
Introduction to MPI
Programming – Part 2

6/11/2013 LONI Parallel Programming Workshop 2013

Outline

• Collective communication
• Derived data types

6/11/2013 LONI Parallel Programming Workshop 2013

Collective Communication
• Collective communications involves all processes in a

communicator
– One to all, all to one and all to all

• Three types of collective communications
– Data movement
– Collective computation
– Synchronization

• All collective communications are blocking
– Non-blocking collective communications are being worked into

the MPI 3.0 standard

6/11/2013 LONI Parallel Programming Workshop 2013

Collective vs. Point-to-point

• More concise program
– One collective operation can replace multiple

point-to-point operations

• Optimized collective communications usually
are faster than the corresponding point-to-
point communications

6/11/2013 LONI Parallel Programming Workshop 2013

Data Movement: Broadcast

• Broadcast copies data from the memory of one
processor to that of other processors
– One to all operation

• Syntax: MPI_Bcast (send_buffer,
send_count, send_type, rank, comm)

6/11/2013 LONI Parallel Programming Workshop 2013

P0 A B C D

P1

P2

P3

P0 A B C D

P1 A B C D

P2 A B C D

P3 A B C D

Broadcast

Data Movement: Gather

• Gather copies data from each process to one process,
where it is stored in rank order
– One to all operation

• Syntax: MPI_GATHER (send_buffer,
send_count, send_type, recv_buffer,
recv_count, recv_type, recv_rank, comm)

6/11/2013 LONI Parallel Programming Workshop 2013

P0 A

P1 B

P2 C

P3 D

P0 A B C D

P1 B

P2 C

P3 D

Gather

Example: MPI_Gather

6/11/2013 LONI Parallel Programming Workshop 2013

…
integer,allocatable :: array(:),array_r(:)
! Initialize MPI
call mpi_init(ierr)
call mpi_comm_size(mpi_comm_world,nprocs,ierr)
call mpi_comm_rank(mpi_comm_world,myid,ierr)
! Initialize the array
allocate(array(2),array_r(2*nprocs))
array(0)=2*myid
array(1)=2*myid+1
! Gather data at the root process
call mpi_gather(array,2,mpi_integer, &
 array_r,2,mpi_integer, &
 0,mpi_comm_world)
if (myid.eq.0) then
 write(*,*) “The content of the array_r:”
 write(*,*) array_r

Example: MPI_Gather

6/11/2013 LONI Parallel Programming Workshop 2013

…
integer,allocatable :: array(:),array_r(:)
! Initialize MPI
call mpi_init(ierr)
call mpi_comm_size(mpi_comm_world,nprocs,ierr)
call mpi_comm_rank(mpi_comm_world,myid,ierr)
! Initialize the array
allocate(array(2),array_r(2*nprocs))
array(0)=2*myid
array(1)=2*myid+1
! Gather data at the root process
call mpi_gather(array,2,mpi_integer, &
 array_r,2,mpi_integer, &
 0,mpi_comm_world)
if (myid.eq.0) then
 write(*,*) “The content of the array_r:”
 write(*,*) array_r

[lyan1@qb563 ex]$ mpirun -np 4 ./a.out
The content of the array:
 0 1 2 3 4 5
 6 7

Collective Computation: Reduction

• MPI reduction collects data from each process, reduces them to a
single value, and store it in the memory of one process

– One to all operation
• Syntax: MPI_Reduce(send_buffer, recv_buffer,

count, data_type, reduction_operation,
rank_of_receiving_process, communicator)

6/11/2013 LONI Parallel Programming Workshop 2013

P0 A

P1 B

P2 C

P3 D

P0 A E

P1 B

P2 C

P3 D

Reduction

E=Op(A,B,C,D)

Reduction Operation

• Summation and production
• Maximum and minimum
• Max and min location
• Logical
• Bitwise
• User defined

6/11/2013 LONI Parallel Programming Workshop 2013

Collective Computation: Allreduce

• MPI allreduce collects data from each process, reduces them to a
single value, and store it in the memory of EVERY process

– All to all operation
• Syntax: MPI_Allreduce(send_buffer, recv_buffer,

count, data_type, reduction_operation,
communicator)

6/11/2013 LONI Parallel Programming Workshop 2013

P0 A

P1 B

P2 C

P3 D

P0 A E

P1 B E

P2 C E

P3 D E

Allreduce

E=Op(A,B,C,D)

Synchronization

• MPI_Barrier (Communicator)
– Blocks processes in a group until all processes have

reached the same synchronization point
– Synchronization is collective since all processes are

involved
– Could cause significant overhead, so do NOT use it

unless absolutely necessary
• Usually for external event, i.e. I/O

6/11/2013 LONI Parallel Programming Workshop 2013

Other Collective Communications

6/11/2013 LONI Parallel Programming Workshop 2013

Source: Practical MPI Programming, IBM Redbook

Exercise 3a: Find Global Maximum

• Goal: repeat Exercise 2a with appropriate
collective communication function(s)

6/11/2013 LONI Parallel Programming Workshop 2013

Exercise 3b: Matrix Multiplication
version 3

• Goal: Replace the part in version 2 that sends
the result to the root process with appropriate
collective operation(s)

6/11/2013 LONI Parallel Programming Workshop 2013

Exercise 3c: Laplace Solver version 2

• Goal: Replace the part in version 1 that finds
the global maximum convergence and
distributes it to all processes with appropriate
collective operation(s)

Basic Data Types

6/11/2013 LONI Parallel Programming Workshop 2013

MPI Data Type C Data Type

MPI_CHAR Signed char

MPI_SHORT Signed short int

MPI_INT Signed int

MPI_LONG Signed long int

MPI_UNSIGNED_CHAR Unsigned char

MPI_UNSIGNED_SHORT Unsigned short

MPI_UNSIGNED Unsigned int

MPI_UNSIGNED_LONG Unsigned long int

MPI_FLOAT Float

MPI_DOUBLE Double

MPI_LONG_DOUBLE Long double

MPI_BYTE

MPI_PACKED

MPI Data Type Fortran Data Type

MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_REAL8 REAL*8

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

MPI_BYTE

MPI_PACKED

Why Derived Data Types?

• The communication functions we have seen
so far deal with contiguous data of the same
type

• What if the data to be transferred is
– Not contiguous?
– Not of the same type?

6/11/2013 LONI Parallel Programming Workshop 2013

Solutions for Non-contiguous Data
• Make multiple communication calls

– One for each contiguous segment
• Pack data into contiguous buffer, transfer, and

unpack at the receiving end
• Use MPI derived data types

– Tell the library what is desired and let it decide how
the communication is done

– Most efficient

6/11/2013 LONI Parallel Programming Workshop 2013

Derived Data Type: Contiguous

• Allows replication of one data type into
contiguous locations

• Syntax: MPI_Type_Contiguous(count,
old_type, new_type)

• The new data type must be commited before
being used for communication:
– MPI_Type_Commit(new_type)

6/11/2013 LONI Parallel Programming Workshop 2013

Derived Data Type: Vector

• Allows replication of a data type into locations
that consist of equally spaced blocks

• Syntax: MPI_Type_Vector(count, block
size, stride, old_type, new_type)

6/11/2013 LONI Parallel Programming Workshop 2013

Call mpi_type_vector(3,2,4,mpi_real8,my_vector_type,ierr)
Call mpi_type_commit(my_vector_type,ierr)

Example: Broadcasting Submatrix

6/11/2013 LONI Parallel Programming Workshop 2013

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

!Number of blocks
nblocks=6
!Block length
blocklen=6
!Stride
stride=8

!Define the new data type
CALL MPI_TYPE_VECTOR(NBLCK,BLCKLEN,STRD, &
 MPI_INTEGER,submat_type,IERR)
CALL MPI_TYPE_COMMIT(submat_type,IERR)

!Call broadcast
CALL MPI_BCAST(AMAT(2,2),1,submat_type,0, &
 MPI_COMM_WORLD,IERR)

Derived Data Type: HVector

• The same with MPI_Type_Vector, except
that the unit of the stride is byte instead of
old_type
– More flexible than the vector type
– We can use
MPI_Type_Extent(datatype,extent)
to decide the extent (in bytes) of an MPI data type

6/11/2013 LONI Parallel Programming Workshop 2013

Nested Derived Data Type

• New data types can be created out of user-
defined data types

6/11/2013 LONI Parallel Programming Workshop 2013

1 2 3 4 5 6

1

2

3

4

5

6

Call mpi_type_extent(mpi_integer, &
 size_of_int, ierr)
call mpi_type_vector(2,1,2,mpi_integer, &
 column_type,ierr)
call mpi_type_hvector(4,1,6*size_of_int, &
 column_type,new_type,ierr)

column_type

Derived Data Type: Indexed
• Allows replication of a data type into locations that consist of

unequally spaced blocks with varying length
• Syntax: MPI_Type_indexed (count, blocklens[],

offsets[], old_type, new_type)
– blocklens and offsets are array of size count that specify the

length and displacement of each block, respectively

6/11/2013 LONI Parallel Programming Workshop 2013

Count=4
blocklens=[4,1,4,2]
Offsets=[0,6,12,18]

Derived Data Type: Struct
• Most general data type constructor
• Allows a new data type that represents arrays of

types, each of which has a different block length,
displacement (in bytes) and type

• Syntax: MPI_Type_struct (count,
blocklens[], offsets[],
old_types[], new_type)

6/11/2013 LONI Parallel Programming Workshop 2013

Exercise 4a: Matrix Transposition

• Goal: write a MPI program that transposes a
matrix in parallel
– 2-d process grid
– Each process initializes its own sub-matrix
– Do we really need the local transposition?

6/11/2013 LONI Parallel Programming Workshop 2013

Exercise 4b: Matrix Multiplication
Version 4

• Goal: change the matrix multiplication to two-
dimensional decomposition
– Arrange the processes into a 2-d grid
– Each process should only owns a sub-matrix of A,

B and C
– Assemble the matrix C at the root process using

the partial result from each process

6/11/2013 LONI Parallel Programming Workshop 2013

Exercise 4c: Laplace Solver Version 3

• Goal: change our Laplace solver to two-
dimensional decomposition

• Hints
– Change how the size of sub-domain is calculated
– Change how the boundary condition is set
– Data transfer along two more directions

• Those data are not contiguous
– Fortran: use derived data types
– C: need to pack it into a contiguous buffer

	Introduction to MPI Programming – Part 2
	Outline
	Collective Communication
	Collective vs. Point-to-point
	Data Movement: Broadcast
	Data Movement: Gather
	Example: MPI_Gather
	Example: MPI_Gather
	Collective Computation: Reduction
	Reduction Operation
	Collective Computation: Allreduce
	Synchronization
	Other Collective Communications
	Exercise 3a: Find Global Maximum
	Exercise 3b: Matrix Multiplication version 3
	Exercise 3c: Laplace Solver version 2
	Basic Data Types
	Why Derived Data Types?
	Solutions for Non-contiguous Data
	Derived Data Type: Contiguous
	Derived Data Type: Vector
	Example: Broadcasting Submatrix
	Derived Data Type: HVector
	Nested Derived Data Type
	Derived Data Type: Indexed
	Derived Data Type: Struct
	Exercise 4a: Matrix Transposition
	Exercise 4b: Matrix Multiplication Version 4
	Exercise 4c: Laplace Solver Version 3

