
Parallelizing The Matrix
Multiplication

6/10/2013 LONI Parallel Programming Workshop 2013 1

6/10/2013 LONI Parallel Programming Workshop 2013 2

Serial version

6/10/2013 LONI Parallel Programming Workshop 2013 3

Amd x Bdn = Cmn

X =

𝑐𝑖,𝑗 = �𝑎𝑖,𝑘 ∙ 𝑏𝑘,𝑗

𝑑

𝑘=1

//Read and validate command line arguments
Read M,N,D from the command line

//Initialize the arrays
For all elements of A and B
 initial value = function (i , j)

// Matrix multiplication
For each C (i,j)
// Take the inner product of row i of A and column j of B
 For each A (i,k) and B(k,j)
 C (i,j) = C (i,j) + A (i,k) * B(k,j)

6/10/2013 LONI Parallel Programming Workshop 2013 4

𝑎𝑖,𝑗 = 𝑖 + 𝑗
𝑏𝑖,𝑗 = 𝑖 ∗ 𝑗

//Read and validate command line arguments
Read M,N,D from the command line

//Initialize the arrays
For all elements of A and B
 initial value = function (i , j)

// Matrix multiplication
For each C (i,j)
// Take the inner product of row i of A and column j of B
 For each A (i,k) and B(k,j)
 C (i,j) = C (i,j) + A (i,k) * B(k,j)

6/10/2013 LONI Parallel Programming Workshop 2013 5

Anything else?

𝑎𝑖,𝑗 = 𝑖 + 𝑗
𝑏𝑖,𝑗 = 𝑖 ∗ 𝑗

//Read and validate command line arguments
Read M,N,D from the command line

//Initialize the arrays
For all elements of A and B
 initial value = function (i , j)

// Matrix multiplication
For each C (i,j)
// Take the inner product of row i of A and column j of B
 For each A (i,k) and B(k,j)
 C (i,j) = C (i,j) + A (i,k) * B(k,j)

6/10/2013 LONI Parallel Programming Workshop 2013 6

How do we know the result is correct?
Result validation is very important!

𝑎𝑖,𝑗 = 𝑖 + 𝑗
𝑏𝑖,𝑗 = 𝑖 ∗ 𝑗

6/10/2013 LONI Parallel Programming Workshop 2013 7

𝑐𝑖,𝑗 = �𝑎𝑖,𝑘 ∙ 𝑏𝑘,𝑗

𝑁

𝑘=1

= �(𝑖 + 𝑘) ∙ 𝑗 ∙ 𝑘
𝑁

𝑘=1

= �(𝑖𝑖𝑖 + 𝑗𝑘2)
𝑁

𝑘=1

= 𝑖𝑖� 𝑘
𝑁

𝑘=1

+ 𝑗� 𝑘2
𝑁

𝑘=1

= 𝑖𝑖 ∙
𝑁(𝑁 + 1)

2 + 𝑗 ∙
𝑁(𝑁 + 1)(2𝑁 + 1)

6

Assuming A, B and C are all
N x N square matrices

We can use this formula to validate
the result from the program

//Read and validate command line arguments
Read M,N,D from the command line

//Initialize the arrays
For all elements of A and B
 initial value = function (i , j)

// Matrix multiplication
For each C (i,j)
// Take the inner product of row i of A and column j of B
 For each A (i,k) and B(k,j)
 C (i,j) = C (i,j) + A (i,k) * B(k,j)

6/10/2013 LONI Parallel Programming Workshop 2013 8

//Validate the result
Print out an element of C and compare it to the value
given by the formula

𝑎𝑖,𝑗 = 𝑖 + 𝑗
𝑏𝑖,𝑗 = 𝑖 ∗ 𝑗

Serial Program Details
• A, B and C are all N x N square matrices
• Take input arguments

– N: dimension of the matrices
– ipeek, jpeek: indices of the element used for result validation

• Values of A and B:

• Output

– How much time it takes (performance measurement)
– The value of C(ipeek, jpeek) and the value given by the formula

6/10/2013 LONI Parallel Programming Workshop 2013 9

𝑎𝑖,𝑗 = 𝑖 + 𝑗

𝑏𝑖,𝑗 = 𝑖 ∗ 𝑗

6/10/2013 LONI Parallel Programming Workshop 2013 10

Parallel version

Writing a parallel program step by step

• Step 1. Start from serial programs as a baseline
– Something to check correctness and efficiency against

• Step 2. Analyze and profile the serial program
– Identify the “hotspot”
– Identify the parts that can be parallelized

• Step 3. Parallelize code incrementally
• Step 4. Check correctness of the parallel code
• Step 5. Iterate step 3 and 4

6/10/2013 LONI Parallel Programming Workshop 2013 11

//Read and validate command line arguments
Read M,N,D from the command line

//Initialize the arrays
For all elements of A and B
 initial value = function (i , j)

// Matrix multiplication
For each C (i,j)
// Take the inner product of row i of A and column j of B
 For each A (i,k) and B(k,j)
 C (i,j) = C (i,j) + A (i,k) * B(k,j)

6/10/2013 LONI Parallel Programming Workshop 2013 12

//Validate the result
Print out an element of C and compare it to the value
given by the formula

Which parts can and
should be parallelized?

//Read and validate command line arguments
Read M,N,D from the command line

6/10/2013 LONI Parallel Programming Workshop 2013 13

//Validate the result
Print out an element of C and compare it to the value
given by the formula

Which parts can and
should be parallelized?

// Matrix multiplication
For each C (i,j)
// Take the inner product of row i of A and column j of B
 For each A (i,k) and B(k,j)
 C (i,j) = C (i,j) + A (i,k) * B(k,j)

//Initialize the arrays
For all elements of A and B
 initial value = function (i , j)

6/10/2013 LONI Parallel Programming Workshop 2013 14

Ann x Bnn = Cnn

X =

𝑐𝑖,𝑗 = �𝑎𝑖,𝑘 ∙ 𝑏𝑘,𝑗

𝑛

𝑘=1

Some Considerations

• Decomposition
– 1-D or 2-D

• Data distribution
– Each process owns the entire matrices, but only

performs calculation on a part of them, or
– Each process only owns the sub-matrices that it is

going to process

6/10/2013 LONI Parallel Programming Workshop 2013 15

6/10/2013 LONI Parallel Programming Workshop 2013 16

Ann x Bnn = Cnn

X =

𝑐𝑖,𝑗 = �𝑎𝑖,𝑘 ∙ 𝑏𝑘,𝑗

𝑁

𝑘=1

P1

P2

P3

P4

6/10/2013 LONI Parallel Programming Workshop 2013 17

Ann x Bnn = Cnn

X =

P1 P2

P3 P4

𝑐𝑖,𝑗 = �𝑎𝑖,𝑘 ∙ 𝑏𝑘,𝑗

𝑁

𝑘=1

Optimization Conderations
• Avoid data movement as much as possible (i.e.

increase the amount of computation done relative to
the amount of data moved)
– True for both serial and parallel programs
– For parallel programs, data movement means data

communication between host and device (GPU) or
between different nodes (distributed memory systems)

• Reduce the memory footprint
• When developing a parallel program, it’s important to

know what to expect in terms of speedup and scaling

6/10/2013 LONI Parallel Programming Workshop 2013 18

6/10/2013 LONI Parallel Programming Workshop 2013 19

Cannon’s Algorithm

Cannon’s Algorithm

• Assume
– the number of processes p is a perfect square
– the matrices are N x N square

• Arrange the processes into a 2-D 𝑝 x 𝑝
process grid
– For each matrix, each process is assigned with a

block of 𝑁/ 𝑝 x 𝑁/ 𝑝

6/10/2013 LONI Parallel Programming Workshop 2013 20

6/10/2013 LONI Parallel Programming Workshop 2013 21

Ann x Bnn = Cnn

X =

𝑐𝑖,𝑗 = �𝑎𝑖,𝑘 ∙ 𝑏𝑘,𝑗

𝑁

𝑘=1

P(0,0) P(0,1) P(0,2)

P(1,0) P(1,1) P(1,2)

P(2,0) P(2,1) P(2,2)

P(0,0) P(0,1) P(0,2)

P(1,0) P(1,1) P(1,2)

P(2,0) P(2,1) P(2,2)

P(0,0) P(0,1) P(0,2)

P(1,0) P(1,1) P(1,2)

P(2,0) P(2,1) P(2,2)

Working by elements

6/10/2013 LONI Parallel Programming Workshop 2013 22

Ann x Bnn = Cnn

X =

A(0,0) A(0,1) A(0,2)

A(1,0) A(1,1) A(1,2)

A(2,0) A(2,1) A(2,2)

B(0,0) B(0,1) B(0,2)

B(1,0) B(1,1) B(1,2)

B(2,0) B(2,1) B(2,2)

C(0,0) C(0,1) C(0,2)

C(1,0) C(1,1) C(1,2)

C(2,0) C(2,1) C(2,2)

Working by blocks

C(1,2) = A(1,0) X B (0,2) + A(1,1) X B(1,2) + A(1,2) X B(2,2)

6/10/2013 LONI Parallel Programming Workshop 2013 23

Ann x Bnn = Cnn

X =

A(0,0) A(0,1) A(0,2)

A(1,0) A(1,1) A(1,2)

A(2,0) A(2,1) A(2,2)

B(0,0) B(0,1) B(0,2)

B(1,0) B(1,1) B(1,2)

B(2,0) B(2,1) B(2,2)

C(0,0) C(0,1) C(0,2)

C(1,0) C(1,1) C(1,2)

C(2,0) C(2,1) C(2,2)

The multiplication is completed in 𝒑 phases

C(1,2) = A(1,0) X B (0,2) + A(1,1) X B(1,2) + A(1,2) X B(2,2)

Three phases: phase1 phase2 phase3

Cannon’s Algorithm
• Two stages

– Skew the matrices so everything aligns properly
• Shift row i of A by i columns to the left
• Shift column j of B by j rows to the up

– Shift and multiply
• Each process calculate the local product and add into the accumulated

sum
• Shift A by 1 column to the left
• Shift B by 1 row to the up
• Repeat 𝒑 times

• All shifts wrap around (circular)

6/10/2013 LONI Parallel Programming Workshop 2013 24

6/10/2013 LONI Parallel Programming Workshop 2013 25

Ann x Bnn = Cnn

X =

A(0,0) A(0,1) A(0,2)

A(1,0) A(1,1) A(1,2)

A(2,0) A(2,1) A(2,2)

B(0,0) B(0,1) B(0,2)

B(1,0) B(1,1) B(1,2)

B(2,0) B(2,1) B(2,2)

C(0,0) C(0,1) C(0,2)

C(1,0) C(1,1) C(1,2)

C(2,0) C(2,1) C(2,2)

Process P(1,2) owns After initialization: A(1,2), B(1,2), C(1,2)

After skewing: A(1,0), B(0,2), C(1,2)

Shifting once: A(1,1), B(1,2), C(1,2)

Shifting twice: A(1,2), B(2,2), C(1,2)

Cannon’s Algorithm – Pseudo Code

6/10/2013 LONI Parallel Programming Workshop 2013 26

For i = 0 to sqrt(p) – 1
 Shift A(i,:) to the left by i
For j = 0 to sqrt(p) – 1
 Shift B(:,j) to the up by j
For k = 0 to sqrt(p) – 1
 For i = 0 to sqrt(p) – 1 and j = 0 to sqrt(p) – 1
 C(i,j) += A(i,j) X B(i,j)
 Shift A(i,:) to the left by 1
 Shift B(:,j) to the up by 1

	Parallelizing The Matrix Multiplication
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Serial Program Details
	Slide Number 10
	Writing a parallel program step by step
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Some Considerations
	Slide Number 16
	Slide Number 17
	Optimization Conderations
	Slide Number 19
	Cannon’s Algorithm
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Cannon’s Algorithm
	Slide Number 25
	Cannon’s Algorithm – Pseudo Code

