Introduction to MPI
Programming — Part 1

m .
ﬁl ° '
A o~
/\\ L ® 4L
A o
LSU
CENTER FOR COMPUTATION ?

& TECHNOLOGY —_W,

6/5/2012 LONI Parallel Programming Workshop 2012

Outline

e Introduction —what is MPl and why MPI
* MPI program structure

e Point-to-point communication

il -
3 .
<~ W s
LsU B
CENTER FOR COMPUTATION BN i
& TECHNOLOGY L, ., BN

6/5/2012 LONI Parallel Programming Workshop 2012

Memory system models

e Different ways of sharing data among
pProcessors

— Distributed Memory
— Shared Memory

— Other memory models

e Hybrid model
e PGAS (Partitioned Global Address Space)

o

1)
il -
3 .
-,
CENTER FOR COMPUTATION BN i
& TECHNOLOGY L, ., BN

6/5/2012 LONI Parallel Programming Workshop 2012

Message Passing

 Context: distributed memory parallel
computers

— Each processor has its own memory space and
cannot access the memory of other processors

— Any data to be shared must be explicitly
transferred from one to another

£

il

~
LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

6/5/2012 LONI Parallel Programming Workshop 2012

Distributed memory model

e Each process has its own
address space

— Data is local to each process

e Data sharing achieved via
explicit message passing
(through network)

e Example: MPI (Message Passing

Interface)
A
il

LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

onnect

LSLJ

6/5/2012 LONI Parallel Programming Workshop 2012

Shared memory model

e All threads can access the
global address space data

e Data sharing achieved via ﬁﬁ
writing to/reading from the

same memory location

e Example: OpenMP

£

il

~
LSU

CENTER FOR COMPUTATION

.
& TECHNOLOGY

6/5/2012 LONI Parallel Programming Workshop 2012

LSLJ

Message Passing Interface

e MPI defines a standard API for message passing

— What'’s in the standard
* The syntax and semantics of a core set of functions

— What’s not in the standard

* Implementation details
e Runtime details (how many processes the code with run

with etc.)
e MPI provides C/C++ and Fortran bindings
LSU B
S TecHNOLOGY O R

6/5/2012 LONI Parallel Programming Workshop 2012

Why MPI?

e Standardized

— With efforts to keep it evolving (MPI 3.0 draft came out in 2010)
Portability

— MPI implementations are available on almost all platforms
Scalability

— In the sense that it is not limited by the number of processors
that can access the same memory space

 Popularity
— Many packages are based on MPI

il "9
A .
E @ ° .'
CENTER FOR COMPUTATION BN i
& TECHNOLOGY L, ., BN

6/5/2012 LONI Parallel Programming Workshop 2012

When NOT to use MPI

* Not suitable for small-scale loop level
parallelization

— Shared memory parallelism and accelerator are
better

£

il

~
LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

6/5/2012 LONI Parallel Programming Workshop 2012

MPI| Functions

e Point-to-point communication functions
— Message transfer from one process to another

e Collective communication functions

— Message transfer involving all processes in a
communicator

 Environment management functions
— |Initialization and termination
— Process group and topology

LI

il

~
LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

6/5/2012 LONI Parallel Programming Workshop 2012

INFORMATION
TECHNOLOGY
SERVICES

MPI Program Structure

program hello

include “mpif.h” Header file
integer :: nprocs,myid,ierr o i
Initialization
call mpi_init(ierr)

S o _ _ : Computation and
pi_comm_size(mpi_comm _world,nprocs,ierr)

call mpi_comm_rank(mpi_comm_world,myid,ierr) communhnication

Write(*,” (“There are”,13,” processes™)’) nprocs

write(™,”(C’Process”,13,” says Hello World!”)”) myid Termination

call mpi_finalize(ierr)

£ .
i g

A —
- =
LS A
CENTER FOR COMPUTATION A :&‘
.

& TECHNOLOGY

6/5/2012 LONI Parallel Programming Workshop 2012

MPI Program Structure

program hello

include “mpif.h” Header file
integer :: nprocs,myid,ierr —)
Initialization

call mpi_init(ierr)

_ _ Computation and
call mpi_cc rpyan1@qb563 ex]$ mpirun -np 4 ./a.out L
call mpi_CC There are 4 processes. communication

Write(™, " There are 4 processes.

write(™, C There are 4 processes. ' Termination
a ~_ There are 4 processes.
call mpi_T1 process 3 says Hello World!
Process 1 says Hello World!
Process 0 says Hello World!
) Process 2 says Hello World!
i i
LSL Py
CENTER FOR COMPUTATION L~ : ®
& TECHNOLOGY — NS,

6/5/2012 LONI Parallel Programming Workshop 2012

C vs. Fortran

e Header file

— C:mpi.h

— Fortran: mpif.h
* Function names

— C:MPI1_XXx_Yyyy

— Fortran: mp1_XXX_VYYYY (doesn’t really matter)
e Error handles

— Creturns the error value, while Fortran passes it as an argument
e C:Int err = MPI_Xxx(argl,arg2,..,argN)
e Fortran: call mpi_xxx(argl,arg2,..,argN,ierr)

il -
3 .
. \ *
CENTER FOR COMPUTATION BN i
& TECHNOLOGY L, ., BN

6/5/2012 LONI Parallel Programming Workshop 2012

LSLJ

Initialization and Termination

e [nitialization
— Must be called before any other MPI calls
— C:MPI_Init()
— Fortran: MP1_INIT(1err)
 Termination
— Clean up data structures, terminate incomplete calls etc.
— C:MPI1_Finalize()
— Fortran: MP1_FINALIZE(1err)

il "9
A .
E @ ° .'
CENTER FOR COMPUTATION BN i
& TECHNOLOGY L, ., BN

6/5/2012 LONI Parallel Programming Workshop 2012

Communicators (1)

e A communicator is an identifier associated with a
group of processes
— Can be regarded as an ordered list of processes

— Each process has a unique rank, which starts from 0
(root)

— It is the context of MPI communicators and operations
 When a function is called to send data to all processes, MPI

needs to understand what “all” means
il -
— 3 L Jl&t"’{“
LSL)

Ld
) L3
CENTER FOR COMPUTATION e A
& TECHNOLOGY L, ., BN

6/5/2012 LONI Parallel Programming Workshop 2012

Communicators (2)

e MPI_COMM_WORLD: the default
communicator that contains all processes

running the MPI program
 There can be many communicators

* A process can belong to multiple
communicators

— The rank is usually different
£
il

~
LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

6/5/2012 LONI Parallel Programming Workshop 2012

£

L5U

Getting Communicator Information

e Get the rank of a communicator

— C:MPI_Comm_Rank(MP1_Comm comm, int
*rank)

— Fortran: MP1_COMM_RANK(COMM, RANK, ERR)

e Getthe size in a communicator

— C:MPI_Comm_Size(MP1I_Comm comm, int
*si1ze)

— Fortran: MP1_COMM_SIZE(COMM, SIZE,ERR)

£
il

/\\ A - an -
" F=1
LsU) W

CENTER FOR COMPUTATION

_— 2 .
& TECHNOLOGY — W

6/5/2012 LONI Parallel Programming Workshop 2012

L5U

Compiling and Running MPI Programs

 Not a part of the standard
— Could vary from platform to platform
— Or even from implementation to implementation on the same
platform
* On LONI Linux systems:
— Compile
« C:mpicc —0 <executable name> <source fTile>
* Fortran:mpi1f90 —0 <executable name> <source fTile>
— Run

« mpirun —machinefile $PBS NODEFILE —np <number
of procs> <executable name> <input parameters>

il "9
A .
E @ ° .'
CENTER FOR COMPUTATION BN i
& TECHNOLOGY L, ., BN

6/5/2012 LONI Parallel Programming Workshop 2012

LSLJ

Exercise 1a: Process Color

 Write a MPI program where

— Processes with odd rank print to screen “Process x
has the color green”

— Processes with even rank print to screen “Process
X has the color red”

£

il

~ \\‘\ ® J

LSU

CENTER FOR COMPUTATION ‘ ~ -
& TECHNOLOGY

6/5/2012 LONI Parallel Programming Workshop 2012

£

L5U

Exercise 1b: Laplace Solver version O

e Goal: Distribute the work load among
processes in 1-d manner

— Find out the size of sub-matrix for each process

— Let each process report which part of the domain
it will work on, e.g. “Process x will process column
(row) x through column (row) y.”

e Row-wise (C) or column-wise (Fortran)
£
il

o N e
L e
LS

CENTER FOR COMPUTATION Ly
& TECHNOLOGY L, ., BN

6/5/2012 LONI Parallel Programming Workshop 2012

£

L5U

Point-to-point Communication

e Communication between a pair of processes, so two functions calls
are required

— The sending process calls the MPI_SEND function
e C.int MPI_Send(void *buf, 1nt count, MPI_Datatype
dtype, iInt dest, int tag, MPI_Comm comm);

. Foﬂm;:MPl_SEND(BUF, COUNT, DTYPE, DEST, TAG, COMM,
1ERR

— The receiving process calls the MPI_RECV function
e C.int MPI_Recv(void *buf, i1nt count, MPI_Datatype
dtype, iInt source, iInt tag, MPI_Comm comm, MPI_Status
*status) ;
e Fortran: MPI_RECV(BUF, COUNT, DTYPE, SOURCE, TAG, COMM,
STATUS, I1ERR)

* «The function arguments characterize the message being transferred

Ll

CENTER FOR COMPUTATION £ \.__' : :
S,

& TECHNOLOGY

6/5/2012 LONI Parallel Programming Workshop 2012

MP| Message

e A MPI message consists of two parts

— Message body

e Buffer: starting location in memory for outgoing data (send) or incoming data
(receive)

e Data type: type of data to be sent or received
e Count: number of items of type datatype to be sent or received
— Message envelope
e Destination (source): rank of the destination (source) of the message
e Tag: what MPI uses to match messages between processes
e Communicator

e The status argument contains information on the message that is
received

. — Only for MPI_RECV
i S

e |
LSL) [+ [Core
CENTER FOR COMPUTATION BN i
& TECHNOLOGY L, ., BN

6/5/2012 LONI Parallel Programming Workshop 2012

LSLJ

Example: Gathering Array Data

PO O 1 P1 2 3 P2 4 5 P3 6 7
PO O 1 2 3 4 5 6 7

 Goal: gather some array data from each process
and place it in the memory of the root process

il -
3 .
<~ W s
LsU B
CENTER FOR COMPUTATION BN i
& TECHNOLOGY L, ., BN

6/5/2012 LONI Parallel Programming Workshop 2012

L5U

Example: Gathering Array Data

integer,allocatable :: array(:)
I Initialize MPI
call mpi_init(ierr)
call mpi_comm_size(mpi_comm world,nprocs,ierr)
call mpi_comm_rank(mpi_comm world,myid, ierr)
I Initialize the array
allocate(array(2*nprocs))
array(1)=2*myid
array(2)=2*myid+1
I Send data to the root process
it (myid.eq.0) then
do 1=1,nprocs-1
call mpi_recv(array(2*i+l1),2,mpi_integer,i,i,status, ierr)
enddo
write(*,*) “The content of the array:”
write(*,*) array

A else
ﬁ]' call mpi_send(array,2,mpi_integer,0,myid, 1err) "
;- endif e
LSL b
CENTER FOR COMPUTATION ‘ ‘,\‘- :

& TECHNOLOGY

6/5/2012 LONI Parallel Programming Workshop 2012

£

L5U

Example: Gathering Array Data

integer,allocatable :: array(:)

I Initialize MPI

call mpi_init(ierr)

call mpi_comm_size(mpi_comm world,nprocs,ierr)
call mpi_comm_rank(mpi_comm world,myid, ierr)

I Initialize the array

[lyanl@gb563 ex]$ mpirun -np 4 ./a.out

The content of the array:
0 1 2 3
6 7

do 1=1,nprocs-1
call mpi_recv(array(2*i+l1),2,mpi_integer,i,i,status, ierr)

enddo
write(*,*) “The content of the array:”

write(*,*) array

A else '

ﬁ]' call mpi_send(array,2,mpi_integer,0,myid, 1err) '
~ endif) .
LSL b
j o - ¢ &
. 4

CENTER FOR COMPUTATION
& TECHNOLOGY

6/5/2012 LONI Parallel Programming Workshop 2012

Blocking Operations

e MPI_SEND and MPI_RECV are blocking
operations

— They will not return from the function call until
the communication is completed

— When a blocking send returns, the send buffer can
be safely overwritten

— When a blocking receive returns, the data has

. been received and is ready to use
ﬁi’n

o N e
L e
LS

CENTER FOR COMPUTATION Ly
& TECHNOLOGY L, ., BN

6/5/2012 LONI Parallel Programming Workshop 2012

Deadlock (1)

e Deadlock occurs when both processes awaits
the other to make progress

// Exchange data between two processes
IT (process 0)

Receive data from process 1

Send data to process 1
IT (process 1)

Receive data from process 0O

Send data to process O

This is a guaranteed deadlock because both receives will

ﬁ be waiting for data, but no send can be called until the
ﬁl receive returns 1
LSL) &
CENTER FOR COMPUTATION L~

& TECHNOLOGY

6/5/2012 LONI Parallel Programming Workshop 2012

Deadlock (2)

e How about this one?

// Exchange data between two processes
IT (process 0)

Receive data from process 1

Send data to process 1
IT (process 1)

Send data to process O

Receive data from process 0O

£

il

~
LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

6/5/2012 LONI Parallel Programming Workshop 2012

Deadlock (2)

e How about this one?

// Exchange data between two processes
IT (process 0)

Receive data from process 1

Send data to process 1
IT (process 1)

Send data to process O

Receive data from process 0O

No deadlock will occur — process 0 will receive the data

ﬁ% first, then send the data to process 1; However, there
i will be performance penalty because we turn
LSU concurrent operations into sequential.

CENTER FOR COMPUTATION
& TECHNOLOGY

6/5/2012 LONI Parallel Programming Workshop 2012

Deadlock (3)

e And this one?

£

il

~
LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

// Exchange data between two processes
IT (process 0)

Send data to process 1

Receive data from process 1
IT (process 1)

Send data to process O

Receive data from process 0O

6/5/2012

LONI Parallel Programming Workshop 2012

Deadlock (3)

e And this one?

// Exchange data between two processes
IT (process 0)

Send data to process 1

Receive data from process 1
IT (process 1)

Send data to process O

Receive data from process 0O

It depends. If one of the sends returns, then we are

A OKAY - most MPI implementations buffer the message, i
ﬁl so a send could return even before the matching " .
< =1 Lo e A =
LSU receive is posted. However, if this is not the case or the "
: . N
CENTERTOR COMPUTATION message is too large to be buffered, deadlock will occur. .

6/5/2012 LONI Parallel Programming Workshop 2012

LSLJ

Non-blocking Operations (1)

 Non-blocking operations separate the
initialization of a send or receive from its

completion
 Two calls are required to complete a send or

receive

— Initialization
e Send: MPI1 _1SEND
e Receive: MP1 _IRECV

ﬁ%— Completion: MP1_WAIT

~
LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

6/5/2012 LONI Parallel Programming Workshop 2012

£

L5U

Non-blocking Operations (2)

e MPI_ISEND
— C:int MPI_Isend(void *buf, int count, MPI_Datatype
dtype, int dest, int tag, MPI_Comm comm, MPI_Request
*request);
— Fortran: MP1 _ISEND(BUF, COUNT, DTYPE, DEST, TAG, COMM,
REQ, IERR)

* MPI_IRECV

— C:int MPI_Irecv(void *buf, 1int count, MPI_Datatype
dtype, int source, iInt tag, MPI_Comm comm,
MP1_ Request *request);

— Fortran: MP1 _IRECV(BUF, COUNT, DTYPE, SOURCE, TAG, COMM,
REQUEST, I1ERR)

* MPI_WAIT

A C:int MPI_Wait(MP1_Request *request, MPI_Status
L *status);

JL_ Fortran: MP1_WAIT(REQUEST, STATUS, IERR) R
LSL)
CENTER FOR COMPUTATION e -
& TECHNOLOGY RN,

6/5/2012 LONI Parallel Programming Workshop 2012

LSLU
Example: Exchange Data with Non-

blocking calls

integer reqids,reqidr
integer status(mpi_status _size)

1T (myid.eq.0) then
call mpi_isend(to_pl,n,mpi_integer,1,100,mpi_comm world,reqids,ierr)
call mpi_irecv(from_pl,n,mpi_integer,1,101,mpi_comm world,reqidr,ierr)
elseif (myid.eq.l) then
call mpi_isend(to_pO,n,mpi_integer,0,101,mpi_comm world,reqids,ierr)
call mpi_irecv(from_pO,n,mpi_integer,0,100,mpi_comm _world,reqidr,ierr)
endif

call mpi_wairt(status,reqids,ierr)
call mpi_wait(status,reqidr,ierr)

i g
il .

S .
< . A ="
LS 8.

CENTER FOR COMPUTATION -

& TECHNOLOGY

6/5/2012 LONI Parallel Programming Workshop 2012

LSLJ

Blocking vs. Non-blocking

e Blocking operations are data corruption proof, but
— Possible deadlock
— Performance penalty

 Non-blocking operations allow overlap of completion
and computation

— The process can work on other things between the
initialization and completion

— Should be used whenever possible

il "9
A .
E @ ° .'
CENTER FOR COMPUTATION BN i
& TECHNOLOGY L, ., BN

6/5/2012 LONI Parallel Programming Workshop 2012

LSLJ

Exercise 2a: Find Global Maximum

 Goal: Find the maximum in an array
— Each process handle part of the array

— Every process needs to know the maximum at the end
of program

e Hints

— This can be done in two steps

e Step 1: each process send the local maximum to the root
process to find the global maximum

e Step 2: the root process send the global maximum to all
N other processes

Ll

il

/\\ \\‘\ L] J

LSU

) L]
CENTER FOR COMPUTATION o
& TECHNOLOGY

6/5/2012 LONI Parallel Programming Workshop 2012

LSLJ

Exercise 2b: Laplace Solver Version 1

 Goal: develop a working MPI Laplace solver
— Distribute the workload in a one-dimensional manner

— Initialize the sub-matrix at each process and set the
boundary values

— At the end of each iteration
e Exchange boundary data with neighbors
* Find the global convergence error and distribute to all

processes
1T ey 3

LSU

Ld
) L3
CENTER FOR COMPUTATION e A
& TECHNOLOGY L, ., BN

6/5/2012 LONI Parallel Programming Workshop 2012

	Introduction to MPI Programming – Part 1
	Outline
	Memory system models
	Message Passing
	Distributed memory model
	Shared memory model
	Message Passing Interface
	Why MPI?
	When NOT to use MPI
	MPI Functions
	MPI Program Structure
	MPI Program Structure
	C vs. Fortran
	Initialization and Termination
	Communicators (1)
	Communicators (2)
	Getting Communicator Information
	Compiling and Running MPI Programs
	Exercise 1a: Process Color
	Exercise 1b: Laplace Solver version 0
	Point-to-point Communication
	MPI Message
	Example: Gathering Array Data
	Example: Gathering Array Data
	Example: Gathering Array Data
	Blocking Operations
	Deadlock (1)
	Deadlock (2)
	Deadlock (2)
	Deadlock (3)
	Deadlock (3)
	Non-blocking Operations (1)
	Non-blocking Operations (2)
	Example: Exchange Data with Non-blocking calls
	Blocking vs. Non-blocking
	Exercise 2a: Find Global Maximum
	Exercise 2b: Laplace Solver Version 1

