
Parallel programming using MPI

Analysis and optimization

Bhupender Thakur, Jim Lupo, Le Yan, Alex Pacheco

Outline

l  Parallel programming:
Basic definitions

l  Choosing right algorithms:
Optimal serial and parallel

l  Load Balancing
Rank ordering, Domain decomposition

l  Blocking vs Non blocking
Overlap computation and communication

l  MPI-IO and avoiding I/O bottlenecks

l  Hybrid Programming model
MPI + OpenMP
MPI + Accelerators for GPU clusters

Choosing right algorithms:
How does your serial algorithm scale?

!

"#$%$&#'! "%()! *+%(,-)!
!./01! 2#'3$%'$! 4)$)5(&'&'6!&7!%!'8(9)5!&3!):)'!#5!#;;<!83&'6!%!=%3=!$%9-)!
!./!-#6-#6!'1! ;#89-)!-#6! >&';&'6!%'!&$)(!83&'6!&'$)5,#-%$&#'!3)%52=!&'!%!3#5$);!%55%?!
!./!-#6!'1! -#6! >&';&'6!%'!&$)(!&'!%!3#5$);!%55%?!@&$=!%!9&'%5?!3)%52=!
!./!'2!1A!2B0! 75%2$&#'%-!,#@)5! C)%52=&'6!&'!%!D;E$5))!
!./'1! -&')%5! >&';&'6!%'!&$)(!&'!%'!8'3#5$);!-&3$!#5!&'!%'!8'3#5$);!%55%?!
!./!'-#6!'!1! -#6-&')%5! F)57#5(&'6!%!>%3$!>#85&)5!$5%'37#5(<!=)%,3#5$A!G8&2D3#5$!
!./'H1! G8%;5%$&2! "%I:)!9899-)!3#5$!
!./'21A!2J0! ,#-?'#(&%-! K%$5&+!(8-$&,-&2%$&#'A!&':)53&#'!
!./!2'!1A!2J0!)+,#')'$&%-! >&';&'6!$=)!/)+%2$1!3#-8$&#'!$#!$=)!$5%:)--&'6!3%-)3(%'!,5#9-)(!
!./!'L!1! 7%2$#5&%-! 6)')5%$&'6!%--!8'5)3$5&2$);!,)5(8$%$&#'3!#7!%!,#3)$!

Parallel programming concepts:
Basic definitions

 Speedup:
 Ratio of parallel to serial execution time

 Efficiency:
 The ratio of speedup to the number of processors

 Work
 Product of parallel time and processors

 Parallel overhead
 Idle time wasted in parallel execution

S = ts
t p

E = S
p

Parallel programming concepts:
Performance metrics

W = tp

T0 = ptp ! ts

Parallel programming concepts
Analyzing serial vs parallel algorithms

Ask yourself

What fraction of the code can you
completely parallelize ?

 f ?

How does problem size scale?
Processors scale as p. How does
problem-size n scale with p?

 n(p) ?

How does parallel overhead grow?

 To(p) ?

Does the problem scale?

 M(p)

Serial
drawbacks

Parallel
drawbacks

Serial percentage

Contention(Memory, Network)

Communication/
idling

Extra computation

Single core

Latency

Parallel programming concepts
Analyzing serial vs parallel algorithms

Amdahl’s law

What fraction of the code can you
completely parallelize ?

 f ?

Serial time: ts

Parallel time: fts + (1-f) (ts/p)

Serial
drawbacks

Parallel
drawbacks

Serial percentage

Contention(Memory, Network)

Communication/
idling

Extra computation

Single core

Latency

S = ts
t p

= ts
ts f +

(1! f)ts
p

= 1

f + (1! f)
p

Parallel programming concepts
Analyzing serial vs parallel algorithms

Quiz

if the serial fraction is 5%, what is the
maximum speedup you can achieve ?

Serial time = 100 secs

 Serial percentage = 5 %

 Maximum speedup ?

Serial
drawbacks

Parallel
drawbacks

Serial percentage

Contention(Memory, Network)

Communication/
idling

Extra computation

Single core

Latency

Parallel programming concepts
Analyzing serial vs parallel algorithms

Amdahl’s law

What fraction of the code can you
completely parallelize ?

 f ?

Serial time = 100 secs

 Parallel percentage = 5 %

Serial
drawbacks

Parallel
drawbacks

Serial percentage

Contention(Memory, Network)

Communication/
idling

Extra computation

Single core

Latency

= 1

.05 + (1! f)
p

= 1
.05 + 0

= 20

Parallel programming concepts
Analyzing serial vs parallel algorithms

Amdahl's Law approximately suggests:
“ Suppose a car is traveling between two

cities 60 miles apart, and has already
spent one hour traveling half the
distance at 30 mph. No matter how fast
you drive the last half, it is impossible to
achieve 90 mph average before
reaching the second city ”

Gustafson's Law approximately states:
“ Suppose a car has already been

traveling for some time at less than
90mph. Given enough time and distance
to travel, the car's average speed can
always eventually reach 90mph, no
matter how long or how slowly it has
already traveled.”

Serial
drawbacks

Parallel
drawbacks

Serial percentage

Contention(Memory, Network)

Communication/
idling

Extra computation

Single core

Latency

Source: http://disney.go.com/cars/
 http://en.wikipedia.org/wiki/Gustafson's_law

Parallel programming concepts
Analyzing serial vs parallel algorithms

Communication Overhead

Simplest model:

Transfer time
= Startup time

 + Hop time(Node latency)
 + (Message length)/Bandwidth

= ts + thl + twl

Send one big message instead of several
small messages!
Reduce the total amount of bytes!
Bandwidth depends on protocol

Serial
drawbacks

Parallel
drawbacks

Serial percentage

Contention(Memory, Network)

Communication/
idling

Extra computation

Single core

Latency

Parallel programming concepts
Analyzing serial vs parallel algorithms

 Point to point (MPI_Send)
(ts + tw m)

Collective overhead

All-to-all Broadcast (MPI Allgather):
 ts log2p + (p−1) tw m

All-reduce (MPI Allreduce) :
 (ts + tw m) log2p

Scatter and Gather (MPI Scatter) :
 (ts + tw m) log2p

All to all (personalized):
(p−1) (ts + tw m)

Serial
drawbacks

Parallel
drawbacks

Serial percentage

Contention(Memory, Network)

Communication/
idling

Extra computation

Single core

Latency

 Isoefficiency:
 Can we maintain efficiency/speedup of the algorithm?

 How should the problem size scale with p to keep efficiency constant?

Parallel programming:
Basic definitions

E = 1
1+ (To /w)

Maintain ratio To(W,p) / W , overhead to parallel work constant

 Isoefficiency relation: To keep efficiency constant you must increase problem
 size such that

 Procedure:
1.  Get the sequential time T(n,1)
2.  Get the parallel time pT(n,p)
3.  Calculate the overhead To=pT(n,p) - T(n,1)

Parallel programming:
Basic definitions

T (n,1) ! To(n, p)

How does the overhead compare to the useful work being done?

 Isoefficiency relation: To keep efficiency constant you must increase problem
 size such that

 Scalability: Do you have enough resources(memory) to scale to that size

Parallel programming:
Basic definitions

T (n,1) ! To(n, p)

Maintain ratio To(W,p) / W , overhead to parallel work constant

 Scalaility: Do you have enough resources(memory) to scale to that size

Parallel programming:
Basic definitions

Number of processors

M
em

or
y

ne
ed

ed
 p

er
 p

ro
ce

ss
or

 Cplogp

Cp

C

Memory Size

Can maintain
efficiency

Cannot maintain
efficiency

Adding numbers

Each processor has n/p numbers.

Serial time

n
Communicate and add

log p + log p

4, 3, 9 7,5,8 5,2,9 1, 3, 7

Parallel time

n / p

Adding numbers

Each processor has n/p numbers.
Steps to communicate and add are 2 log p

Speedup:

S = n
n
p
+ 2 log p!

"#
$
%&

E = n
n + 2p log p()

Isoefficiency

If you increase problem size n as
 O(p log p)

then efficiency can remain constant !

Adding numbers

Each processor has n/p numbers.
Steps to communicate and add are 2 log p

Speedup:

E = n
n + 2p log p()

Scalability

M (n) ! (n / p) = p log p / p
= log p

Sorting

Each processor has n/p numbers.

4, 3, 9 7,5,8 5,2,9 1, 3, 7

Our plan

1.  Split list into parts
2.  Sort parts individually
3.  Merge lists to get sorted list

Sorting

Each processor has n/p numbers.

4, 3, 9 7,5,8 5,2,9 1, 3, 7

Background

Bubble sort O(n2) Stable Exchanging
Selection sort O(n2) Unstable Selection
Insertion sort O(n2) Stable Insertion
Merge sort O(nlog n) Stable Merging
Quick sort O(nlog n) Unstable Partitioning

Choosing right algorithms:
Optimal serial and parallel

Case Study: Bubble sort

Main loop
For i : 1 to length_of(A) -1

Secondary loop
 For j : i+1 to length_of(A)

Compare and swap
so smaller element is to left
if (A[j] < A[i]) swap(A[i], A[j])

[5 1 4 2]

Choosing right algorithms:
Optimal serial and parallel

Case Study: Bubble sort

Main loop
For i : 1 to length_of(A) -1

Secondary loop
 For j : i+1 to length_of(A)

Compare and swap
so smaller element is to left
if (A[j] < A[i]) swap(A[i], A[j])

(i=3, j=4) [1 2 5 4] Y

(i=2, j=4) [1 4 5 2] Y

(i=2, j=3) [1 5 4 2] Y

(i=1, j=4) [1 5 4 2] N

(i=1, j=3) [1 5 4 2] N

(i=1, j=2) [5 1 4 2] Y

Compare Swap

Choosing right algorithms:
Optimal serial and parallel

Case Study: Bubble sort

Main loop
For i : 1 to length_of(A) -1

Secondary loop
 For j : i+1 to length_of(A)

Compare and swap
so smaller element is to left
if (A[j] < A[i]) swap(A[i], A[j])

(i=3, j=4) [1 2 5 4] Y

(i=2, j=4) [1 4 5 2] Y

(i=2, j=3) [1 5 4 2] Y

(i=1, j=4) [1 5 4 2] N

(i=1, j=3) [1 5 4 2] N

(i=1, j=2) [5 1 4 2] Y

Compare Swap

N(N-1)/2 = O(N2)

Comparisons

Choosing right algorithms:
Optimal serial and parallel

Case Study: Merge sort

Recursively merge lists having
one element each

[1 2 4 5]

[1 5] [2 4]

Merge

 [1] [5] [4] [2]

[1 5] [4 2]

[5 1 4 2]

 Split

Choosing right algorithms:
Optimal serial and parallel

[1 2 4 5]

[1 5] [2 4]

Merge

 [1] [5] [4] [2]

[1 5] [4 2]

[5 1 4 2]

 Split

Best sorting
algorithms need

O(N log N)

Case Study: Merge sort

Recursively merge lists having
one element each

Choosing right algorithms:
Parallel sorting technique

Merging : Merge p lists having n/p elements each

O np()

0 1

2
3

…

n-1

Sub-optimally :
Pop-push merge on 1 processor

[1 3 5 6] => [1]
[2 4 6 8]

[3 5 6] => [1 2]
[2 4 6 8]

[3 5 6] => [1 2 3]
[4 6 8]

Choosing right algorithms:
Parallel sorting technique

Merging : Merge p lists having n/p elements each

O n log p()
Merge 8 lists on 4

Merge 4 lists on 2

Merge 2 lists on 1 0

0

0 2

1

1 3

Optimal: Recursively or tree based

Best merge algorithms need

Sorting

Each processor has n/p numbers.

Serial time

n logn
Merge time

(n !1). n
p

4, 3, 9 7,5,8 5,2,9 1, 3, 7

Parallel time
n
p
log n

p
!
"#

$
%&

n
p
+ n log p

Sorting

Each processor has n/p numbers.

Overhead

= n logn ! p (n / p)log(n / p)+ n log p()
! p log p + np log p
! n log p

Isoefficiency

Scalability

4, 3, 9 7,5,8 5,2,9 1, 3, 7

n logn ! c(n log p)
" n ! pc

= n / p = pc!1
Low for c>2

Data decomposition

1

2

3

4

5

6

7

8

9

 R2

 R1

 R3

1 4 7

2

3

5

6 9

8

1D : Row-wise

Data decomposition

C1

1

2

3

C2

4

5

6

C3

7

8

9

1

2

3

4

5

6

7

8

9

1D : Column-wise

Data decomposition

2D : Block-wise
1

2

3

4

5

6

7

8

9 B1 B2 B3

 B4 B5 B6

 B6 B7 B8

Data decomposition

a(i-1, j)

a(i, j+1)

a(i+1, j)

a(i, j+1)

Time to communicate 1 cell:

Time to evaluate stencil once:

tcell
comm = ! s + tw

tcell
comp = 5*(t float)

Laplace solver: (n x n) mesh with p processors

Data decomposition

Laplace solver: 1D Row-wise (n x n) with p processors

Proc 0

Proc 1

a(i-1, j)

a(i, j+1)

a(i+1, j)

a(i, j+1)

Data decomposition

a(i-1, j)

a(i, j+1)

a(i+1, j)

a(i, j+1)

Serial time:

Parallel computation time

Ghost communication:

tseq
comp = n2tcell

comm

t process
comp = n

2

p
tcell
comp

t comm = 2ntcell
comm

Laplace solver: 1D Row-wise (n x n) with p processors

Data decomposition

a(i-1, j)

a(i, j+1)

a(i+1, j)

a(i, j+1)

Overhead:

Isoefficieny:

Scalability :

= tseq ! ptp
= pn

n2 ! cnp" n ! cp

Laplace solver: 1D Row-wise (n x n) with p processors

= c2p2 / p = Cp
Poor Scaling

Data decomposition

Laplace solver: 2D Block-wise

a(i-1, j)

a(i, j+1)

a(i+1, j)

a(i, j+1)

 Proc 0 Proc 2

 Proc 1 Proc 3

Data decomposition

Serial time:

Parallel computation time:

Ghost communication:

tseq
comp = n2tcell

comm

t comm = 4n
p
tcell
comm

t process
comp = n

2

p
tcell
comp

a(i-1, j)

a(i, j+1)

a(i+1, j)

a(i, j+1)

Laplace solver: 2D Row-wise (n x n) with p processors

Data decomposition

Overhead:

Isoefficiency:

Scalability :

 n ! p

= p.n / p

= n p a(i-1, j)

a(i, j+1)

a(i+1, j)

a(i, j+1)

Laplace solver: 2D Row-wise (n x n) with p processors

= (c p)2 / p
= C Perfect Scaling

Data decomposition
Matrix vector multiplication: 1D row-wise decomposition

 Proc 2

Proc 0

Proc 1 X

11 12 13

14 15 16

19 18 17

1

2

3

Computation:
Each processor computes
n/p elements,
n multiplies + (n-1) adds
for each

O n2

p
!
"#

$
%&

Communication:
All gather in the end so
each processor has full
copy of output vector

log p + 2i!1. n
pi=1

log p

" = log p + n(p !1)
p

Data decomposition
Matrix vector multiplication: 1D row-wise decomposition

 Proc 2

Proc 0

Proc 1 X

11 12 13

14 15 16

19 18 17

1

2

3

Algorithm:

1.  Collect vector using

MPI_Allgather

2.  Local matrix multiplication
to get output vector

Wastes much memory

Data decomposition
Matrix vector multiplication: 1D row-wise decomposition

 Proc 2

Proc 0

Proc 1 X

11 12 13

14 15 16

19 18 17

1

2

3

Computation:
Each processor computes
n/p elements,
n multiplies + (n-1) adds
for each

O n2

p
!
"#

$
%&

Communication:
All gather in the end so
each processor has full
copy of output vector

!wn +! s log p

! s p log p +! wnp
Overhead:

Data decomposition
Matrix vector multiplication: 1D row-wise decomposition

 Proc 2

Proc 0

Proc 1 X

11 12 13

14 15 16

19 18 17

1

2

3

Speedup:

S = p

1+ p(! s log p + twn)
tcn

2

"
#$

%
&'

Isoefficiency:

n2 ! p log p + np
! n " cp

Scalability:

M (p) ! n2 / p = c2p

Not scalable !

Data decomposition
Matrix vector multiplication: 1D column-wise decomposition

Proc 1 Proc 2 Proc 0

11 12 13

14 15 16

19 18 17

1

2

3

Serial Computation?

Parallel Computation?

Overhead?

Isoefficiency?

Scalability?

Data decomposition
Matrix vector multiplication: 2D decomposition

 proc 6 proc 7 proc 8

 proc 0 proc 1 proc 2

 X
 proc 3 proc 4 proc5

A10 A11 A12

A22 A21 A20

v0

v1

v2

Algorithm:
Uses p
Processors
on a grid

A00 A01 A02

Data decomposition
Matrix vector multiplication: 2D decomposition

 proc 6 proc 7 proc 8

 proc 0 proc 1 proc 2

 X
 proc 3 proc 4 proc5

A10 A11 A12

A22 A21 A20

v0

v1

v2

A00 A01 A02

Algorithm Step 0: Copy part-vector to diagonal

Data decomposition
Matrix vector multiplication: 2D decomposition

 proc 6 proc 7 proc 8

 proc 0 proc 1 proc 2

 X
 proc 3 proc 4 proc5

A10 A11 A12

A22 A21 A20

v0

v1

v2

A00 A01 A02

Algorithm Step 1: Broadcast vector along columns

Data decomposition
Matrix vector multiplication: 2D decomposition

 proc 6 proc 7 proc 8

 proc 0 proc 1 proc 2

 X
 proc 3 proc 4 proc5

A10v0 A11v1 A12v2

A22v2 A21v1 A20v0

v0

v1

v2

A00vo A01v1 A02v2

Algorithm Step 2: Local computation on each processor

Data decomposition
Matrix vector multiplication: 2D decomposition

Algorithm Step 3: Reduce across rows

 proc 6 proc 7 proc 8

 proc 0 proc 1 proc 2

 X
 proc 3 proc 4 proc5

A10v0 A11v1 A12v2

A22v2 A21v1 A20v0

v0

v1

v2

A00vo A01v1 A02v2 u0

u1

u2

Data decomposition
Matrix vector multiplication: 2D decomposition

 proc 6 proc 7 proc 8

 proc 0 proc 1 proc 2

 X
 proc 3 proc 4 proc5

A10 A11 A12

A22 A21 A20

v0

v1

v2

A00 A01 A02

Computation:
Each processor computes
n2/p elements,

! c
n2

p
"
#$

%
&'

Communication:

2n
p
log(p)+ n

p
!
n log p

p

Overhead:

n p log(p)

Data decomposition
Matrix vector multiplication: 2D decomposition

 proc 6 proc 7 proc 8

 proc 0 proc 1 proc 2

 X
 proc 3 proc 4 proc5

A10 A11 A12

A22 A21 A20

v0

v1

v2

A00 A01 A02 Isoefficiency:

n2 ! n p log p

! n " c p log p

Scalability:

M (p) ! n
2

p
= (log p)2

Scales better than 1D !

Lets look at the code

Summary

u Know your algorithm !

u Don’t expect the unexpected !

u Pay attention to parallel design and implementation
right from the outset. It will save you lot of labor.

