INFORMATION TECHNOLOGY SERVICES

Introduction to MPI
Programming — Part 1

T ()
5 u b ' =
I k, Bl =iy]]

CENTER FOR COMPUTATION) N -,
& TECHNOLOGY WA,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Outline

e Introduction —what is MPl and why MPI
* MPI program structure

e Point-to-point communication

L 5 u \‘\ ' JE‘““‘“ 4

CENTER FOR COMPUTATION) Liery -,
& TECHNOLOGY WA,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Memory system models

e Different ways of sharing data among
Processors
— Distributed Memory
— Shared Memory

— Other memory models

e Hybrid model
e PGAS (Partitioned Global Address Space)

L 5 u \‘\ \ JE‘““‘“ 4

CENTER FOR COMPUTATION] S e -,
& TECHNOLOGY — SN,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Message Passing

e Context: distributed memory parallel
computers

— Each processor has its own memory space and
cannot access the memory of other processors

— Any data to be shared must be explicitly
transferred from one to another

L 5 u \‘\ \ JE‘““‘“ 4

CENTER FOR COMPUTATION] S e -,
& TECHNOLOGY — SN,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Distributed memory model

e Each process has its own

address space oJole

— Data is local to each process
. . . C C C
e Data sharing achieved via (Jd
explicit message passing o, au——

(through network)
e Example: MPI (Message Passing

Interface)
Lsu R
CENTER FOR COMPUTATION TR e
& TECHNOLOGY — WA,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Shared memory model

e All threads can access the
global address space data

e Data sharing achieved via ﬁﬁ
writing to/reading from the

same memory location

e Example: OpenMP

Lsu R e
CENTER FOR COMPUTATION j© - o &
& TECHNOLOGY Dl _

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Message Passing Interface

e MPI defines a standard API for message passing

— What’s in the standard
 The syntax and semantics of a core set of functions

— What’s not in the standard

* Implementation details

 Runtime details (how many processes the code with run
with etc.)

 MPI provides C/C++ and Fortran bindings

L 5 u \‘\ ' JE‘““‘“ ,

CENTER FOR COMPUTATION] S e -,
& TECHNOLOGY — SN,

6/11/2013 LONI Parallel Programming Workshop 2013

Why MPI?

e Standardized
— With efforts to keep it evolving (MPI 3.0 draft came out in 2010)

e Portability
— MPI implementations are available on almost all platforms
e Scalability

— In the sense that it is not limited by the number of processors
that can access the same memory space

* Popularity
— Many packages are based on MPI

L 5 u \‘\ \ JE‘““‘“ 4

CENTER FOR COMPUTATION] S e -,
& TECHNOLOGY — SN,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

When NOT to use MPI

* Not suitable for small-scale loop level
parallelization

— Shared memory parallelism and accelerator are
better

L 5 u \‘\ ' JE‘““‘“ 4

CENTER FOR COMPUTATION) Liery -,
& TECHNOLOGY WA,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

MPI Functions

e Point-to-point communication functions
— Message transfer from one process to another

e Collective communication functions

— Message transfer involving all processes in a
communicator

 Environment management functions
— |Initialization and termination
— Process group and topology

L 5 u \‘\ \ JE‘““‘“ 4

CENTER FOR COMPUTATION] S e -,
& TECHNOLOGY — SN,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

MPI Program Structure

program hello

include “mpif.h” Header file
integer :: nprocs,myid,ierr o]
Initialization
call mpi_init(ierr)

_ _ : _ Computation and
call mpi_comm_size(mpi_comm world,nprocs, ierr)

call mpi_comm_rank(mpi_comm_world,myid,ierr) communhnication
Write(*,” (““There are”,13,” processes’™”)”) nprocs
write(*™,”(’Process”,13,” says Hello World!”’)”) myid Termination

call mpi_finalize(ierr)

I " —
5 u] J&N‘

CENTER FOR COMPUTATION TR e
& TECHNOLOGY —— NN _

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

MPI Program Structure

program hello

include “mpif.h” Header file
integer :-: nprocs,myid,ierr o]
Initialization
call mpi_init(ierr)

S _ Computation and
call mMpi_CC rpyan1@qb563 ex]$ mpirun -np 4 ./a.out

call mpi_CCThere are 4 processes. communication
Wr!te(:,,(,There are 4 processes.
write(™,”C There are 4 processes. | Termination

- ~_There are 4 processes.
call mpi_T1 process 3 says Hello World!
Process 1 says Hello World!
Process 0 says Hello World!
Process 2 says Hello World!

LSL) e

CENTER FOR COMPUTATION) Liery -,
& TECHNOLOGY WA,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

C vs. Fortran

 Header file

— C:mpi.h

— Fortran: mpif.h
* Function names

— C:MP1_Some_ Function

— Fortran: mpi1_some_function (not case sensitive)
e Error handles

— Creturns the error value, while Fortran passes it as an argument
e C.:Int err = MPI_Some Function(argl,arg2,..,argN)
* Fortran:call mpi_some_ function(argl,arg2,..,argN,1err)

Lsu S

CENTER FOR COMPUTATION | e ° &
& TECHNOLOGY WA,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Initialization and Termination

e [nitialization
— Must be called before any other MPI calls
— C:MPI_Init()
— Fortran: MP1_INIT(1err)
* Termination
— Clean up data structures, terminate incomplete calls etc.
— C:MP1_Finalize()
— Fortran: MP1_FINALIZE(1err)

L 5 u \‘\ \ JE‘““‘“ 4

CENTER FOR COMPUTATION] S e -,
& TECHNOLOGY — SN,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Communicators (1)

e A communicator is an identifier associated with a
group of processes
— Can be regarded as an ordered list of processes

— Each process has a unique rank, which starts from 0
(root)
— It is the context of MPI communicators and operations

e When a function is called to send data to all processes, MPI
needs to understand what “all” means

L 5 u \‘\ \ JE‘““‘“ 4

CENTER FOR COMPUTATION] S e -,
& TECHNOLOGY — SN,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Communicators (2)

e MPI_COMM_WORLD: the default
communicator that contains all processes

running the MPI program
* There can be many communicators

e A process can belong to multiple
communicators

— The rank is usually different
\ ’4@-"7
LSL - &

CENTER FOR COMPUTATION o A
& TECHNOLOGY WA,

6/11/2013 LONI Parallel Programming Workshop 2013

Getting Communicator Information

e Get the rank of a communicator

— C:MPI_Comm_Rank(MPI_Comm comm, int
*rank)

— Fortran: MP1 _COMM_RANK(COMM, RANK, ERR)
e Get the size in a communicator

— C:MPI_Comm_Size(MPI_Comm comm, int
*si1ze)

— Fortran: MP1_COMM_SIZE(COMM, SIZE,ERR)

L 5 u \‘\ \ JE#‘ 4

CENTER FOR COMPUTATION] : o O M
& TECHNOLOGY — SN,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Compiling and Running MPI Programs

 Not a part of the standard
— Could vary from platform to platform
— Or even from implementation to implementation on the same
platform
 On Super Mike 2 and LONI Linux systems:

— Compile
e C:mpicc —0 <executable name> <source file>
* Fortran: mpif90 —0 <executable name> <source fTile>

— Run

« mpirun —machinefile $PBS NODEFILE —np <number
of procs> <executable name> <input parameters>

L 5 u \‘\ \ JE‘““‘“ 4

CENTER FOR COMPUTATION] S e -,
& TECHNOLOGY sl ‘x

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Exercise 1a: Process Color

e Write a MPI program where

— Processes with odd rank print to screen “Process x
has the color green”

— Processes with even rank print to screen “Process
X has the color red”

L 5 u \‘\ ' JE‘““‘“ 4

CENTER FOR COMPUTATION) Liery -,
& TECHNOLOGY WA,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Exercise 1b: Matrix Multiplication
version 1

e Goal: Distribute the work load among processes
in 1-d manner

— Each process initializes its own copy of A and B

— Then processes part of the workload

 Need to determine how to decompose (which process deals
which rows or columns)

e Assume that the dimension of A and B is a multiple of the
number of processes (need to check this in the program)

— Validate the result at the end

L 5 u \‘\ \ JE‘““‘“ 4

CENTER FOR COMPUTATION] S e -,
& TECHNOLOGY — SN,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Exercise 1c: Laplace Solver version O

e Goal: Distribute the work load among
processes in 1-d manner

— Find out the size of sub-matrix for each process

— Let each process report which part of the domain
it will work on, e.g. “Process x will process column
(row) x through column (row) y.”

e Row-wise (C) or column-wise (Fortran)

L 5 u \‘\ \ JE‘““‘“ 4

CENTER FOR COMPUTATION] S e -,
& TECHNOLOGY — SN,

6/5/2012 LONI Parallel Programming Workshop 2012

INFORMATION TECHNOLOGY SERVICES

Point-to-point Communication

e Communication between a pair of processes, so two functions calls
are required

— The sending process calls the MPI_SEND function
« C.int MPI_Send(void *buf, i1nt count, MPI_Datatype
dtype, int dest, int tag, MPlI_Comm comm);

. Fme;:MPI_SEND(BUF, COUNT, DTYPE, DEST, TAG, COMM,
1ERR

— The receiving process calls the MPI_RECV function

« C.int MPI_Recv(void *buf, int count, MPI_Datatype
dtype, int source, iInt tag, MPI_Comm comm, MPI_Status
*status);

* Fortran: MP1_RECV(BUF, COUNT, DTYPE, SOURCE, TAG, COMM,
STATUS, I1ERR)

e The function arguments characterize the message being transferred

L 5 u \‘\ \ JE‘““‘“ :

CENTER FOR COMPUTATION i
& TECHNOLOGY — WA,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

MP| Message

e A MPI message consists of two parts

— Message body

e Buffer: starting location in memory for outgoing data (send) or incoming data
(receive)

e Data type: type of data to be sent or received
e Count: number of items of type datatype to be sent or received
— Message envelope
* Destination (source): rank of the destination (source) of the message
e Tag: what MPI uses to match messages between processes
* Communicator

e The status argument contains information on the message that is
received
— Only for MPI_RECV

LSLU)

CENTER FOR COMPUTATION] ® .t &
& TECHNOLOGY — SN,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Example: Gathering Array Data

PO O 1 P1 2 3 P2 4 5 P3 6 7
PO O 1 2 3 4 5 6 7

 Goal: gather some array data from each process
and place it in the memory of the root process

L 5 u \‘\ ' JE‘““‘“ 4

CENTER FOR COMPUTATION) Liery -,
& TECHNOLOGY WA,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Example: Gathering Array Data

integer,allocatable :: array(:)
I Initialize MPI
call mpi_init(ierr)
call mpi_comm_size(mpi_comm world,nprocs, ierr)
call mpi_comm_rank(mpi_comm world,myid,ierr)
I Initialize the array
allocate(array(2*nprocs))
array(1)=2*myid
array(2)=2*myid+1
I Send data to the root process
1T (myid.eq.0) then
do i1=1,nprocs-1
call mpi_recv(array(2*i+l1),2,mpi_integer,i,1,status,i1err)
enddo
write(*,*) “The content of the array:”

write(*,*) array

else
call mpi_send(array,2,mpi_integer,0,myid, ierr) P i
CENTER FOR COMPUTATION O T

& TECHNOLOGY

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Example: Gathering Array Data

integer,allocatable :: array(:)

I Initialize MPI

call mpi_init(ierr)

call mpi_comm_size(mpi_comm world,nprocs, ierr)
call mpi_comm_rank(mpi_comm world,myid,ierr)

I Initialize the array

~ N

[lyanl@gb563 e%]$ mpiruhu—np 4 _/a.out

The content of the array:
0 1 2 3 4 5
6 7

do i1=1,nprocs-1
call mpi_recv(array(2*i+l1),2,mpi_integer,i,1,status,i1err)

enddo
write(*,*) “The content of the array:”

write(*,*) array
else

call mpi_send(array,2,mpi_integer,0,myid, ierr) P i '

LSh) -)

CENTER FOR COMPUTATION AR
———— “,_E .

& TECHNOLOGY

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Blocking Operations

e MPI_SEND and MPI_RECV are blocking
operations

— They will not return from the function call until
the communication is completed

— When a blocking send returns, the send buffer can
be safely overwritten

— When a blocking receive returns, the data has
been received and is ready to use

L 5 u \‘\ \ JE‘““‘“ 4

CENTER FOR COMPUTATION] : o O M
& TECHNOLOGY sl ‘x

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Deadlock (1)

e Deadlock occurs when both processes awaits
the other to make progress

// Exchange data between two processes
IT (process 0)

Receive data from process 1

Send data to process 1
IT (process 1)

Receive data from process O

Send data to process O

This is a guaranteed deadlock because both receives will
be waiting for data, but no send can be called until the

I su receive returns L ¥ l_‘!
3 Bl =iy]]

CENTER FOR COMPUTATION] : o O M
& TECHNOLOGY — SN,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Deadlock (2)

e How about this one?

// Exchange data between two processes
IT (process 0)

Receive data from process 1

Send data to process 1
IT (process 1)

Send data to process O

Receive data from process O

Y
LSL)2

CENTER FOR COMPUTATION) : e
& TECHNOLOGY WA,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Deadlock (2)

e How about this one?

// Exchange data between two processes
IT (process 0)

Receive data from process 1

Send data to process 1
IT (process 1)

Send data to process O

Receive data from process O

No deadlock will occur — process 0 will receive the data
first, then send the data to process 1; However, there

I su will be performance penalty because we turn l .
. . . \‘\ Jhﬂl
concurrent operations into sequential. 5
CENTER FOR COMPUTATION i °
& TECHNOLOGY — SN, _

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Deadlock (3)

e And this one?

// Exchange data between two processes
IT (process 0)

Send data to process 1

Receive data from process 1
IT (process 1)

Send data to process O

Receive data from process O

I-!Ei“l-ll R e

CENTER FOR COMPUTATION) : e
& TECHNOLOGY WA,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Deadlock (3)

e And this one?

// Exchange data between two processes
IT (process 0)

Send data to process 1

Receive data from process 1
IT (process 1)

Send data to process O

Receive data from process O

It depends. If one of the sends returns, then we are

OKAY - most MPI implementations buffer the message, 3

so a send could return even before the matching . !
Lsu receive is posted. However, if this is not the case or the) =

CENTER FOR COMPUTATION . .]
| message is too large to be buffered, deadlock will occur. g W

& TECHNOLOGY

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Non-blocking Operations (1)

 Non-blocking operations separate the
initialization of a send or receive from its

completion
 Two calls are required to complete a send or

receive

— Initialization
e Send: MPI__ISEND
e Receive: MPI1 _IRECV
— Completion: MP1_WAIT e
LSL) 3
CENTER FOR COMPUTATION LT S
& TECHNOLOGY)

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Non-blocking Operations (2)

e MPI_ISEND

— C:int MPI_Isend(void *buf, int count, MPI_Datatype
dtype, iInt dest, iInt tag, MP1_Comm comm, MPI_Request
*request);

— Fortran: MP1 _ISEND(BUF, COUNT, DTYPE, DEST, TAG, COMM,
REQ, IERR)

* MPI_IRECV

— C:int MPI_Irecv(void *buf, int count, MPI_Datatype
dtype, iInt source, int tag, MPI_Comm comm,
MP1_Request *request);

— Fortran: MPI1_IRECV(BUF, COUNT, DTYPE, SOURCE, TAG, COMM,
REQUEST, IERR)

e MPI_WAIT
— C:int MPI_Wairt(MPI_Request *request, MPl_Status

*status); = ;‘r
Lsurtran:MPI_WAIT(REQUEST, STATUS, IERR) A -
CENTER FOR COMPUTATION : -+ =TS,
& TECHNOLOGY —— W,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Example: Exchange Data with Non-
blocking calls

integer reqids,reqidr
integer status(mpi_status size)

it (myid.eq.0) then
call mpi_isend(to _pl,n,mpi_integer,1,100,mpi_comm world,reqids,ierr)
call mpi_irecv(from pl,n,mpi_integer,1,101,mpi_comm world,reqidr,ierr)
elseif (myid.eq.l1l) then
call mpi_isend(to _pO,n,mpi_integer,0,101,mpi_comm world,reqids,ierr)
call mpi_irecv(from pO,n,mpi_integer,0,100,mpi_comm_world,reqidr,ierr)
endif

call mpi_wairt(status,reqids,ierr)
call mpi_wairt(status,reqidr,ierr)

LSL) e

CENTER FOR COMPUTATION) Liery -,
& TECHNOLOGY WA,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Blocking vs. Non-blocking

* Blocking operations are data corruption proof, but
— Possible deadlock
— Performance penalty

 Non-blocking operations allow overlap of completion
and computation

— The process can work on other things between the
initialization and completion

— Should be used whenever possible

L 5 u \‘\ \ JE‘““‘“ 4

CENTER FOR COMPUTATION] S e -,
& TECHNOLOGY sl ‘x

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Exercise 2a: Find Global Maximum

 Goal: Find the maximum in an array
— Each process handle part of the array

— Every process needs to know the maximum at the end
of program

e Hints

— This can be done in two steps

e Step 1: each process send the local maximum to the root
process to find the global maximum

e Step 2: the root process send the global maximum to all
other processes

L 5 u \‘\ \ JE‘““‘“ 4

CENTER FOR COMPUTATION] S e -,
& TECHNOLOGY — SN,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Exercise 2b: Matrix Multiplication
Version 2

 Modify version 1 so that each process sends
its partial results to the root process

— The root process should have the whole matrix of
C

 Then validate the result at the root process

L 5 u \‘\ ' JE‘““‘“ ,

CENTER FOR COMPUTATION] : o O M
& TECHNOLOGY sl ‘x

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Exercise 2c: Laplace Solver Version 1

 Goal: develop a working MPI Laplace solver
— Distribute the workload in a one-dimensional manner

— Initialize the sub-matrix at each process and set the
boundary values
— At the end of each iteration

e Exchange boundary data with neighbors
e Find the global convergence error and distribute to all

processes
L 5 u S
CENTER FOR COMPUTATION) : <
& TECHNOLOGY > RS,

6/5/2012 LONI Parallel Programming Workshop 2012

	Introduction to MPI Programming – Part 1
	Outline
	Memory system models
	Message Passing
	Distributed memory model
	Shared memory model
	Message Passing Interface
	Why MPI?
	When NOT to use MPI
	MPI Functions
	MPI Program Structure
	MPI Program Structure
	C vs. Fortran
	Initialization and Termination
	Communicators (1)
	Communicators (2)
	Getting Communicator Information
	Compiling and Running MPI Programs
	Exercise 1a: Process Color
	Exercise 1b: Matrix Multiplication version 1
	Exercise 1c: Laplace Solver version 0
	Point-to-point Communication
	MPI Message
	Example: Gathering Array Data
	Example: Gathering Array Data
	Example: Gathering Array Data
	Blocking Operations
	Deadlock (1)
	Deadlock (2)
	Deadlock (2)
	Deadlock (3)
	Deadlock (3)
	Non-blocking Operations (1)
	Non-blocking Operations (2)
	Example: Exchange Data with Non-blocking calls
	Blocking vs. Non-blocking
	Exercise 2a: Find Global Maximum
	Exercise 2b: Matrix Multiplication Version 2
	Exercise 2c: Laplace Solver Version 1

