INFORMATION TECHNOLOGY SERVICES

Introduction to MPI
Programming — Part 2

T ()
5 u b ' =
I k, Bl =iy]]

CENTER FOR COMPUTATION) N -,
& TECHNOLOGY WA,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Outline

 Collective communication

e Derived data types

L 5 u \‘\ \ JE‘““‘“ 4

CENTER FOR COMPUTATION) N -,
& TECHNOLOGY WA,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Collective Communication

e Collective communications involves all processes in a
communicator

— One to all, all to one and all to all
 Three types of collective communications
— Data movement
— Collective computation
— Synchronization
e All collective communications are blocking

— Non-blocking collective communications are being worked into
the MPI 3.0 standard

L 5 u \‘\ \ JE‘““‘“ :

CENTER FOR COMPUTATION] o O M
& TECHNOLOGY sl ‘x

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Collective vs. Point-to-point

* More concise program
— One collective operation can replace multiple
point-to-point operations
e Optimized collective communications usually
are faster than the corresponding point-to-
point communications

L 5 u \‘\ \ JE‘““‘“ :

CENTER FOR COMPUTATION B
& TECHNOLOGY ¥xaadit.

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Data Movement: Broadcast

MABCD MA

PL p1
B E -
P3 p3

 Broadcast copies data from the memory of one
processor to that of other processors

— One to all operation
e Syntax: MP1_Bcast (send buffer,

oo W W W
O O O O
o ©O ©O O

send_count, send_type, rank, comm) "
Lsu S
CENTER FOR COMPUTATION TR e

& TECHNOLOGY —— TN,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Data Movement: Gather

A

B mB
] T
D ED

e Gather copies data from each process to one process,
where it is stored in rank order

— One to all operation
o Syntax: MPI_GATHER (send buffer,

send_count, send_type, recv buffer —
L5|.| recv_count, recv_type, recv_rank, comm) & B |

CENTER FOR COMPUTATION] e * &
& TECHNOLOGY — A,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Example: MPI_Gather

integer,allocatable :: array(:),array r(:)
I Initialize MPI
call mpi_init(ierr)
call mpi_comm_size(mpi_comm world,nprocs, ierr)
call mpi_comm_rank(mpi_comm world,myid,ierr)
I Initialize the array
allocate(array(2),array_r(2*nprocs))
array(0)=2*myid
array(1)=2*myid+1
I Gather data at the root process
call mpi_gather(array,2,mpi_integer, &
array r,2,mpi_integer, &
O,mpi_comm_world)
iIT (myid.eq.0) then
write(*,*) “The content of the array r:”
write(*,*) array_r

LSU %

CENTER FOR COMPUTATION o A
& TECHNOLOGY WA,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Example: MPI_Gather

integer,allocatable :: array(:),array r(:)

I Initialize MPI

call mpi_init(ierr)

call mpi_comm_size(mpi_comm world,nprocs, ierr)
call mpi_comm_rank(mpi_comm world,myid,ierr)

I Initialize the array

7~ ~ ~ N

[lyanl@gb563 e%]$ mpirun -np 4 _/a.out

The content of the array:

0 1 2 3 4 5

6 7

B array_r,2,m5i_integer, &
O,mpi_comm_world)
iIT (myid.eq.0) then
write(*,*) “The content of the array r:”
write(*,*) array_r
S

} * e ° &
T [
B, B

CENTER FOR COMPUTATION
& TECHNOLOGY

6/11/2013

LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Collective Computation: Reduction

E=Op(A,B,C,D)

E
p3 >

e MPI reduction collects data from each process, reduces them to a
single value, and store it in the memory of one process

— One to all operation

o Syntax: MPl_Reduce(send buffer, recv buffer,
count, data_type, reduction operatlon

& -

o

O

W)

rank_of _receiving_process, communicator) o N
LSL) e
3 Bl =iy]]
CENTER FOR COMPUTATION LT
& TECHNOLOGY — WA,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Reduction Operation

e Summation and production
e Maximum and minimum

e Max and min location

e Logical

e Bitwise

e User defined

L 5 u \‘\ \ JE‘““‘“ 4

CENTER FOR COMPUTATION) Liery -,
& TECHNOLOGY WA,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Collective Computation: Allreduce

E=Op(A,B,C,D)

& -

Pl -

PO \"
BN
Allreduce

e MPI allreduce collects data from each process, reduces them to a
single value, and store it in the memory of EVERY process
— All to all operation

 Syntax: MP1_Allreduce(send buffer, recv_buffer,
count, data_ type, reduction operatlon

W)

O

communicator) o

\\ - *_"—*-

LSU +
CENTER FOR COMPUTATION LT
—— 5 E

& TECHNOLOGY =, oo

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Synchronization

e MPI Barrier (Communicator)

— Blocks processes in a group until all processes have
reached the same synchronization point

— Synchronization is collective since all processes are
involved

— Could cause significant overhead, so do NOT use it
unless absolutely necessary

e Usually for external event, i.e. /O

L 5 u \‘\ \ JE#‘ 4

CENTER FOR COMPUTATION] S e -,
& TECHNOLOGY sl ‘x

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Other Collective Communications

data ——»

2 Po|A A PO AB'C'D
S p1 broadcast | 5 P1 E reduce
& - >
P2 A P2
l P3 A P3 [D |
*: some operator
PolA|B|CID| eatter |A Po|A| al |ABC'D
P1 — [B p1|B | reduce |amrcp
P2 - | Pz |C AB*C*D
gather —|
P3 D P3| D | A'B*C'D
¥ some operator
PO | A A|B|C|D PO | A | A
P1|B a"gathel" AlBlcl|D P1 i Scan‘ AB
Pz|C A|B|C|D Pz |C| A'B*C
P3|D A|B|C|D P3 [D | AB*C'D
*: some operator
PO |AD|AT]|A2|A3 AQ|BO|CO|DO PO |A0|AT1]|A2]|A3| reduce |A0*BO*CO*DO
P1|Bo|B1|B2[B3| alteall laq|B1|c1|Dn P1 [Bo|B1|B2|B3| €' |a1B1*C1'DI e '
P2z |C0|C1]|C2|C3 A2|Bz2|C2|D2 Pz |CO|C1|C2|C3 A2*B2*C2*D2 h % &
P3 |Do|D1|D2|D3 A3[B3|c3|D3 P3 |Do|D1|D2|D3 A3'B3*C3'D3 3 dlor
. ®
CENTER FOR COMPUTATION : . : some operator LR
& TECHNOLOGY Source: Practical MPI Programming, IBM Redbook - WRS,

6/11/2013 LONI Parallel Programming Wo

INFORMATION TECHNOLOGY SERVICES

Exercise 3a: Find Global Maximum

 Goal: repeat Exercise 2a with appropriate
collective communication function(s)

b - -
L 5 u] Jl&t‘.{“

CENTER FOR COMPUTATION o -,
& TECHNOLOGY — WA,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Exercise 3b: Matrix Multiplication
version 3

 Goal: Replace the part in version 2 that sends
the result to the root process with appropriate
collective operation(s)

3 -r-
L 5 u A N 4&#"
CENTER FOR COMPUTATION] : - ° &
& TECHNOLOGY WA,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Exercise 3c: Laplace Solver version 2

 Goal: Replace the part in version 1 that finds
the global maximum convergence and
distributes it to all processes with appropriate
collective operation(s)

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

INFORMATION TECHNOLOGY SERVICES

Basic Data Types

MPI Data Type C Data Type MPI Data Type Fortran Data Type

MPI_CHAR
MPI_SHORT
MPI_INT
MPI_LONG
MPI_UNSIGNED_CHAR
MPI_UNSIGNED_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MP|_FLOAT
MP]_DOUBLE
MPI_LONG_DOUBLE
MPI_BYTE

cex MPI_PACKED

O LELTISLILA e X

Signed char
Signed short int
Signed int
Signed long int
Unsigned char
Unsigned short
Unsigned int
Unsigned long int
Float

Double

Long double

MPI_INTEGER
MPI_REAL
MPI_REALS

MPI_DOUBLE_PRECISION

MPI_COMPLEX
MPI_LOGICAL
MPI_CHARACTER
MPI_BYTE
MPI_PACKED

INTEGER
REAL

REAL*8

DOUBLE PRECISION
COMPLEX

LOGICAL
CHARACTER(1)

6/11/2013

LONI Parallel Programming Workshop 2013

Why Derived Data Types?

e The communication functions we have seen
so far deal with contiguous data of the same

type

 What if the data to be transferred is
— Not contiguous?
— Not of the same type?

L 5 u \‘\ \ JE‘““‘“ 4

CENTER FOR COMPUTATION] : o O M
& TECHNOLOGY — SN,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Solutions for Non-contiguous Data

 Make multiple communication calls
— One for each contiguous segment

e Pack data into contiguous buffer, transfer, and
unpack at the receiving end
e Use MPI derived data types

— Tell the library what is desired and let it decide how
the communication is done

— Most efficient

L 5 u \‘\ \ JE‘““‘“ 4

CENTER FOR COMPUTATION] : o O M
& TECHNOLOGY sl ‘x

6/11/2013 LONI Parallel Programming Workshop 2013

Derived Data Type: Contiguous

e Allows replication of one data type into
contiguous locations

e Syntax: MP1_Type Contiguous(count,
old type, new type)

e The new data type must be commited before
being used for communication:
— MP1_Type Commit(new_type)

L 5 u \‘\ \ JE‘““‘“ 4

CENTER FOR COMPUTATION] : o O M
& TECHNOLOGY — SN,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Derived Data Type: Vector

e Allows replication of a data type into locations
that consist of equally spaced blocks

e Syntax: MP1_Type Vector(count, block
size, stride, old type, new type)

Call mpi_type vector(3,2,4,mpi_real8,my vector_type,ierr)
Call mpi_type commit(my_vector_ type,ierr)

I " -
5 u] J&N‘

CENTER FOR COMPUTATION TR e
& TECHNOLOGY —— NN _

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Example: Broadcasting Submatrix

INumber of blocks

1 nblocks=6
: DEEEEE G
blocklen=6
: HHEEEEE
stride=8
« HEEEEE
IDefine the new data type
5 CALL MP1_TYPE_VECTOR(NBLCK,BLCKLEN,STRD, &
MP1_INTEGER,submat_ type, IERR)
6 CALL MPI1_TYPE_COMMIT(submat_type, IERR)
7 1Call broadcast
CALL MPI_BCAST(AMAT(2,2),1,submat type,0, &
8 MP1_COMM_WORLD, IERR)
s ."'
Lsu \\ : -‘.@:
CENTER FOR COMPUTATION) * e
& TECHNOLOGY WA,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Derived Data Type: HVector

e The same with MP1_Type Vector, except
that the unit of the stride is byte instead of
old type
— More flexible than the vector type

— We can use
MP1 Type Extent(datatype,extent)
to decide the extent (in bytes) of an MPI data type

3 -r-
L 5 u A N 4&#"
CENTER FOR COMPUTATION) : <
& TECHNOLOGY sl ‘x

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Nested Derived Data Type

* New data types can be created out of user-
defined data types

1 2 3 4 5 6
column_type

.. Call mpi_type extent(mpi_integer, &

size_of _iInt, 1ierr)
call mpi_type vector(2,1,2,mpi_integer, &
column_type, ierr)

.. call mpi_type hvector(4,1,6*size _of _iInt, &

column_type,new_type, 1err)

1
2
3
4
5

LS.,)
| ® 4f
3 Bl =iy]]

CENTER FOR COMPUTATION N
& TECHNOLOGY o

6/11/2013 LONI Parallel Programming Workshop 2013

Derived Data Type: Indexed

* Allows replication of a data type into locations that consist of
unequally spaced blocks with varying length

 Syntax: MP1_Type_ i1ndexed (count, blocklens][],
offsets|], old type, new_type)

— blocklens and offsets are array of size count that specify the
length and displacement of each block, respectively

EEEE B
blocklens=[4,1,4,2]
HEENE BN oresooiis

o e ' ‘
L 5 u - 5.8
k, Bl =iy]]

CENTER FOR COMPUTATION) : e
& TECHNOLOGY WA,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Derived Data Type: Struct

* Most general data type constructor

e Allows a new data type that represents arrays of
types, each of which has a different block length,

displacement (in bytes) and type

e Syntax: MP1_Type struct (count,
blocklens|], offsets][],
old_types[], new_type)

I 3 ﬁ.
5 u ‘\ ! JE‘““‘“
CENTER FOR COMPUTATION] : o=
& TECHNOLOGY iy

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Exercise 4a: Matrix Transposition

e Goal: write a MPI program that transposes a
matrix in parallel
— 2-d process grid
— Each process initializes its own sub-matrix

— Do we really need the local transposition?

L 5 u \‘\ \ JE‘““‘“ 4

CENTER FOR COMPUTATION] S e -,
& TECHNOLOGY — SN,

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Exercise 4b: Matrix Multiplication
Version 4

e Goal: change the matrix multiplication to two-
dimensional decomposition
— Arrange the processes into a 2-d grid

— Each process should only owns a sub-matrix of A,
BandC

— Assemble the matrix C at the root process using
the partial result from each process

L 5 u \‘\ \ JE#‘ 4

CENTER FOR COMPUTATION] : o O M
& TECHNOLOGY sl ‘x

6/11/2013 LONI Parallel Programming Workshop 2013

INFORMATION TECHNOLOGY SERVICES

Exercise 4c: Laplace Solver Version 3

e Goal: change our Laplace solver to two-
dimensional decomposition

* Hints
— Change how the size of sub-domain is calculated

— Change how the boundary condition is set

— Data transfer along two more directions

 Those data are not contiguous
— Fortran: use derived data types
— C: need to pack it into a contiguous buffer

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

	Introduction to MPI Programming – Part 2
	Outline
	Collective Communication
	Collective vs. Point-to-point
	Data Movement: Broadcast
	Data Movement: Gather
	Example: MPI_Gather
	Example: MPI_Gather
	Collective Computation: Reduction
	Reduction Operation
	Collective Computation: Allreduce
	Synchronization
	Other Collective Communications
	Exercise 3a: Find Global Maximum
	Exercise 3b: Matrix Multiplication version 3
	Exercise 3c: Laplace Solver version 2
	Basic Data Types
	Why Derived Data Types?
	Solutions for Non-contiguous Data
	Derived Data Type: Contiguous
	Derived Data Type: Vector
	Example: Broadcasting Submatrix
	Derived Data Type: HVector
	Nested Derived Data Type
	Derived Data Type: Indexed
	Derived Data Type: Struct
	Exercise 4a: Matrix Transposition
	Exercise 4b: Matrix Multiplication Version 4
	Exercise 4c: Laplace Solver Version 3

