

Introduction to MPI Programming – Part 2

6/11/2013

Outline

- Collective communication
- Derived data types

6/11/2013

Collective Communication

- Collective communications involves all processes in a communicator
 - One to all, all to one and all to all
- Three types of collective communications
 - Data movement
 - Collective computation
 - Synchronization
- All collective communications are blocking
 - Non-blocking collective communications are being worked into the MPI 3.0 standard

Collective vs. Point-to-point

- More concise program
 - One collective operation can replace multiple point-to-point operations
- Optimized collective communications usually are faster than the corresponding point-topoint communications

Data Movement: Broadcast

- Broadcast copies data from the memory of one processor to that of other processors
 - One to all operation
- Syntax: MPI_Bcast (send_buffer, send_count, send_type, rank, comm)

Data Movement: Gather

- Gather copies data from each process to one process, where it is stored in rank order
 - One to all operation
- Syntax: MPI_GATHER (send_buffer, send_count, send_type, recv_buffer,

CENTER FOR COMPUTATION & TECHNOLOGY

Example: MPI_Gather

```
integer,allocatable :: array(:),array_r(:)
! Initialize MPI
call mpi_init(ierr)
call mpi_comm_size(mpi_comm_world, nprocs, ierr)
call mpi_comm_rank(mpi_comm_world,myid,ierr)
! Initialize the array
allocate(array(2),array r(2*nprocs))
array(0)=2*myid
array(1)=2*myid+1
! Gather data at the root process
call mpi gather(array,2,mpi integer, &
                array r,2,mpi integer, &
                0,mpi_comm_world)
if (myid.eq.0) then
  write(*,*) "The content of the array_r:"
  write(*,*) array r
```


6/11/2013

Example: MPI_Gather

	 integer,allocatable :: array(:),array_r(:) ! Initialize MPI call mpi_init(ierr) call mpi_comm_size(mpi_comm_world,nprocs,ierr) call mpi_comm_rank(mpi_comm_world,myid,ierr) ! Initialize the array								
[lyan1@qb563 ex]\$ mpirun -np 4 ./a.out The content of the array:									
1110 0	0	1	2	3	4	5			
	б	7							
	array_r,2,mpi_integer, &								
	0,mpi_comm_world)								
if (myid.eq.0) then									
write(*,*) "The content of the array_r:"									
	<pre>write(*,*) array_r</pre>								
						(Change and Change and			

Collective Computation: Reduction

- MPI reduction collects data from each process, reduces them to a single value, and store it in the memory of one process
 One to all operation
- Syntax: MPI_Reduce(send_buffer, recv_buffer, count, data_type, reduction_operation, rank_of_receiving_process, communicator)

Reduction Operation

- Summation and production
- Maximum and minimum
- Max and min location
- Logical
- Bitwise
- User defined

Collective Computation: Allreduce

- MPI allreduce collects data from each process, reduces them to a single value, and store it in the memory of EVERY process
 All to all operation
- Syntax: MPI_Allreduce(send_buffer, recv_buffer, count, data_type, reduction_operation, communicator)

Synchronization

- MPI_Barrier (Communicator)
 - Blocks processes in a group until all processes have reached the same synchronization point
 - Synchronization is collective since all processes are involved
 - Could cause significant overhead, so do NOT use it unless absolutely necessary
 - Usually for external event, i.e. I/O

Other Collective Communications

6/11/2013

source. Hactical in Hrogramming, isin heasesin

Exercise 3a: Find Global Maximum

• Goal: repeat Exercise 2a with appropriate collective communication function(s)

6/11/2013

Exercise 3b: Matrix Multiplication version 3

 Goal: Replace the part in version 2 that sends the result to the root process with appropriate collective operation(s)

6/11/2013

Exercise 3c: Laplace Solver version 2

 Goal: Replace the part in version 1 that finds the global maximum convergence and distributes it to all processes with appropriate collective operation(s)

Basic Data Types

MPI Data Type	C Data Type	MPI Data Type	Fortran Data Type
MPI_CHAR	Signed char	MPI_INTEGER	INTEGER
MPI_SHORT	Signed short int	MPI_REAL	REAL
MPI_INT	Signed int	MPI_REAL8	REAL*8
MPI_LONG	Signed long int	MPI_DOUBLE_PRECISION	DOUBLE PRECISION
MPI_UNSIGNED_CHAR	Unsigned char	MPI_COMPLEX	COMPLEX
MPI_UNSIGNED_SHORT	Unsigned short	MPI_LOGICAL	LOGICAL
MPI_UNSIGNED	Unsigned int	MPI_CHARACTER	CHARACTER(1)
MPI_UNSIGNED_LONG	Unsigned long int	MPI_BYTE	
MPI_FLOAT	Float	MPI_PACKED	
MPI_DOUBLE	Double		
MPI_LONG_DOUBLE	Long double		Greger Anno
MPI_BYTE			
MPI_PACKED			Link Charles Rouge Latypete New J
& TECHNOLOGY			

6/11/2013

Why Derived Data Types?

- The communication functions we have seen so far deal with contiguous data of the same type
- What if the data to be transferred is
 - Not contiguous?
 - Not of the same type?

Solutions for Non-contiguous Data

- Make multiple communication calls
 One for each contiguous segment
- Pack data into contiguous buffer, transfer, and unpack at the receiving end
- Use MPI derived data types
 - Tell the library what is desired and let it decide how the communication is done
 - Most efficient

Derived Data Type: Contiguous

- Allows replication of one data type into contiguous locations
- Syntax: MPI_Type_Contiguous(count, old_type, new_type)
- The new data type must be commited before being used for communication:

LONI Parallel Programming Workshop 2013

- MPI_Type_Commit(new_type)

6/11/2013

Derived Data Type: Vector

- Allows replication of a data type into locations that consist of equally spaced blocks
- Syntax: MPI_Type_Vector(count, block size, stride, old_type, new_type)

Call mpi_type_vector(3,2,4,mpi_real8,my_vector_type,ierr)
Call mpi_type_commit(my_vector_type,ierr)

LONI Parallel Programming Workshop 2013

6/11/2013

Example: Broadcasting Submatrix

	1	2	3	4	5	6	7	8
1								
2								
3								
4								
5								
6								
7								
8								

!Number of blocks
nblocks=6
!Block length
blocklen=6
!Stride
stride=8

!Define the new data type CALL MPI_TYPE_VECTOR(NBLCK,BLCKLEN,STRD, & MPI_INTEGER,submat_type,IERR) CALL MPI_TYPE_COMMIT(submat_type,IERR)

!Call broadcast CALL MPI_BCAST(AMAT(2,2),1,submat_type,0, & MPI_COMM_WORLD,IERR)

6/11/2013

CENTER FOR COMPUTATION & TECHNOLOGY

Derived Data Type: HVector

- The same with MPI_Type_Vector, except that the unit of the stride is byte instead of old_type
 - More flexible than the vector type
 - We can use

MPI_Type_Extent(datatype,extent)
to decide the extent (in bytes) of an MPI data type

Nested Derived Data Type

 New data types can be created out of userdefined data types

Derived Data Type: Indexed

- Allows replication of a data type into locations that consist of unequally spaced blocks with varying length
- Syntax: MPI_Type_indexed (count, blocklens[], offsets[], old_type, new_type)
 - blocklens and offsets are array of size count that specify the length and displacement of each block, respectively

Count=4 blocklens=[4,1,4,2] Offsets=[0,6,12,18]

6/11/2013

Derived Data Type: Struct

- Most general data type constructor
- Allows a new data type that represents arrays of types, each of which has a different block length, displacement (in bytes) and type
- Syntax: MPI_Type_struct (count, blocklens[], offsets[], old_types[], new_type)

Exercise 4a: Matrix Transposition

- Goal: write a MPI program that transposes a matrix in parallel
 - 2-d process grid
 - Each process initializes its own sub-matrix
 - Do we really need the local transposition?

Exercise 4b: Matrix Multiplication Version 4

- Goal: change the matrix multiplication to twodimensional decomposition
 - Arrange the processes into a 2-d grid
 - Each process should only owns a sub-matrix of A,
 B and C
 - Assemble the matrix C at the root process using the partial result from each process

Exercise 4c: Laplace Solver Version 3

- Goal: change our Laplace solver to twodimensional decomposition
- Hints
 - Change how the size of sub-domain is calculated
 - Change how the boundary condition is set
 - Data transfer along two more directions
 - Those data are not contiguous
 - Fortran: use derived data types
 - C: need to pack it into a contiguous buffer

