Programming GPUs in Fortran

Accelerator and Cuda Fortran
Open Accelerator Standard

What is OpenACC API?
- OpenACC API allows parallel programmers to provide simple hints, known as “directives,” to the compiler, identifying which areas of code to accelerate, without requiring programmers to modify or adapt the underlying code itself. By exposing parallelism to the compiler, directives allow the compiler to do the detailed work of mapping the computation onto the accelerator.

Quote from Michael Wong, CEO of the OpenMP Architecture Review Board:
"I am enthusiastic about the future of accelerator technologies. The OpenACC announcement highlights the technically impressive initiative undertaken by members of the OpenMP Working Group on Accelerators. I look forward to working with all four companies within the OpenMP organization to merge OpenACC with other ideas to create a common specification which extends OpenMP to support accelerators. We look forward to incorporating accelerator support with the full support of all OpenMP members in a future version of the OpenMP specification."
GPU considerations: Architecture

- Large number of cores working in SIMD mode
- Slow global memory access, high bandwidth
- CPU communication over PCI bus
- Warp scheduling and fast switching queue model
GPU considerations: Programming

- Allocate data on the GPU
- Move data from host, or initialize data on GPU
- Launch kernel(s)
- Gather results from GPU
- Deallocate data
int main(void) {
 int a[N], b[N], c[N]; int *a_d, *b_d, *c_d;

 // allocate memory on the GPU
 cudaMalloc((void**)&a_d, N * sizeof(int));
 cudaMalloc((void**)&b_d, N * sizeof(int));
 cudaMalloc((void**)&c_d, N * sizeof(int));

 // fill the arrays 'a' and 'b' on the CPU
 for (int i=0; i<N; i++) {
 a[i] = -i; b[i] = i * i; }

 // copy the arrays 'a' and 'b' to the GPU
 cudaMemcpy(a_d, a, N*sizeof(int), cudaMemcpyHostToDevice);
 cudaMemcpy(b_d, b, N*sizeof(int), cudaMemcpyHostToDevice);

 // launch kernel
 add<<<N,1>>>(a_d, b_d, c_d);

 // copy the array 'c' back from the GPU to the CPU
 cudaMemcpy(c, c_d, N*sizeof(int), cudaMemcpyDeviceToHost);

 // free the memory allocated on the GPU
 cudaFree(a_d);
 cudaFree(b_d);
 cudaFree(c_d);

 return 0;
}
int main(void) {
 int a[N], b[N], c[N];
 int *a_d, *b_d, *c_d;

 // allocate the memory on the GPU
 cudaMalloc((void**)&a_d, N * sizeof(int));
 cudaMalloc((void**)&b_d, N * sizeof(int));
 cudaMalloc((void**)&c_d, N * sizeof(int));

 // fill the arrays 'a' and 'b' on the CPU
 for (int i=0; i<N; i++) {
 a[i] = -i;
 b[i] = i * 1;
 }

 // copy the arrays 'a' and 'b' to the GPU
 cudaMemcpy(a_d, a, N*sizeof(int), cudaMemcpyHostToDevice);
 cudaMemcpy(b_d, b, N*sizeof(int), cudaMemcpyHostToDevice);

 // Launch Kernel
 add<<<N,1>>>(a_d, b_d, c_d);

 // copy the array 'c' back to CPU and free memory
 cudaMemcpy(c, c_d, N*sizeof(int), cudaMemcpyDeviceToHost);
 cudaFree(a_d);
 cudaFree(b_d);
 cudaFree(c_d);

 return 0;
}
CUDA Execution model

Software

- **Thread**
 - Thread Block

Hardware

- **Thread Processor**
 - Threads are executed by thread processors

<table>
<thead>
<tr>
<th>Multiprocessor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thread blocks are executed on multiprocessors</td>
</tr>
<tr>
<td>Thread blocks do not migrate</td>
</tr>
<tr>
<td>Several concurrent thread blocks can reside on one multiprocessor - limited by multiprocessor resources (shared memory and register file)</td>
</tr>
</tbody>
</table>

- **Device**
 - Grid
 - A kernel is launched as a grid of thread blocks
 - Only one kernel can execute on a device at one time

http://www.nvidia.com/content/cudazone/download/Getting_Started_w_CUDA_Training_NVISION08.pdf
Know your Accelerator

CUDA Device Query (Runtime API) version (CUDART static linking)

Found 2 CUDA Capable device(s)

Device 0: "Tesla M2050"
...
(14) Multiprocessors x (32) CUDA Cores/MP: 448 CUDA Cores
...
Warp size: 32
Maximum number of threads per block: 1024
Maximum sizes of each dimension of a block: 1024 x 1024 x 64
Maximum sizes of each dimension of a grid: 65535 x 65535 x 65535

CUDA Driver Version: 4000
...
Device Number: 0
Device Name: Tesla M2050
Device Revision Number: 2.0
Global Memory Size: 2817982464
Number of Multiprocessors: 14
Number of Cores: 448
...
Warp Size: 32
The goal is to identify parallel regions which could be exploited using OpenMP like directives.

- acc region

```
program hello

!$acc region

"something to be done on the gpu"

!$acc end region

end
```

http://www.pgroup.com/resources/articles.htm
PGI Accelerator directives: Examples

```c
#pragma acc region
{
    for (i = 0; i < n; ++i)
        c[i] = a[i] + b[i];
}

!$acc region
do i = 1, n
    c(i) = a(i) + b(i)
enddo
!$acc end region
```

Accelerator region
PGI Accelerator: Directives

Compute region directive

!$acc region [clause[,clause]...]
 structured block
!$acc end region

where clause is one of the following:
 if(condition)
 async [(handle)]
 copy(list)
 copyin(list)
 copyout(list)
 local(list)
 deviceptr(list)
 update device(list)
 update host(list)
PGI Accelerator: Directives

Data region directive

!$acc data region [clause [, clause]...]
 structured block

!$acc end data region

where clause is one of the following:

- copy(list)
- copyin(list)
- copyout(list)
- local(list)
- deviceptr(list)
- mirror(list)
- update device(list)
- update host(list)
PGI Accelerator

Accelerator clauses

• **copyin/updatein** (into the GPU)
 copyout /updateout (out of the GPU)

• Compiler moves the smallest part of each array needed to execute the loop

• Use *local* clause to leave unwanted data on GPU

• *Data region* allows boundaries for data movement

• *Mirrored/Reflected data* allows easy synchronization of data
PGI Accelerator vs OpenMP

```
#pragma acc region
{
   for ( i = 0; i < n; ++i )
   c[i] = a[i]+b[i];
}

!$acc region
   do i = 1, n
       c(i) = a(i) + b(i)
   enddo
!$acc end region

#pragma omp parallel
{
   #pragma omp for
   for (i=0; i < N; i++)
       c[i] = a[i] + b[i];
}

!$omp parallel
   !$omp do
       do i = 1, n
           c(i) = a(i) + b(i)
       enddo
   !$omp end do
!$omp end parallel
```
PGI Accelerator Model

PGI Accelerator flags

- `-ta=nvidia,host`
 Run on GPU if available, else run on host

- `-Minfo=accel`
 Print out kernel information

- `--keepptx`
 Generate ptx code

```
pgfortran source.f90
  -ta=nvidia,host  -Minfo
```
program vector_add
 implicit none
 integer, parameter :: n=10
 real, allocatable :: a(:), b(:), c(:)

 ! +------------------------+
 ! | Initialize arrays |
 ! +------------------------+
 allocate(a(1:n), b(1:n), c(1:n))
 a=1.0; b=2.0; c=0.0;
 ! +------------------------+
 ! | Add arrays |
 ! +------------------------+
 !$acc region
 c = a + b
 !$acc end region

deallocate(a, b, c)
end program
program vector_add
 implicit none
 integer, parameter :: n=10
 real, allocatable :: a(:), b(:), c(:)

! +------------------------+
! | Initialize arrays |
! +------------------------+
 allocate(a(1:n), b(1:n), c(1:n))
 a=1.0; b=2.0; c=0.0;
! +------------------------+
! | Add arrays |
! +------------------------+
!$acc region
 c= a + b
!$acc end region

disable(a, b, c)
end program

$ pgfortran vecadd.f90 -ta=nvidia -Minfo
vector_add:
 14, Generating copyin(b(1:10))
Generating copyin(a(1:10))
Generating copyout(c(1:10))
Generating compute capability 1.0 binary
Generating compute capability 1.3 binary
Generating compute capability 2.0 binary
 15, Loop is parallelizable
 Accelerator kernel generated
 15, !$acc do parallel, vector(10) ! blockid%threadid
 CC 1.0 : 6 registers; 44 shared, 4 constant, 0 local
 memory bytes; 33% occupancy
 CC 1.3 : 6 registers; 44 shared, 4 constant, 0 local
 memory bytes; 25% occupancy
 CC 2.0 : 14 registers; 4 shared, 56 constant, 0 local
 memory bytes; 16% occupancy
program vector_add
 implicit none
 integer, parameter :: n=10
 real, allocatable :: a(:), b(:), c(:)

! +---+
! | Initialize arrays |
! +---+
 allocate(a(1:n), b(1:n), c(1:n))
 a=1.0; b=2.0; c=0.0;
! +---+
! | Add arrays |
! +---+
!$acc region
 c = a + b
!$acc end region

deallocate(a, b, c)
end program

$ time ./a.out

Accelerator Kernel Timing data
/home/bthakur/vecadd.f90
vector_add

14: region entered 1 time
 time(us): total=1110418 init=1107179 region=3239
 kernels=30 data=528
 w/o init: total=3239 max=3239 min=3239 avg=3239

15: kernel launched 1 times
 grid: [1] block: [225]
 time(us): total=30 max=30 min=30 avg=30

real 0m1.199s
user 0m0.003s
sys 0m1.192s
program vector_add
 implicit none
 integer, parameter :: n=10
 real, allocatable :: a(:), b(:), c(:)

! +-------------------------------+
! | Initialize arrays |
! +-------------------------------+
 allocate(a(1:n), b(1:n), c(1:n))
 a=1.0; b=2.0; c=0.0;

! +-------------------------------+
! | Add arrays |
! +-------------------------------+
!$acc region
 c = a + b
!$acc end region

deallocate(a, b, c)
end program

Where should you run your accelerator code?

Philip has a GPU queue:

#!/bin/bash
#PBS -q gpu
#PBS -o job.$PBS_JOBID.out
#PBS -j oe
#PBS -l nodes=1:ppn=1
#PBS -l walltime=00:59:00
#PBS -V

gpu queue on philip
Time for a simple demo

What does compiler do?

• ?

How to increase efficiency

• ?

Timing and profiling

• ?
Time for a simple demo

What did compiler do?

- Analyze info on generated kernel

How to increase efficiency

- Initialize device (pgcudainit)
- Increase occupancy! More threadblocks and more threads

Timing and profiling

- Simple profiling: -ta=nvidia,time
PGI Accelerator: Reduction

Primitive reductions

```fortran
sum=0.0
!$acc region
do i=1,n
    sum = sum + a(i)
end do
!$acc end region
```

```
$ pgfortran -ta=nvidia -Minfo vecsum.f90
vector_add:
17, Generating copyin(a(1:10000))
...
18, Loop is parallelizable
   Accelerator kernel generated
18, !$acc do parallel, vector(256) ! blockIdx%x threadIdx%x
   ...
19, Sum reduction generated for sum
```
PGI Accelerator: Intrinsics

Fortran intrinsics

```fortran
program intrinsic
  implicit none
  integer, parameter :: n=32
  real :: a(n,n), b(n,n), c(n,n)
  call random_number(a)
  call random_number(b)
  !$acc region
c  = matmul(transpose(b), matmul(a,b))
  !$acc end region
end
```

```
$ pgfortran -ta=nvidia -Minfo intrinsic.f90
intrinsic:
11, Generating copyout(tmp$r(1:32,1:32))
Generating copyin(b(1:32,1:32))
...
13, Loop is parallelizable
Accelerator kernel generated
13, !$acc do parallel, vector(16) ! blockIdx%x threadIdx%x
   !$acc do parallel, vector(16) ! blockIdx%y threadIdx%y
CC 1.0 : 10 registers; 40 shared, 8 constant, 0 local memory bytes; 100% occupancy
CC 1.3 : 10 registers; 40 shared, 8 constant, 0 local memory bytes; 100% occupancy
CC 2.0 : 12 registers; 8 shared, 48 constant, 0 local memory bytes; 100% occupancy
```
Accelerator restrictions

Loop dependency
- \(a(n) = a(n-1) + b(n)*c(n) \)

Non-strided access
- \(vout(i_ptr(n)) = vout(i_ptr(n)) + vin(j_ptr(n)) * val_ptr(n) \)

Functions
- fatorial(n)

Memory restrictions
- Fixed size shared memory arrays
- No textures
Accelerator restrictions

No Triangular loops

- `do i=1, 100`
 `do j=i, 100`

Conditional assignments

- If `(i < 10)` `x = b(i)*w`
Demo: 2

Laplace solver: Avoiding excessive CPU-GPU data transfer

![Image]

do iter = 1, niter
 do j = 1, nc
 do i = 1, nr
 t(i,j) = 0.25 * (told(i+1,j) + told(i-1,j) &
 + told(i,j+1) + told(i,j-1))
 end do
 end do
! Check if output required.
 if (iprint .ne. 0) then
 if (mod(iter, iprint) .eq. 0) then
 write(*, 100) iter, dt, secnds(t1), secnds(t0)
 end if
 end if
! Check if convergence criteria meet.
 if (dt .lt. relerr) then
 print *, 'Solution has converged.'
 goto 10
 end if
! Go do another iteration.
 end do
 10 continue
Laplace solver

- \(dt = \text{relerr} + 1.0 \)
 - \(\text{iter} = 0 \)
 - do while ((dt > relerr).and.(\text{iter} < \text{niter}))
 - \(\text{iter} = \text{iter} + 1 \)
 - do j = 1, nc
 - do i = 1, nr
 - \(t(i,j) = 0.25 * (told(i+1,j) + told(i-1,j) & + told(i,j+1) + told(i,j-1)) \)
 - \(dt = \max(\ dt, \ abs(t(i,j) - told(i,j))) \)
 - end do
 - end do
 - end do
- \(\text{told}(1:\text{nr},1:\text{nc}) = t(1:\text{nr},1:\text{nc}) \)

Avoiding excessive CPU-GPU data transfer
PGI Accelerator

Schedule, feedback

- loop scheduling clauses

!$acc do...
 host [(width)]
 parallel [(width)]
 seq [(width)]
 vector [(width)]
 unroll (factor)
 independent
 kernel private(list)
 cache(list)
PGI Accelerator: Schedule clauses

Accelerator data clauses

- Environment Variables
 - ACC_DEVICE
 - ACC_DEVICE_NUM
 - ACC_NOTIFY

- Runtime Library Routines
 - acc_get_num_devices
 - acc_get_device
 - acc_set_device_num
 - acc_get_device_num
PGI CUDA Fortran

CUDA C like extension to Fortran

- If accelerator doesn’t work, CUDA Fortran might.
- Gives you greater flexibility.
- Attributes easier than CUDA C to remember.
- Of course, usual CUDA restrictions apply.
Recollect CUDA Model

GPU programming
- Allocate data on the GPU
- Move data from host, or initialize data on GPU
- Launch kernel(s)
- Gather results from GPU
- Deallocate data
Recollect CUDA model

PGI CUDA Fortran Basics

- Seamless integration into modules
- Attributes define subroutine behavior
- Simple allocation and copy in/out
- Kernel launch configuration similar to CUDA C

- **Use module cudafor**

 use cudafor

- **attributes(global/host) subroutine**

- **Host and Device arrays**

 real, device, allocatable :: a_dev(:)

 allocate(a_dev(n))

- **Easy copying**

 a_dev = a_host

- **Kernel configuration**

 type(dim3) :: dimGrid, dimBlock

 dimGrid = dim3(N/16, L/16, 1)

 dimBlock = dim3(16, 16, 1)
Attributes(host)
The host attribute, specified on the subroutine or function statement, declares that the subroutine or function is to be executed on the host. Such a subprogram can only be called from another host subprogram.

Attributes(global)
The global attribute may only be specified on a subroutine statement; it declares that the subroutine is a kernel subroutine, to be executed on the device, and may only be called from the host using a kernel call containing the chevron syntax and runtime mapping parameters.

Attributes(device)
The device attribute, specified on the subroutine or function statement, declares that the subprogram is to be executed on the device; such a routine must be called from a subprogram with the global or device attribute.
• **Attributes(device)**
 – Allocated in the device global memory. If declared in a module, the variable may be accessed by any subprogram in that module and by any subprogram that uses the module.
 – A device array may be an allocatable array, or an assumed-shape dummy array. An allocatable device variable has a dynamic lifetime, from when it is allocated until it is deallocated. Other device variables have a lifetime of the entire application.

• **Attributes(constant)**
 – Device constant variables are allocated in the device constant memory space. Device constant data may not be assigned or modified in any device subprogram, but may be modified in host subprograms. Device constant variables may not be allocatable, and have a lifetime of the entire application.

• **Attributes(shared)**
 – A shared variable may only be declared in a device subprogram.
 – A shared variable is allocated in the device shared memory for a thread block, and has a lifetime of the thread block. It can be read or written by all threads in the block, though a write in one thread is only guaranteed to be visible to other threads after the next call to the SYNCTHREADS().

• **Attributes(pinned)**
 – A pinned variable must be an allocatable array. It is allocated in host pagelocked memory. The advantage of using pinned variables is that copies from page-locked memory to device memory are faster.
program spmv

use mod_spmv

! Allocate and copy in
n=1024
allocate(a(n,n), u(n), v(n), &
a_d(n,n), u_d(n), v_d(n))
a=1.0; u=0.0; v=1.0
v_d(1:n) = v(1:n)
u_d(1:n) = u(1:n)
a_d(1:n,1:n) = a(1:n,1:n)

! Kernel launch
thds_per_blk = 32
Grid = dim3((n+thds_per_blk-1)/thds_per_blk, 1, 1);
Block = dim3(thds_per_blk, 1, 1)
call kernel<<<Grid, Block>>>(a_d, u_d, v_d, n)

! Copy out
u(1:n) = u_d(1:n)
deallocate(a, u, v)
deallocate(a_d, u_d, v_d)
end
CUDA Fortran

Runtime API

- Initialization
- Device Management: cudaMemcpy, cudaMemcpy
- Thread Management: cudaThreadSynchronize
- Stream Management: cudaStreamCreate
- Execution Control: cudaFuncGetAttributes
- Memory Management: cudaMemcpy, cudaMemcpy
- Version Management: cudaDriverGetVersion

LSU
module mod_spmv
 use cudafor

 integer :: n, thds_per_blk
 real, allocatable :: a(:,,:), u(:), v(:)
 real, allocatable, device :: a_d(:,,:), u_d(:,), v_d(:)
 type(dim3) :: Grid, Block

contains

attributes(global) subroutine kernel(a, u, v, n)
 real, device :: a(n,n), u(n), v(n)
 integer, value :: n
 integer i, j

 i = (blockidx%x-1)*blockdim%x + threadIdx%x
 if (i.le.n) then
 do j=1,n
 u(i) = u(i) + a(i,j)*v(j)
 end do
 end if
end subroutine kernel

end module mod_spmv
Demo: 3

Using CUDA Fortran

- Using shared memory to speedup Mat-vec
- Possibilities for sparse matrix formats
PGI Accelerator vs CUDA Fortran

Tuning a Monte Carlo Algorithm on GPUs

Comparison of time between four Monte Carlo Integration implementations from PGI website. Source codes available for experimentation.

<table>
<thead>
<tr>
<th></th>
<th>Host Fortran with auto-parallelization</th>
<th>PGI Accelerator Model</th>
<th>CUDA Fortran with host RNG</th>
<th>CUDA Fortran with CUDA C RNG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total time</td>
<td>13.80947</td>
<td>13.52597</td>
<td>13.37639</td>
<td>Total Time 0.95668</td>
</tr>
<tr>
<td>RNG</td>
<td>12.27999</td>
<td>12.09849</td>
<td>11.91478</td>
<td>0.52054</td>
</tr>
<tr>
<td>Compute</td>
<td>1.43082</td>
<td>0.24569</td>
<td>0.24730</td>
<td>0.24725</td>
</tr>
<tr>
<td>Data Transfer</td>
<td>0.00000</td>
<td>1.10420</td>
<td>1.02121</td>
<td>0.00038</td>
</tr>
</tbody>
</table>

Source: Tuning a Monte Carlo Algorithm on GPUs

http://www.pgroup.com/lit/articles/insider/v2n1a4.htm
Conclusion

• Not-so-steep learning curve for Fortran-only users.

• Easy to explore possibly speedup using accelerator

• Offers easy migration to GPU based supercomputers for large legacy Fortran codes.