank(mpi_comm_world,myid,ierr)
! Initialize the array
allocate(array(2*nprocs))
array(1)=2*myid
array(2)=2*myid+1
! Send data to the root process
if (myid.eq.0) then
 do i=1,nprocs-1
 call mpi_recv(array(2*i+1),2,mpi_integer,i,i,status,ierr)
 enddo
 write(*,*) “The content of the array:”
 write(*,*) array
else
 call mpi_send(array,2,mpi_integer,0,myid,ierr)
endif

Example: Gathering Array Data

6/5/2012 LONI Parallel Programming Workshop 2012 25

…
integer,allocatable :: array(:)
! Initialize MPI
call mpi_init(ierr)
call mpi_comm_size(mpi_comm_world,nprocs,ierr)
call mpi_comm_rank(mpi_comm_world,myid,ierr)
! Initialize the array
allocate(array(2*nprocs))
array(1)=2*myid
array(2)=2*myid+1
! Send data to the root process
if (myid.eq.0) then
 do i=1,nprocs-1
 call mpi_recv(array(2*i+1),2,mpi_integer,i,i,status,ierr)
 enddo
 write(*,*) “The content of the array:”
 write(*,*) array
else
 call mpi_send(array,2,mpi_integer,0,myid,ierr)
endif

[lyan1@qb563 ex]$ mpirun -np 4 ./a.out
The content of the array:
 0 1 2 3 4 5
 6 7

Blocking Operations

• MPI_SEND and MPI_RECV are blocking
operations
– They will not return from the function call until

the communication is completed
– When a blocking send returns, the send buffer can

be safely overwritten
– When a blocking receive returns, the data has

been received and is ready to use

6/5/2012 LONI Parallel Programming Workshop 2012 26

Deadlock (1)

• Deadlock occurs when both processes awaits
the other to make progress

6/5/2012 LONI Parallel Programming Workshop 2012 27

// Exchange data between two processes
If (process 0)
 Receive data from process 1
 Send data to process 1
If (process 1)
 Receive data from process 0
 Send data to process 0

This is a guaranteed deadlock because both receives will
be waiting for data, but no send can be called until the
receive returns

Deadlock (2)

• How about this one?

6/5/2012 LONI Parallel Programming Workshop 2012 28

// Exchange data between two processes
If (process 0)
 Receive data from process 1
 Send data to process 1
If (process 1)
 Send data to process 0
 Receive data from process 0

Deadlock (2)

• How about this one?

6/5/2012 LONI Parallel Programming Workshop 2012 29

// Exchange data between two processes
If (process 0)
 Receive data from process 1
 Send data to process 1
If (process 1)
 Send data to process 0
 Receive data from process 0

No deadlock will occur – process 0 will receive the data
first, then send the data to process 1; However, there
will be performance penalty because we turn
concurrent operations into sequential.

Deadlock (3)

• And this one?

6/5/2012 LONI Parallel Programming Workshop 2012 30

// Exchange data between two processes
If (process 0)
 Send data to process 1
 Receive data from process 1
If (process 1)
 Send data to process 0
 Receive data from process 0

Deadlock (3)

• And this one?

6/5/2012 LONI Parallel Programming Workshop 2012 31

// Exchange data between two processes
If (process 0)
 Send data to process 1
 Receive data from process 1
If (process 1)
 Send data to process 0
 Receive data from process 0

It depends. If one of the sends returns, then we are
OKAY - most MPI implementations buffer the message,
so a send could return even before the matching
receive is posted. However, if this is not the case or the
message is too large to be buffered, deadlock will occur.

Non-blocking Operations (1)

• Non-blocking operations separate the
initialization of a send or receive from its
completion

• Two calls are required to complete a send or
receive
– Initialization

• Send: MPI_ISEND
• Receive: MPI_IRECV

– Completion: MPI_WAIT

6/5/2012 LONI Parallel Programming Workshop 2012 32

Non-blocking Operations (2)
• MPI_ISEND

– C: int MPI_Isend(void *buf, int count, MPI_Datatype
dtype, int dest, int tag, MPI_Comm comm, MPI_Request
*request);

– Fortran: MPI_ISEND(BUF, COUNT, DTYPE, DEST, TAG, COMM,
REQ, IERR)

• MPI_IRECV
– C: int MPI_Irecv(void *buf, int count, MPI_Datatype

dtype, int source, int tag, MPI_Comm comm,
MPI_Request *request);

– Fortran: MPI_IRECV(BUF, COUNT, DTYPE, SOURCE, TAG, COMM,
REQUEST, IERR)

• MPI_WAIT
– C: int MPI_Wait(MPI_Request *request, MPI_Status

*status);
– Fortran: MPI_WAIT(REQUEST, STATUS, IERR)

6/5/2012 LONI Parallel Programming Workshop 2012 33

Example: Exchange Data with Non-
blocking calls

6/5/2012 LONI Parallel Programming Workshop 2012 34

integer reqids,reqidr
integer status(mpi_status_size)

if (myid.eq.0) then
 call mpi_isend(to_p1,n,mpi_integer,1,100,mpi_comm_world,reqids,ierr)
 call mpi_irecv(from_p1,n,mpi_integer,1,101,mpi_comm_world,reqidr,ierr)
elseif （myid.eq.1) then
 call mpi_isend(to_p0,n,mpi_integer,0,101,mpi_comm_world,reqids,ierr)
 call mpi_irecv(from_p0,n,mpi_integer,0,100,mpi_comm_world,reqidr,ierr)
endif

call mpi_wait(status,reqids,ierr)
call mpi_wait(status,reqidr,ierr)

Blocking vs. Non-blocking
• Blocking operations are data corruption proof, but

– Possible deadlock
– Performance penalty

• Non-blocking operations allow overlap of completion
and computation
– The process can work on other things between the

initialization and completion
– Should be used whenever possible

6/5/2012 LONI Parallel Programming Workshop 2012 35

Exercise 2a: Find Global Maximum
• Goal: Find the maximum in an array

– Each process handle part of the array
– Every process needs to know the maximum at the end

of program
• Hints

– This can be done in two steps
• Step 1: each process send the local maximum to the root

process to find the global maximum
• Step 2: the root process send the global maximum to all

other processes

6/5/2012 LONI Parallel Programming Workshop 2012 36

Exercise 2b: Laplace Solver Version 1

• Goal: develop a working MPI Laplace solver
– Distribute the workload in a one-dimensional manner
– Initialize the sub-matrix at each process and set the

boundary values
– At the end of each iteration

• Exchange boundary data with neighbors
• Find the global convergence error and distribute to all

processes

6/5/2012 LONI Parallel Programming Workshop 2012 37

	Introduction to MPI Programming – Part 1
	Outline
	Memory system models
	Message Passing
	Distributed memory model
	Shared memory model
	Message Passing Interface
	Why MPI?
	When NOT to use MPI
	MPI Functions
	MPI Program Structure
	MPI Program Structure
	C vs. Fortran
	Initialization and Termination
	Communicators (1)
	Communicators (2)
	Getting Communicator Information
	Compiling and Running MPI Programs
	Exercise 1a: Process Color
	Exercise 1b: Laplace Solver version 0
	Point-to-point Communication
	MPI Message
	Example: Gathering Array Data
	Example: Gathering Array Data
	Example: Gathering Array Data
	Blocking Operations
	Deadlock (1)
	Deadlock (2)
	Deadlock (2)
	Deadlock (3)
	Deadlock (3)
	Non-blocking Operations (1)
	Non-blocking Operations (2)
	Example: Exchange Data with Non-blocking calls
	Blocking vs. Non-blocking
	Exercise 2a: Find Global Maximum
	Exercise 2b: Laplace Solver Version 1

