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Outline 

l  Parallel programming: 
Basic definitions 

l  Choosing right algorithms:   
Optimal serial and parallel 

l  Load Balancing 
Rank ordering, Domain decomposition 

l  Blocking vs Non blocking 
Overlap computation and communication 

l  MPI-IO and avoiding I/O bottlenecks 

l  Hybrid Programming model 
MPI + OpenMP 
MPI + Accelerators for GPU clusters 



Choosing right algorithms:   
How does your serial algorithm scale? 
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Parallel programming concepts: 
Basic definitions 



 
 Speedup: 
 Ratio of parallel to serial execution time 

                      
 Efficiency:  
 The ratio of speedup to the number of processors 

      
 Work 
 Product of parallel time and processors 

 
 Parallel overhead 
 Idle time wasted in parallel execution 

 

S = ts
t p

E = S
p

Parallel programming concepts: 
Performance metrics 

W = tp

T0 = ptp ! ts



Parallel programming concepts   
Analyzing serial vs parallel algorithms 

Ask yourself 
  
What fraction of the code can you 
completely parallelize ? 

  f ? 
 
How does problem size scale? 
Processors scale as p. How does 
problem-size n scale with p?  

  n(p) ? 
 
How does parallel overhead grow? 

  To(p) ? 
 
Does the problem scale? 

  M(p) 

Serial 
drawbacks 

Parallel 
drawbacks 

Serial percentage 

Contention(Memory, Network) 

Communication/
idling 

Extra computation 

Single core 

Latency 



Parallel programming concepts   
Analyzing serial vs parallel algorithms 

Amdahl’s law 

  
What fraction of the code can you 
completely parallelize ? 

  f ? 

 
Serial time: ts 
 
Parallel time: fts + (1-f) (ts/p) 
 

 
 

Serial 
drawbacks 

Parallel 
drawbacks 

Serial percentage 

Contention(Memory, Network) 

Communication/
idling 

Extra computation 

Single core 

Latency 

S = ts
t p

= ts
ts f +

(1! f )ts
p

= 1

f + (1! f )
p



Parallel programming concepts   
Analyzing serial vs parallel algorithms 

Quiz 

  
if the serial fraction is 5%, what is the 
maximum speedup you can achieve ? 

 
Serial time = 100 secs 

 Serial percentage = 5 % 

 Maximum speedup ? 
 

Serial 
drawbacks 

Parallel 
drawbacks 

Serial percentage 

Contention(Memory, Network) 

Communication/
idling 

Extra computation 

Single core 

Latency 



Parallel programming concepts   
Analyzing serial vs parallel algorithms 

Amdahl’s law 

  
What fraction of the code can you 
completely parallelize ? 

  f ? 

 
Serial time = 100 secs 

 Parallel percentage = 5 % 
 

Serial 
drawbacks 

Parallel 
drawbacks 

Serial percentage 

Contention(Memory, Network) 

Communication/
idling 

Extra computation 

Single core 

Latency 

= 1

.05 + (1! f )
p

= 1
.05 + 0

= 20



Parallel programming concepts   
Analyzing serial vs parallel algorithms 

Amdahl's Law approximately suggests: 
“  Suppose a car is traveling between two 

cities 60 miles apart, and has already 
spent one hour traveling half the 
distance at 30 mph. No matter how fast 
you drive the last half, it is impossible to 
achieve 90 mph average before 
reaching the second city  ”   

 
 
 
 
 
Gustafson's Law approximately states: 
“  Suppose a car has already been 

traveling for some time at less than 
90mph. Given enough time and distance 
to travel, the car's average speed can 
always eventually reach 90mph, no 
matter how long or how slowly it has 
already traveled.”   

 

Serial 
drawbacks 

Parallel 
drawbacks 

Serial percentage 

Contention(Memory, Network) 

Communication/
idling 

Extra computation 

Single core 

Latency 

Source:   http://disney.go.com/cars/ 
  http://en.wikipedia.org/wiki/Gustafson's_law 



Parallel programming concepts   
Analyzing serial vs parallel algorithms 

Communication Overhead 
 
Simplest model:  
 

Transfer time   
= Startup time  

     + Hop time(Node latency) 
     + (Message length)/Bandwidth 

 
= ts + thl + twl 

 
Send one big message instead of several 
small messages!  
Reduce the total amount of bytes! 
Bandwidth depends on protocol 

Serial 
drawbacks 

Parallel 
drawbacks 

Serial percentage 

Contention(Memory, Network) 

Communication/
idling 

Extra computation 

Single core 

Latency 



Parallel programming concepts   
Analyzing serial vs parallel algorithms 

 Point to point (MPI_Send) 
( ts + tw m )  

 
 

Collective overhead 
 
All-to-all Broadcast (MPI Allgather): 
  ts log2p + (p−1)  tw m 

 
All-reduce (MPI Allreduce) : 
 ( ts + tw m ) log2p 
 
Scatter and Gather (MPI Scatter) : 
 ( ts + tw m ) log2p 
 
All to all (personalized): 
(p−1) ( ts + tw m ) 

Serial 
drawbacks 

Parallel 
drawbacks 

Serial percentage 

Contention(Memory, Network) 

Communication/
idling 

Extra computation 

Single core 

Latency 



     
 Isoefficiency:  
  Can we maintain efficiency/speedup of the algorithm? 

  How should the problem size scale with p to keep efficiency constant? 
  

 
   

Parallel programming: 
Basic definitions 

E = 1
1+ (To /w)

Maintain ratio To(W,p) / W , overhead to parallel work constant 



     
 Isoefficiency relation: To keep efficiency constant you must increase problem 
 size such that 

 
 

 Procedure: 
1.  Get the sequential time  T(n,1) 
2.  Get the parallel time   pT(n,p) 
3.  Calculate the overhead  To=pT(n,p) - T(n,1)  

    
 
  

    

Parallel programming: 
Basic definitions 

T (n,1) ! To(n, p)

How does the overhead compare to the useful work being done? 



     
 Isoefficiency relation: To keep efficiency constant you must increase problem 
 size such that 

 
  

 
 Scalability: Do you have enough resources(memory) to scale to that size 
   

Parallel programming: 
Basic definitions 

T (n,1) ! To(n, p)

Maintain ratio To(W,p) / W , overhead to parallel work constant 



  Scalaility: Do you have enough resources(memory) to scale to that size 

Parallel programming: 
Basic definitions 

Number of processors 

M
em

or
y 

ne
ed

ed
 p

er
 p

ro
ce

ss
or

 Cplogp 

Cp 

C 

Memory Size 

Can maintain 
efficiency 

Cannot maintain 
efficiency 



Adding numbers 

Each processor has n/p numbers.  

Serial time 

n
Communicate and add 

log p + log p

4, 3, 9 7,5,8 5,2,9 1, 3, 7 

Parallel time 

n / p



Adding numbers 

Each processor has n/p numbers.  
Steps to communicate and add are 2 log p 

Speedup: 

S = n
n
p
+ 2 log p!

"#
$
%&

E = n
n + 2p log p( )

Isoefficiency 

If you increase problem size n as 
 O(p log p) 

then efficiency can remain constant ! 



Adding numbers 

Each processor has n/p numbers.  
Steps to communicate and add are 2 log p 

Speedup: 

E = n
n + 2p log p( )

Scalability 
 
 
 
M (n) ! (n / p) = p log p / p
= log p



Sorting 

Each processor has n/p numbers.  

4, 3, 9 7,5,8 5,2,9 1, 3, 7 

Our plan 
 

1.  Split list into parts 
2.  Sort parts individually 
3.  Merge lists to get sorted list 



Sorting 

Each processor has n/p numbers.  

4, 3, 9 7,5,8 5,2,9 1, 3, 7 

Background 
 

 
 

Bubble sort   O(n2)   Stable   Exchanging   
Selection sort   O(n2)   Unstable   Selection  
Insertion sort   O(n2)   Stable   Insertion   
Merge sort   O(nlog n)  Stable   Merging   
Quick sort   O(nlog n)  Unstable   Partitioning   



Choosing right algorithms:   
Optimal serial and parallel 

Case Study: Bubble sort 

Main loop 
For i : 1 to length_of(A) -1 
 
Secondary loop       
 For j : i+1 to length_of(A) 
 
Compare and swap  
so smaller element is to left 
if ( A[j] < A[i] ) swap( A[i], A[j] ) 
 

[ 5     1     4     2   ] 



Choosing right algorithms:   
Optimal serial and parallel 

Case Study: Bubble sort 

Main loop 
For i : 1 to length_of(A) -1 
 
Secondary loop       
 For j : i+1 to length_of(A) 
 
Compare and swap  
so smaller element is to left 
if ( A[j] < A[i] ) swap( A[i], A[j] ) 
 

(i=3, j=4)        [ 1  2  5  4 ]             Y 

(i=2, j=4)        [ 1  4  5  2 ]             Y 

(i=2, j=3)        [ 1  5  4  2 ]             Y 

(i=1, j=4)        [ 1  5  4  2 ]             N 

(i=1, j=3)        [ 1  5  4  2 ]            N 

(i=1, j=2)        [ 5  1  4  2 ]             Y 

Compare                                  Swap 



Choosing right algorithms:   
Optimal serial and parallel 

Case Study: Bubble sort 

Main loop 
For i : 1 to length_of(A) -1 
 
Secondary loop       
 For j : i+1 to length_of(A) 
 
Compare and swap  
so smaller element is to left 
if ( A[j] < A[i] ) swap( A[i], A[j] ) 
 

(i=3, j=4)        [ 1  2  5  4 ]             Y 

(i=2, j=4)        [ 1  4  5  2 ]             Y 

(i=2, j=3)        [ 1  5  4  2 ]             Y 

(i=1, j=4)        [ 1  5  4  2 ]             N 

(i=1, j=3)        [ 1  5  4  2 ]            N 

(i=1, j=2)        [ 5  1  4  2 ]             Y 

Compare                                  Swap 

 
N(N-1)/2 = O(N2) 

 
Comparisons 



Choosing right algorithms:   
Optimal serial and parallel 

 
Case Study: Merge sort 
 
Recursively merge lists having 
one element each 
 
 

[ 1  2  4  5 ]          

[ 1  5 ] [ 2  4 ] 

Merge   

 [ 1 ] [ 5 ]  [ 4 ]  [ 2 ]  

[ 1  5 ]  [ 4  2 ]             

[ 5  1  4  2 ]      

   Split                            



Choosing right algorithms:   
Optimal serial and parallel 

[ 1  2  4  5 ]          

[ 1  5 ] [ 2  4 ] 

Merge   

 [ 1 ] [ 5 ]  [ 4 ]  [ 2 ]  

[ 1  5 ]  [ 4  2 ]             

[ 5  1  4  2 ]      

   Split                            

Best sorting 
algorithms need 

 
O( N log N) 

 
Case Study: Merge sort 
 
Recursively merge lists having 
one element each 
 
 



Choosing right algorithms:   
Parallel sorting technique 

Merging :  Merge p lists having n/p elements each 
    

O np( )

0 1 

2 
3 

… 

n-1 

Sub-optimally :  
Pop-push merge on 1 processor 

   
[ 1 3 5 6 ]  => [ 1 ]  
[ 2 4 6 8 ] 
 
[ 3 5 6 ]     => [ 1 2 ]  
[ 2 4 6 8 ] 
 
[ 3 5 6 ]     => [ 1 2 3 ]  
[ 4 6 8 ] 
 



Choosing right algorithms:   
Parallel sorting technique 

Merging :  Merge p lists having n/p elements each 
    

O n log p( )
Merge 8 lists on 4 

Merge 4 lists on 2 

Merge 2 lists on 1 0 

0 

0 2 

1 

1 3 

Optimal: Recursively or tree based 

Best merge algorithms need 



Sorting 

Each processor has n/p numbers.  

Serial time 

n logn
Merge time 

(n !1). n
p

4, 3, 9 7,5,8 5,2,9 1, 3, 7 

Parallel time 
n
p
log n

p
!
"#

$
%&

n
p
+ n log p



Sorting 

Each processor has n/p numbers.  

Overhead 

 

= n logn ! p (n / p)log(n / p)+ n log p( )
! p log p + np log p
! n log p

Isoefficiency 
 
 
 
 
Scalability 

4, 3, 9 7,5,8 5,2,9 1, 3, 7 

n logn ! c(n log p)
" n ! pc

= n / p = pc!1
Low for c>2 



Data decomposition 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 R2 

 R1 

 R3 

1 4 7 

2 

3 

5 

6 9 

8 

1D : Row-wise 



Data decomposition 

C1 

1 

2 

3 

C2 

4 

5 

6 

C3 

7 

8 

9 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1D : Column-wise 



Data decomposition 

2D : Block-wise 
1 

2 

3 

4 

5 

6 

7 

8 

9  B1    B2   B3 
 
 
 

 B4    B5   B6 
 
 
 

 B6    B7   B8 
 
 
 
 



Data decomposition 

a(i-1, j) 

a(i, j+1) 

a(i+1, j) 

a(i, j+1) 

Time to communicate 1 cell:  
 
 
 
 
Time to evaluate stencil once:  
 
 
 

   
 

tcell
comm = ! s + tw

tcell
comp = 5*(t float )

Laplace solver: (n x n) mesh with p processors 



Data decomposition 

Laplace solver: 1D Row-wise (n x n) with p processors 

 
Proc 0 

 
Proc 1 

a(i-1, j) 

a(i, j+1) 

a(i+1, j) 

a(i, j+1) 



Data decomposition 

a(i-1, j) 

a(i, j+1) 

a(i+1, j) 

a(i, j+1) 

 
Serial time:  
 
 
 
Parallel computation time 
 
 
 
 
Ghost communication:  
 
 
 

   

tseq
comp = n2tcell

comm

t process
comp = n

2

p
tcell
comp

t comm = 2ntcell
comm

Laplace solver: 1D Row-wise (n x n) with p processors 



Data decomposition 

a(i-1, j) 

a(i, j+1) 

a(i+1, j) 

a(i, j+1) 

 
Overhead:  
 
 
 
 
 
Isoefficieny: 
 
 
 
Scalability : 

   

= tseq ! ptp
= pn

n2 ! cnp" n ! cp

Laplace solver: 1D Row-wise (n x n) with p processors 

= c2p2 / p = Cp
Poor Scaling 



Data decomposition 

Laplace solver: 2D Block-wise 

a(i-1, j) 

a(i, j+1) 

a(i+1, j) 

a(i, j+1) 

 
 Proc 0                                         Proc 2  

 
 Proc 1                                         Proc 3  



Data decomposition 

Serial time:  
 
 
 
 
Parallel computation time: 
 
 
 
 
 
Ghost communication:  
 
 
 

   

tseq
comp = n2tcell

comm

t comm = 4n
p
tcell
comm

t process
comp = n

2

p
tcell
comp

a(i-1, j) 

a(i, j+1) 

a(i+1, j) 

a(i, j+1) 

Laplace solver: 2D Row-wise (n x n) with p processors 



Data decomposition 

 
Overhead: 
  
 
 
 
 
Isoefficiency: 
 
 
 
Scalability : 

 n ! p

= p.n / p

= n p a(i-1, j) 

a(i, j+1) 

a(i+1, j) 

a(i, j+1) 

Laplace solver: 2D Row-wise (n x n) with p processors 

= (c p )2 / p
= C Perfect Scaling 



Data decomposition 
Matrix vector multiplication: 1D row-wise decomposition 
 

 
 Proc 2                                   

 
Proc 0                                          

 
Proc 1            X 

11 12 13 

14 15 16 

19 18 17 

1 

2 

3 

Computation: 
Each processor computes 
n/p elements, 
n multiplies + (n-1) adds 
for each 

O n2

p
!
"#

$
%&

Communication: 
All gather in the end so 
each processor has full 
copy of output vector 

log p + 2i!1. n
pi=1

log p

" = log p + n(p !1)
p



Data decomposition 
Matrix vector multiplication: 1D row-wise decomposition 
 

 
 Proc 2                                   

 
Proc 0                                          

 
Proc 1            X 

11 12 13 

14 15 16 

19 18 17 

1 

2 

3 

Algorithm: 
 
1.  Collect vector using 

MPI_Allgather 
 

2.  Local matrix multiplication 
to get output vector 
 
 
Wastes much memory 



Data decomposition 
Matrix vector multiplication: 1D row-wise decomposition 
 

 
 Proc 2                                   

 
Proc 0                                          

 
Proc 1            X 

11 12 13 

14 15 16 

19 18 17 

1 

2 

3 

Computation: 
Each processor computes 
n/p elements, 
n multiplies + (n-1) adds 
for each 

O n2

p
!
"#

$
%&

Communication: 
All gather in the end so 
each processor has full 
copy of output vector 

!wn +! s log p

! s p log p +! wnp
Overhead: 



Data decomposition 
Matrix vector multiplication: 1D row-wise decomposition 
 

 
 Proc 2                                   

 
Proc 0                                          

 
Proc 1            X 

11 12 13 

14 15 16 

19 18 17 

1 

2 

3 

Speedup: 

S = p

1+ p(! s log p + twn)
tcn

2

"
#$

%
&'

Isoefficiency: 

 

n2 ! p log p + np
! n " cp

Scalability: 

M (p) ! n2 / p = c2p

Not scalable ! 



Data decomposition 
Matrix vector multiplication: 1D column-wise decomposition 
 

Proc 1 Proc 2 Proc 0 

11 12 13 

14 15 16 

19 18 17 

1 

2 

3 

Serial Computation? 

Parallel Computation? 

Overhead? 

Isoefficiency? 

Scalability? 



Data decomposition 
Matrix vector multiplication: 2D decomposition 
 

 
 
 

    proc 6    proc 7     proc 8 

 
 
 
                     proc 0    proc 1     proc 2 

 
  
             X 
     proc 3   proc 4      proc5      

 

A10 A11 A12 

A22 A21 A20 

v0 

v1 

v2 

Algorithm: 
Uses p 
Processors 
on a grid  

A00 A01 A02 



Data decomposition 
Matrix vector multiplication: 2D decomposition 
 

 
 
 

    proc 6    proc 7     proc 8 

 
 
 
                     proc 0    proc 1     proc 2 

 
  
             X 
     proc 3   proc 4      proc5      

 

A10 A11 A12 

A22 A21 A20 

v0 

v1 

v2 

A00 A01 A02 

Algorithm Step 0: Copy part-vector to diagonal 



Data decomposition 
Matrix vector multiplication: 2D decomposition 
 

 
 
 

    proc 6    proc 7     proc 8 

 
 
 
                     proc 0    proc 1     proc 2 

 
  
             X 
     proc 3   proc 4      proc5      

 

A10 A11 A12 

A22 A21 A20 

v0 

v1 

v2 

A00 A01 A02 

Algorithm Step 1: Broadcast vector along columns 



Data decomposition 
Matrix vector multiplication: 2D decomposition 
 

 
 
 

    proc 6    proc 7     proc 8 

 
 
 
                     proc 0    proc 1     proc 2 

 
  
             X 
     proc 3   proc 4      proc5      

 

A10v0 A11v1 A12v2 

A22v2 A21v1 A20v0 

v0 

v1 

v2 

A00vo A01v1 A02v2 

Algorithm Step 2: Local computation on each processor  



Data decomposition 
Matrix vector multiplication: 2D decomposition 
 

Algorithm Step 3: Reduce across rows 

 
 
 

    proc 6    proc 7     proc 8 

 
 
 
                     proc 0    proc 1     proc 2 

 
  
             X 
     proc 3   proc 4      proc5      

 

A10v0 A11v1 A12v2 

A22v2 A21v1 A20v0 

v0 

v1 

v2 

A00vo A01v1 A02v2 u0 

u1 

u2 



Data decomposition 
Matrix vector multiplication: 2D decomposition 
 

 
 
 

  proc 6    proc 7     proc 8 

 
 
 
      proc 0    proc 1     proc 2 

 
  
             X 
 proc 3    proc 4      proc5      

 

A10 A11 A12 

A22 A21 A20 

v0 

v1 

v2 

A00 A01 A02 

Computation: 
Each processor computes 
n2/p elements, 

! c
n2

p
"
#$

%
&'

Communication: 

 

2n
p
log( p )+ n

p
!
n log p

p

Overhead: 

n p log(p)



Data decomposition 
Matrix vector multiplication: 2D decomposition 
 

 
 
 

  proc 6    proc 7     proc 8 

 
 
 
      proc 0    proc 1     proc 2 

 
  
             X 
 proc 3    proc 4      proc5      

 

A10 A11 A12 

A22 A21 A20 

v0 

v1 

v2 

A00 A01 A02 Isoefficiency: 

 

n2 ! n p log p

! n " c p log p

Scalability: 

M (p) ! n
2

p
= (log p)2

Scales better than 1D ! 



Lets look at the code 



Summary 

u Know your algorithm ! 

u Don’t expect the unexpected ! 

u Pay attention to parallel design and implementation 
right from the outset. It will save you lot of labor. 






