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3 Ways to Accelerate Applications 
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Applications 

Libraries 

“Drop-in” 

Acceleration 

Programming 

Languages 

OpenACC 

Directives 

Easily Accelerate 

Applications 

Maximum 

Flexibility 

CUDA Libraries are interoperable 

with OpenACC 

CUDA Languages are also 

interoperable with OpenACC 

Increasing programming effort 



Some GPU-accelerated Libraries 
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NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP 

Vector Signal 
Image Processing 

GPU Accelerated 
Linear Algebra 

Matrix Algebra 
on GPU and 
Multicore 

NVIDIA cuFFT 

C++ STL 
Features for 

CUDA 
IMSL Library 

Building-block 
Algorithms for 

CUDA 
ArrayFire Matrix 

Computations 

Sparse Linear 
Algebra 

http://code.google.com/p/thrust/downloads/list


GPU Programming Languages 
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OpenACC, CUDA Fortran Fortran 

OpenACC, CUDA C C 

Thrust, CUDA C++ C++ 

PyCUDA, Copperhead Python 

Alea.cuBase F# 

MATLAB, Mathematica, LabVIEW Numerical analytics 



What is OpenACC 

 OpenACC (for Open Accelerators) is a programming standard for 

parallel computing developed by Cray, CAPS, Nvidia and PGI. The 

standard is designed to simplify parallel programming of 

heterogeneous CPU/GPU systems. 

 It provides a model for accelerator programming that is portable 

across operating systems and various types of host CPUs and 

accelerators.  
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OpenACC Directives 
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Program myproject 
  ... serial code ... 
!$acc kernels 
  do k = 1,n1 
    do i = 1,n2 
      ... parallel code ... 
    enddo 
  enddo 
!$acc end kernels  
  ... 
End Program myproject 

CPU GPU 

Your original  

Fortran or C code 

Simple Compiler hints 

Compiler Parallelizes 

code 

Works on many-core 

GPUs & multicore CPUs 

OpenACC 

compiler 

Hints 



Outline of today’s topic 

 OpenACC overview 

 First OpenACC program and basic OpenACC directives 

 Data region concept 

 How to parallize our examples: 

– Laplacian solver 

 Hands-on exercise 

– Matrix Multiplication 

– SAXPY 

– Calculate 𝜋 
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History of OpenACC 

 OpenACC was developed by The Portland Group (PGI), Cray, CAPS 

and NVIDIA. PGI, Cray, and CAPs have spent over 2 years developing 

and shipping commercial compilers that use directives to enable GPU 

acceleration as core technology.  

 The small differences between their approaches allowed the formation 

of a group to standardize a single directives approach for accelerators 

and CPUs. 

 Full OpenACC 2.0 Specification available online 

– http://www.openacc-standard.org/ 

– Implementations available now from PGI, Cray, and CAPS 
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The Standard for GPU Directives 

 Simple and high-level :  

– Directive are the easy path to accelerate compute intensive 

applications. Non-GPU programmers can play along.  

– Single Source: Compile the same program for accelerators or serial, No 

involvement of OpenCL, CUDA, etc.  

 Open and performance portable:  

– OpenACC is an open GPU directives standard, making GPU 

programming straightforward and portable across parallel and multi-core 

processors 

– Supports GPU accelerators and co-processors from multiple vendors, 

current and future versions.  

 Powerful and Efficient:  

– Directives allow complete access to the massive parallel power of GPU.  

– Experience shows very favorable comparison to low-level 

implementations of same algorithms.   

– Developers can port and tune parts of their application as resources and 

profiling dictates. No need to restructure the program.   
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Directive-based programming 

 Directives provide a high-level alternative  

– Based on original source code (Fortran, C, C++)  

– Easier to maintain/port/extend code  

– Users with OpenMP experience find it a familiar programming model  

– Compiler handles repetitive coding (cudaMalloc, cudaMemcpy...)  

– Compiler handles default scheduling; user tunes only where needed  

 Possible performance sacrifice  

– Small performance sacrifice is acceptable  

– trading-off portability and productivity against this  

– after all, who hand-codes in assembly for CPUs these days? 

 As researchers in science and engineering, you often need to balance 

between: 

 Time needed to develop your code 

 Time needed to focus on the problem itself 
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OpenACC Execution Model 
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Application Code 

Offload to 
GPU 
Parallization 

Compute-Intensive 
Functions 

Rest of Sequential 
CPU Code 

 Sequential code executes in a Host (CPU) thread 

 Parallel code executes in many Device (GPU) threads across multiple 

processing elements 

CPU 
Optimized for  
Serial Tasks 

GPU Accelerator 
Optimized for Many  

Parallel Tasks 



General Directive Syntax and Scope 

 Fortran 

!$acc directive [clause [,] clause]...] 

Often paired with a matching end directive surrounding a 
structured code block 

!$acc end directive  

 C 

#pragma acc directive [clause [,] clause]...] 

{ 

Often followed by a structured code block (compound 
statement) 

} 
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The “restrict” keyword in C 
 Declaration of intent given by the programmer to the compiler 

– Applied to a pointer, e.g. float *restrict ptr;  

– Meaning: “for the lifetime of ptr, only it or a value directly derived from it 

(such as ptr + 1) will be used to access the object to which it points”* 

– In simple, the ptr will only point to the memory space of itself 

 OpenACC compilers often require restrict to determine independence. 

– Otherwise the compiler can’t parallelize loops that access ptr 

– Note: if programmer violates the declaration, behavior is undefined. 
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*http://en.wikipedia.org/wiki/Restrict 

THE RESTRICT CONTRACT 

I, [insert your name], a PROFESSIONAL or AMATEUR [circle 

one] programmer, solemnly declare that writes through this 

pointer will not effect the values read through any other 

pointer available in the same context which is also 

declared as restricted. 

 

* Your agreement to this contract is implied by use of the 

restrict keyword ;) 

http://en.wikipedia.org/wiki/Restrict
http://en.wikipedia.org/wiki/Restrict


The First Simple Exercise: SAXPY 
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subroutine saxpy(n, a, x, y) 
  real :: x(:), y(:), a 
  integer :: n, i 
!$acc kernels 
  do i=1,n 
    y(i) = a*x(i)+y(i) 
  enddo 
!$acc end kernels 
end subroutine saxpy 
 
... 
!Perform SAXPY on 1M elements 
call saxpy(2**20, 2.0, x_d, y_d) 
... 

 

void saxpy(int n,  
           float a,  
           float *x,  
           float *restrict y) 
{ 
#pragma acc kernels 
  for (int i = 0; i < n; ++i) 
    y[i] = a*x[i] + y[i]; 
} 
 
... 
// Perform SAXPY on 1M elements 
saxpy(1<<20, 2.0, x, y); 
... 
 

*restrict:  
“y does not alias x” 



Complete saxpy.c 

 Only a single line to the above example is needed to produce an 

OpenACC SAXPY in C. 
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int main(int argc, char **argv) 
{ 
    int n = 1<<20; // 1 million floats 
 
    float *x = (float*)malloc(n*sizeof(float)); 
    float *y = (float*)malloc(n*sizeof(float)); 
    for (int i = 0; i < n; ++i) { 
        x[i] = 2.0f; 
        y[i] = 1.0f; 
    } 
    saxpy(n, 3.0f, x, y); 
    free(x); 
    free(y); 
    return 0; 
} 

void saxpy(int n,  
           float a,  
           float *x,  
           float *restrict y) 
{ 
#pragma acc kernels 
  for (int i = 0; i < n; ++i) 
    y[i] = a*x[i] + y[i]; 
} 



SAXPY code (only functions) in CUDA C 

// define CUDA kernel function 

__global__ void saxpy_kernel( float a, float* x, float* y, int n ){ 

    int i; 

    i = blockIdx.x*blockDim.x + threadIdx.x; 

    if( i <= n ) y[i] = a*x[i] + y[i]; 

} 

 

void saxpy( float a, float* x, float* y, int n ){ 

    float *xd, *yd; 

    // manage device memory 

    cudaMalloc( (void**)&xd, n*sizeof(float) ); 

    cudaMalloc( (void**)&yd, n*sizeof(float) );  

    cudaMemcpy( xd, x, n*sizeof(float), cudaMemcpyHostToDevice ); 

    cudaMemcpy( yd, y, n*sizeof(float), cudaMemcpyHostToDevice ); 

    // calls the kernel function 

    saxpy_kernel<<< (n+31)/32, 32 >>>( a, xd, yd, n ); 

    cudaMemcpy( x, xd, n*sizeof(float), cudaMemcpyDeviceToHost ); 

    // free device memory after use 

    cudaFree( xd );  

    cudaFree( yd ); 

}  
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CUDA C/OpenACC – Big Difference 

 With CUDA, we changed the structure of the old code. Non-CUDA 

programmers can’t understand new code. It is not even ANSI standard 

code. 

– We have separate sections for the host code, and the GPU device 

code. Different flow of code. Serial path now gone forever. 

– Although CUDA C gives you maximum flexibility, the effort needed for 

restructuring the code seems to be high. 

– OpenACC seems ideal for researchers in science and engineering. 
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Compiler output of the first example 

 C 

pgcc -acc -Minfo=accel -ta=nvidia,time saxpy_1stexample.c 

 Fortran 

pgf90 -acc -Minfo=accel -ta=nvidia,time saxpy_1stexample.c 

 Use “man pgcc/pgf90” to check the meaning of the compiler switches. 

 Compiler output : 
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pgcc -acc -Minfo=accel -ta=nvidia,time saxpy_1stexample.c  

saxpy: 

     26, Generating present_or_copyin(x[:n]) 

         Generating present_or_copy(y[:n]) 

         Generating NVIDIA code 

     27, Loop is parallelizable 

         Accelerator kernel generated 

         27, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */ 

 Emit information about accelerator region targeting. 



Add PGI compiler to your environment 

[hpctrn58@shelob1 ~]$ cat ~/.soft 

# This is the .soft file. 

# It is used to customize your environment by setting up environment 

# variables such as PATH and MANPATH. 

# To learn what can be in this file, use 'man softenv'. 

+portland-14.3 

@default 

[hpctrn58@shelob1 ~]$ resoft 

[hpctrn58@shelob1 ~]$ man pgcc 

[hpctrn58@shelob1 ~]$ cp –r /home/fchen14/loniworkshop2014/ ./ 

[hpctrn58@shelob1 ~]$ cd ~/loniworkshop2014/saxpy/openacc/exercise 

[hpctrn58@shelob1 ~]$ vi saxpy_1stexample.c 

[hpctrn58@shelob1 ~]$ pgcc -acc -Minfo=accel -ta=nvidia,time 
saxpy_1stexample.c 
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Runtime output 

[fchen14@shelob001 c]$ ./a.out 

 

Accelerator Kernel Timing data 

/home/fchen14/loniworkshop2014/laplace/openacc/c/saxpy_1stexample.c 

  saxpy  NVIDIA  devicenum=0 

    time(us): 2,247 

    26: data region reached 1 time 

        26: data copyin reached 2 times 

             device time(us): total=1,421 max=720 min=701 avg=710 

        29: data copyout reached 1 time 

             device time(us): total=637 max=637 min=637 avg=637 

    26: compute region reached 1 time 

        26: kernel launched 1 time 

            grid: [4096]  block: [256] 

             device time(us): total=189 max=189 min=189 avg=189 

            elapsed time(us): total=201 max=201 min=201 avg=201 
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2,247 = 1,421 + 637 + 189 



OpenACC kernels directive 

 What is a kernel? A function that runs in parallel on the GPU. 

– The kernels directive expresses that a region may contain parallelism 

and the compiler determines what can be safely parallelized.  

– The compiler breaks code in the kernel region into a sequence of 

kernels for execution on the accelerator device. 

– When a program encounters a kernels construct, it will launch a 

sequence of kernels in order on the device. 

 The compiler identifies 2 parallel loops and generates 2 kernels below. 
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#pragma acc kernels 
{ 
    for (i = 0; i < n; i++){ 
        x[i] = 1.0; 
        y[i] = 2.0; 
    } 
    for (i = 0; i < n; i++){ 
        y[i] = a*x[i] + y[i]; 
    } 
} 

!$acc kernels 
do i = 1, n 
    x(i) = 1.0 
    y(i) = 2.0 
end do 
do i = 1, n 
    y(i) = y(i) + a * x(i) 
end do 
!$acc end kernels 



OpenACC parallel directive 

 Similar to OpenMP, the parallel directive identifies a block of code as 

having parallelism. 

 Compiler generates one parallel kernel for that loop. 

 C 

#pragma acc parallel [clauses] 

 Fortran 

!$acc parallel [clauses] 
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#pragma acc parallel 
{ 
    for (i = 0; i < n; i++){ 
        x[i] = 1.0 ; 
        y[i] = 2.0 ; 
    } 
    for (i = 0; i < n; i++){ 
        y[i] = a*x[i] + y[i]; 
    } 
} 

!$acc parallel 
do i = 1, n 
    x(i) = 1.0 
    y(i) = 2.0 
end do 
do i = 1, n 
    y(i) = y(i) + a * x(i) 
end do 
!$acc end parallel 



OpenACC loop directive 

 Loops are the most likely targets for parallelizing. 

– The Loop directive is used within a parallel or kernels directive 

identifying a loop that can be executed on the accelerator device. 

– The loop directive can be combined with the enclosing parallel or 

kernels 

– The loop directive clauses can be used to optimize the code. This 

however requires knowledge of the accelerator device. 

– Clauses: gang, worker, vector, num_gangs, num_workers 

 C: #pragma acc [parallel/kernels] loop [clauses] 

 Fortran: !$acc [parallel/kernels] loop [clauses] 
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#pragma acc loop 
for (i = 0; i < n; i++){ 
    y[i] = a*x[i] + y[i]; 
} 

 
!$acc loop 
do i = 1, n 
    y(i) = y(i) + a * x(i) 
end do 
!$acc end loop 



OpenACC kernels vs parallel 

 kernels 

– Compiler performs parallel analysis and parallelizes what it believes is 

safe. 

– Can cover larger area of code with single directive. 

 parallel 

– Requires analysis by programmer to ensure safe parallelism. 

– Straightforward path from OpenMP 

 Both approaches are equally valid and can perform equally well. 
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Clauses 

 data management clauses 

– copy(...),copyin(...), copyout(...) 

– create(...), present(...) 

– present_or_copy{,in,out}(...) or pcopy{,in,out}(...) 

– present_or_create(...) or pcreate(...) 

 reduction(operator:list) 

 if (condition) 

 async (expression) 
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Runtime Libraries 

 System setup routines 

– acc_init(acc_device_nvidia) 

– acc_set_device_type(acc_device_nvidia) 

– acc_set_device_num(acc_device_nvidia) 

 Synchronization routines 

– acc_async_wait(int) 

– acc_async_wait_all() 

 For more information, refer to the OpenACC standard 
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Second example: Jacobi Iteration 

 Solve Laplace equation in 2D: 

– Iteratively converges to correct value (e.g. Temperature), by computing 

new values at each point from the average of neighboring points.  

 
𝛻2𝑓 𝑥, 𝑦 = 0 
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𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1  

4
 

A(i,j) A(i+1,j) A(i-1,j) 

A(i,j-1) 

A(i,j+1) 



Graphical representation for Jacobi iteration 

Current Array: A 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.0 2.0 4.0 6.0 8.0 10.0 12.0 1.0 

1.0 3.0 5.0 7.0 9.0 11.0 13.0 1.0 

1.0 2.0 6.0 1.0 3.0 7.0 5.0 1.0 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
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Next Array: Anew 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.0 2.25 3.56 6.0 1.0 

1.0 5.0 1.0 

1.0 1.0 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 



Serial version of the Jacobi Iteration 

while ( error > tol && iter < iter_max )  

{ 

  error=0.0; 

 

  for( int j = 1; j < n-1; j++) { 

    for(int i = 1; i < m-1; i++) { 

       

      Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] + 

                           A[j-1][i] + A[j+1][i]); 

 

      error = fmax(error, abs(Anew[j][i] - A[j][i]); 

    } 

  } 

 

  for( int j = 1; j < n-1; j++) { 

    for( int i = 1; i < m-1; i++ ) { 

      A[j][i] = Anew[j][i];       

    } 

  } 

  iter++; 

} 
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Iterate until 

converged 

Iterate across matrix 

elements 

Calculate new value 

from neighbors 

Compute max error 

for convergence 

Swap input/output 

arrays 



First Attempt in OpenACC 

// first attempt in C 

while ( error > tol && iter < iter_max ) { 

  error=0.0; 

#pragma acc kernels 

  for( int j = 1; j < n-1; j++) { 

    for(int i = 1; i < m-1; i++) { 

      Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] + 

                           A[j-1][i] + A[j+1][i]); 

      error = max(error, abs(Anew[j][i] - A[j][i]); 

    } 

  } 

 

#pragma acc kernels 

  for( int j = 1; j < n-1; j++) { 

    for( int i = 1; i < m-1; i++ ) { 

      A[j][i] = Anew[j][i];       

    } 

  } 

  iter++; 

} 

6/3/2014 Introduction to OpenACC 30 

Execute GPU kernel 

for loop nest 

Execute GPU kernel 

for loop nest 



Compiler Output 

pgcc -acc -Minfo=accel -ta=nvidia,time laplace_openacc.c -o laplace_acc.out 

main: 

     65, Generating present_or_copyin(Anew[1:4094][1:4094]) 

         Generating present_or_copyin(A[:4096][:4096]) 

         Generating NVIDIA code 

     66, Loop is parallelizable 

     67, Loop is parallelizable 

         Accelerator kernel generated 

         66, #pragma acc loop gang /* blockIdx.y */ 

         67, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */ 

         70, Max reduction generated for error 

     75, Generating present_or_copyin(Anew[1:4094][1:4094]) 

         Generating present_or_copyin(A[1:4094][1:4094]) 

         Generating NVIDIA code 

     76, Loop is parallelizable 

     77, Loop is parallelizable 

         Accelerator kernel generated 

         76, #pragma acc loop gang /* blockIdx.y */ 

         77, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */ 
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present_or_copyin 

present_or_copyin 



Performance of First Jacobi ACC Attempt 

 CPU: Intel(R) Xeon(R) CPU E5-2670  @ 2.60GHz 

 GPU: Nvidia Tesla K20Xm 

 The OpenACC code is even slower than the single thread/serial 

version of the code 

 What is the reason for the significant slow-down? 
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Execution Time (sec) Speedup 

OpenMP 1 threads 45.64 -- 

OpenMP 2 threads 30.05 1.52 

OpenMP 4 threads 24.91 1.83 

OpenMP 8 threads 25.24 1.81 

OpenMP 16 threads 26.19 1.74 

OpenACC w/GPU 190.32 0.24 



Output Timing Information from Profiler 

 Use compiler flag: -ta=nvidia, time 

– Link with a profile library to collect simple timing information for 

accelerator regions. 

 OR set environmental variable: export PGI_ACC_TIME=1 

– Enables the same lightweight profiler to measure data movement and 

accelerator kernel execution time and print a summary at the end of 

program execution. 

 Either way can output profiling information 
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Accelerator Kernel Timing data (1st attempt) 
time(us): 88,460,895 

    60: data region reached 1000 times 

        60: data copyin reached 8000 times 

             device time(us): total=22,281,725 max=2,909 min=2,752 avg=2,785 

        71: data copyout reached 8000 times 

             device time(us): total=20,120,805 max=2,689 min=2,496 avg=2,515 

    60: compute region reached 1000 times 

        63: kernel launched 1000 times 

            grid: [16x512]  block: [32x8] 

             device time(us): total=2,325,634 max=2,414 min=2,320 avg=2,325 

            elapsed time(us): total=2,334,977 max=2,428 min=2,329 avg=2,334 

        63: reduction kernel launched 1000 times 

            grid: [1]  block: [256] 

             device time(us): total=25,988 max=90 min=24 avg=25 

            elapsed time(us): total=35,063 max=99 min=33 avg=35 

    71: data region reached 1000 times 

        71: data copyin reached 8000 times 

             device time(us): total=21,905,025 max=2,849 min=2,725 avg=2,738 

        79: data copyout reached 8000 times 

             device time(us): total=20,121,342 max=2,805 min=2,496 avg=2,515 

    71: compute region reached 1000 times 

        74: kernel launched 1000 times 

            grid: [16x512]  block: [32x8] 

             device time(us): total=1,680,376 max=1,758 min=1,670 avg=1,680 

            elapsed time(us): total=1,689,640 max=1,768 min=1,679 avg=1,689 
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Total 42.4 sec spent on data 

transfer 

Total 42.0 sec spent on data 

transfer 

Around 84 sec on data transfer, huge 

bottleneck 



Overview of the GPU nodes 

 CPU: Two 2.6 GHz 8-Core Sandy Bridge Xeon 64-bit Processors (16) 

– 64GB 1666MHz Ram 

 GPU: Two NVIDIA Tesla K20Xm  

– 14 SMX 

– 2688 SP Cores 

– 896 DP Cores 

– 6G global memory 
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K20Xm Full chip block diagram 

SMX (192 SP, 64 DP) 



Basic Concepts on Offloading 

 CPU and GPU have their respective memory, connected through PCI-e 

bus 

 Processing Flow of the offloading 

1. Copy input data from CPU memory to GPU memory 

2. Load GPU program and execute 

3. Copy results from GPU memory to CPU memory 
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PCI-e Bus 

GPU CPU 

GPU Memory CPU Memory 

Offloading 

1. CPU -> GPU 

3. CPU <- GPU 

2 



Excessive Data Transfers 
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// first attempt in C 

while ( error > tol && iter < iter_max ) { 

  error=0.0; 

#pragma acc kernels 

  for( int j = 1; j < n-1; j++) { 

    for(int i = 1; i < m-1; i++) { 

      Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] + 

                           A[j-1][i] + A[j+1][i]); 

      error = max(error, abs(Anew[j][i] - A[j][i]); 

    } 

  } 

 

#pragma acc kernels 

  for( int j = 1; j < n-1; j++) { 

    for( int i = 1; i < m-1; i++ ) { 

      A[j][i] = Anew[j][i];       

    } 

  } 

  iter++; 

} 

2 copies happen every 
iteration 

Copy 

Copy 

Copy 

2 copies happen every 
iteration 

Copy 

A, Anew on host A, Anew on accelerator 

A, Anew on host A, Anew on accelerator 

A, Anew on host A, Anew on accelerator 

A, Anew on host A, Anew on accelerator 



Rules of Coprocessor (GPU) Programming 

 Transfer the data across the PCI-e bus onto the device and keep it 

there.  

 Give the device enough work to do (avoid preparing data). 

 Focus on data reuse within the coprocessor(s) to avoid memory 

bandwidth bottlenecks. 
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OpenACC Data Management with Data Region 

 C syntax 

#pragma acc data [clause] 

{ structured block/statement } 

 Fortran syntax 

!$acc data [clause] 

structured block 

!$acc end data 

 Data regions may be nested. 
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Data Clauses 

 copy ( list )  

/* Allocates memory on GPU and copies data from host to GPU  

when entering region and copies data to the host when exiting region.*/ 

 copyin ( list )  

/* Allocates memory on GPU and copies data from host to GPU when 
entering region. */ 

 copyout ( list )  

/* Allocates memory on GPU and copies data to the host when exiting 
region. */ 

 create ( list )  

/* Allocates memory on GPU but does not copy. */ 

 present ( list )  

/* Data is already present on GPU from another containing data region. 
*/ 

 and present_or_copy[in|out], present_or_create, deviceptr. 
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Second Attempt: OpenACC C 

#pragma acc data copy(A), create(Anew) 

while ( error > tol && iter < iter_max ) { 

  error=0.0; 

 

  #pragma acc kernels 

  for( int j = 1; j < n-1; j++) { 

    for(int i = 1; i < m-1; i++) { 

      Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] + 

                           A[j-1][i] + A[j+1][i]); 

 

      error = max(error, abs(Anew[j][i] - A[j][i]); 

    } 

  } 

#pragma acc kernels 

  for( int j = 1; j < n-1; j++) { 

    for( int i = 1; i < m-1; i++ ) { 

      A[j][i] = Anew[j][i];       

    } 

  } 

  iter++; 

} 
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loop, out at end.  Allocate 

Anew on accelerator 



Second Attempt: OpenACC Fortran 

!$acc data copy(A), create(Anew) 

do while ( err > tol .and. iter < iter_max ) 

  err=0._fp_kind 

!$acc kernels 

  do j=1,m 

    do i=1,n        

      Anew(i,j) = .25_fp_kind * (A(i+1, j  ) + A(i-1, j  ) + & 

                                 A(i  , j-1) + A(i  , j+1))    

      err = max(err, Anew(i,j) - A(i,j)) 

    end do 

  end do 

!$acc end kernels 

... 

iter = iter +1 

end do 

!$acc end data 
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Second Attempt: Performance 

 Significant speedup after the insertion of the data region directive 

 CPU: Intel Xeon CPU E5-2670  @ 2.60GHz 

 GPU: Nvidia Tesla K20Xm 
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Execution Time (sec) Speedup 

OpenMP 1 threads 45.64 -- 

OpenMP 2 threads 30.05 1.52 

OpenMP 4 threads 24.91 1.83 

OpenACC w/GPU 

(data region) 
4.47 

10.21       (serial) 

5.57 (4 threads) 



Accelerator Kernel Timing data (2nd attempt) 

 time(us): 4,056,477 

    54: data region reached 1 time 

        54: data copyin reached 8 times 

             device time(us): total=22,249 max=2,787 min=2,773 avg=2,781 

        84: data copyout reached 9 times 

             device time(us): total=20,082 max=2,510 min=11 avg=2,231 

    60: compute region reached 1000 times 

        63: kernel launched 1000 times 

            grid: [16x512]  block: [32x8] 

             device time(us): total=2,314,738 max=2,407 min=2,311 avg=2,314 

            elapsed time(us): total=2,323,334 max=2,421 min=2,319 avg=2,323 

        63: reduction kernel launched 1000 times 

            grid: [1]  block: [256] 

             device time(us): total=24,904 max=78 min=24 avg=24 

            elapsed time(us): total=34,206 max=87 min=32 avg=34 

    71: compute region reached 1000 times 

        74: kernel launched 1000 times 

            grid: [16x512]  block: [32x8] 

             device time(us): total=1,674,504 max=1,727 min=1,657 avg=1,674 

            elapsed time(us): total=1,683,604 max=1,735 min=1,667 avg=1,683 
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Only 42.2 ms spent on data 

transfer 



Array Shaping 

 Compiler sometimes cannot determine size of arrays 

– Sometimes we just need to use a portion of the arrays 

– we will see this example in the exercise 

 Under such case, we must specify explicitly using data clauses and 

array “shape” for this case 

 C 

#pragma acc data copyin(a[0:size]), copyout(b[s/4:3*s/4]) 

 Fortran 

!$pragma acc data copyin(a(1:size)), copyout(b(s/4:3*s/4)) 

 The number between brackets are the beginning element followed by 

the number of elements to copy: 

– [start_element:number_of_elements_to_copy] 

– In C/C++, this means start at a[0] and continue for “size” elements. 

 Note: data clauses can be used on data, kernels or parallel 
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Update Construct 

 Fortran 

#pragma acc update [clause ...]  

 C 

!$acc update [clause ...] 

 Used to update existing data after it has changed in its corresponding 

copy (e.g. update device copy after host copy changes) 

 Move data from GPU to host, or host to GPU. Data movement can be 

conditional, and asynchronous. 
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Further Speedups 

 OpenACC gives us more detailed control over parallelization via gang, 

worker, and vector clauses 

– PE (processing element) as a SM (streaming multiprocessor) 

– gang == CUDA threadblock 

– worker == CUDA warp 

– vector == CUDA thread 

 By understanding more about OpenACC execution model and GPU 

hardware organization, we can get higher speedups on this code 

 By understanding bottlenecks in the code via profiling, we can 

reorganize the code for higher performance 
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Finding Parallelism in your code 

 (Nested) for loops are best for parallelization 

– Large loop counts needed to offset GPU/memcpy overhead 

 Iterations of loops must be independent of each other 

– To help compiler:  

• restrict keyword  

• independent clause 

 Compiler must be able to figure out sizes of data regions 

– Can use directives to explicitly control sizes 

 Pointer arithmetic should be avoided if possible 

– Use subscripted arrays, rather than pointer-indexed arrays. 

 Function calls within accelerated region must be inlineable. 
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Exercise 1 

 For the matrix multiplication code 

𝐴 ∙ 𝐵 = 𝐶 

     where: 

𝑎𝑖,𝑗 = 𝑖 + 𝑗 

𝑏𝑖,𝑗 = 𝑖 ∙ 𝑗 

𝑐𝑖,𝑗 = 𝑎𝑖,𝑘 ∙ 𝑏𝑘,𝑗
𝑘

 

1. For mm_acc_v0.c, speedup the matrix multiplication code segment 

using OpenACC directives 

2. For mm_acc_v1.c: 

3. Change A, B and C to dynamic arrays, i.e., the size of the matrix can be 

specified at runtime; 

4. Complete the function matmul_acc using the OpenACC directives; 

5. Compare performance with serial and OpenMP results 
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Exercise 2 

 Complete the saxpy example using OpenACC directives.  

𝑦 = 𝑎 ∙ 𝑥 + 𝑦  
 Calculate the result of a constant times a vector plus a vector:    

– where a is a constant,  𝑥   and 𝑦  are one dimensional vectors. 

 

1. Add OpenACC directives for initialization of x and y arrays; 

2. Add OpenACC directives for the code for the vector addition; 

3. Compare the performance with OpenMP results; 
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Exercise 3 

 Calculate 𝜋 value using the equation: 

 
4.0

1.0 + 𝑥2

1

0

= 𝜋 

with the numerical integration: 

 
4.0

1.0 + 𝑥𝑖 ∙ 𝑥𝑖
∆𝑥

𝑛

𝑖=1

≈ 𝜋 

 

1. Complete the code using OpenACC directives  
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