INFORMATION TECHNOLOGY SERVICES

Hybrid Parallel Programming
Part 2

6/4/14 LONI Programming Workshop 2014 1



I 5 U INFORMATION TECHNOLOGY SERVICES

Overview

* Ring exchange
* Jacobi

* Advanced

* Overlapping

6/4/14 LONI Programming Workshop 2014 2



INFORMATION TECHNOLOGY SERVICES

Exchange on aring

mod(rank-1+nproc,nproc) mod(rank+1+nproc,nproc)

Left neighbor Right neighbor

6/4/14 HPC User Environment Spring 2014 3



INFORMATION TECHNOLOGY SERVICES

Exchange on a ring

ucopyO

2. Start copy of vector u to its
ucopyl neighbor in variable ucopy

1. Setup initial vector across mpi
processes

.

3. In the meantime do useful work
onu

\|I

m_ 4. Atthe end of computation and
copy, replace u with newer value
from ucopy

5. Repeat steps 1-3 until all vector
components have been cycled
6/4/14




INFORMATION TECHNOLOGY SERVICES

Exchange on a ring

Only two ways to improve
performance:

* Reduce mpi processes so as to
reduce communication and
communication overhead

W * QOverlap computation and
communication

6/4/14 5



INFORMATION TECHNOLOGY SERVICES

Where is it useful

uo
Vector space is HUGE and

U1 distributed vectors are the only
way to go

u2 Matrix is analytical, so can be
computed on the fly. It either
does not need storage or cant be

e stored at all !

6/4/14 6



INFORMATION TECHNOLOGY SERVICES

Code Walkthrough

Vector space is HUGE and

distributed vectors are the only
way to go

Matrix is analytical, so can be
computed on the fly. It either

does not need storage or cant be
stored at all !

6/4/14 7



I 5 U INFORMATION TECHNOLOGY SERVICES

Exercise

* Replace Blocking communication in the code ring with

non blocking
calls

e Create a local vector c of same dimensions. Define a
function that replicates a banded matrix
Alij)=1, i=j
= random(x), 1 < abs(i-j) < 100

6/4/14



INFORMATION TECHNOLOGY SERVICES

Cannon’s Algorithm
Distributed matrix-multiplication

é Matrix is distributed across a
2D grid of processors

é Matrix is too large to be
present on one node

é Requires communication to
get sub-matrices from other
ranks




INFORMATION TECHNOLOGY SERVICES

Cannon’s Algorithm
Distributed matrix-multiplication

é How Big?

Consider:

Size =[Imillion X 1million]
Memory=
(1076*1076*(4))/(1024/3)

é How many Supermike
nodes?
3725/32=116 Nodes




INFORMATION TECHNOLOGY SERVICES

Cannon’s Algorithm
Distributed matrix-multiplication

O

Input matrices are distributed, so should the output matrix be.




Cannon’s Algorithm
Initial arrangement

INFORMATION TECHNOLOGY SERVICES

é

Idea is to bring required pieces of matrix to each processor
Start with C ;




INFORMATION TECHNOLOGY SERVICES

Cannon’s Algorithm
Initial arrangement

No problem with Ist
Row and !st column




INFORMATION TECHNOLOGY SERVICES

Cannon’s Algorithm
Initial arrangement

B22, Needs to
be here !

If A12 stays
here




— £
Cn =A;" By
£ 3
+ A, ™ By,
£
+ A;3™ Bs,

Cannon’s Algorithm
Initial arrangement

Wind 2nd
column up
once

— £
Ci3 = A" Bys
%k
+ A ™ By
£
+ A3 ™ Bsg

INFORMATION TECHNOLOGY SERVICES

Wind 2nd
column up
twice




— £
Cy = Ay" By
%k
+ Ay, " By
£ 3
+ A3 ™ By

— £ 3
G = A3 "By
£
+ Aj, " By
E
+ Ag3™ B3,

Cannon’s Algorithm
Initial arrangement

£\

INFORMATION TECHNOLOGY SERVICES




INFORMATION TECHNOLOGY SERVICES

Cannon’s Algorithm
Initial arrangement

+
*




INFORMATION TECHNOLOGY SERVICES

Cannon’s Algorithm
Initial arrangement

Rows have been shifted to the left

HEE




INFORMATION TECHNOLOGY SERVICES

Cannon’s Algorithm
Initial arrangement

Columns have been shifted upwards




INFORMATION TECHNOLOGY SERVICES

Cannon’s Algorithm
Initial arrangement

Matrices after initial skewing




I 5 U INFORMATION TECHNOLOGY SERVICES

Cannon’s Algorithm
Algorithm: Iterative compute and transfer

The iteration in every step multiplies local submatrix of A with local submatrix of B
Partial results are added to sub-matrix of C. Full matrices are never needed.

Sub-matrices
among rows are
copied from the

right neighbor to
the left
Sub-matrices

among columns are
copied from the
bottom neighbor to
the top




INFORMATION TECHNOLOGY SERVICES

Cannon’s Algorithm
Algorithm: Iterative compute and transfer

Sub-matrices of A are
copied from the right
neighbor to the left, and
sub-matrices for B are
copied from bottom to
the top neighbor

Partial results from each
iteration are added to
local matrix C




INFORMATION TECHNOLOGY SERVICES

Cannon’s Algorithm
Algorithm: Iterative compute and transfer

Algorithm begs for
overlap of computation
and communication !




I 5 U INFORMATION TECHNOLOGY SERVICES

Jacobi solver

1. Master calculates boundaries N

Isends and Irecvs them on other processes
Send down, Send Up, Recv down Recv up ¢ N

2. All threads chime in and start working on inner v
points. Check convergence

3. Wait for communication to finish

Copy new to old

4. Proceed with another iteration if needed

6/4/14 24



I 5 U INFORMATION TECHNOLOGY SERVICES

Jacobi solver

/* Use master thread to calculate and communicate boundies */
Hpragma omp master
{
/* Loop over top and bottom boundry */
for (k = 1; k <= NC; k++){
/*Calculate average of neighbors as new value (Point Jacobi method) */
t[*new][1][k] =0.25 *
(t[old][2][k] + t[old][O][k] +
t[old][1][k+1] + t[old][1][k-1]);
t[*new][nrl][k] = 0.25 *
(t[old][nrl+1][Kk] + t[old][nrl-1][k] +
t[old][nrl][k+1] + t[old][nrl][k-1]);
/* Calculate local maximum change from last step */
/* Puts thread's max ind */
d = MAX(fabs(t[*new][1][Kk] - t[old][1][k]), d);
d = MAX(fabs(t[*new][nrl][k] - t[old][nrl][k]), d);
}

6/4/14 25




Jacobi solver

if (nPEs!=1){
/* Exchange boundries with neighbor tasks */
if (myPE < nPEs-1)
/* Sending Down; Only npes-1 do this */
MPI_Isend(&(t[*new][nrl][1]), NC, MPI_FLOAT,
myPE+1, DOWN, MPI_COMM_WORLD, &request[0]);
if (myPE !=0)
/* Sending Up; Only npes-1 do this */
MPI_Isend(&t[*new][1][1], NC, MPI_FLOAT,
myPE-1, UP, MPI_COMM_WORLD, &request[1]);
if (myPE !=0)
/* Receive from UP */
MPI_Irecv(&t[*new][0][1], NC, MPI_FLOAT,
MPI_ANY_SOURCE, DOWN, MPI_COMM_WORLD, &request[2]);
if (myPE != nPEs-1)
/* Receive from DOWN */
MPI_lrecv(&t[*new][nrl+1][1], NC, MPI_FLOAT,
MPI_ANY_SOURCE, UP, MPI_COMM_WORLD, &request[3]);

Computation goes here

MPI_Wait

O8I Z0




I 5 U INFORMATION TECHNOLOGY SERVICES

Jacobi solver

Code walkthrough

/* Everyone calculates values and finds local max change */
#pragma omp for schedule(runtime) nowait
for (i = 2; i <= nrl-1; i++)
for (j=1;j <= NC; j++){
t[*newl][i][j] = 0.25 *
(t[old][i+1][j] + t[old][i-1][j] +
tlold][i][j+1] + tlold][i][j-1]);
d = MAX(fabs(t[*new][i][j] - tlold][i][j]), d);
}

/*Local max change become taks-global max change */
#pragma omp critical
dt = MAX(d, dt); /* Finds max of the d's */
}

6/4/14 27



Lsu INFORMATION TECHNOLOGY SERVICES
Advanced Hybrid Programming

| Thread 0
__GPUO_JgThread 1

6/4/14 .



