
An Introduction to

Feng Chen

HPC User Services

LSU HPC & LONI

sys-help@loni.org

6/3/2014 Introduction to OpenACC 1

LONI Parallel Programming Workshop

Louisiana State University

Baton Rouge

June 02-04, 2014

3 Ways to Accelerate Applications

6/3/2014 Introduction to OpenACC 2

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages

OpenACC

Directives

Easily Accelerate

Applications

Maximum

Flexibility

CUDA Libraries are interoperable

with OpenACC

CUDA Languages are also

interoperable with OpenACC

Increasing programming effort

Some GPU-accelerated Libraries

6/3/2014 Introduction to OpenACC 3

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal
Image Processing

GPU Accelerated
Linear Algebra

Matrix Algebra
on GPU and
Multicore

NVIDIA cuFFT

C++ STL
Features for

CUDA
IMSL Library

Building-block
Algorithms for

CUDA
ArrayFire Matrix

Computations

Sparse Linear
Algebra

http://code.google.com/p/thrust/downloads/list

GPU Programming Languages

6/3/2014 Introduction to OpenACC 4

OpenACC, CUDA Fortran Fortran

OpenACC, CUDA C C

Thrust, CUDA C++ C++

PyCUDA, Copperhead Python

Alea.cuBase F#

MATLAB, Mathematica, LabVIEW Numerical analytics

What is OpenACC

 OpenACC (for Open Accelerators) is a programming standard for

parallel computing developed by Cray, CAPS, Nvidia and PGI. The

standard is designed to simplify parallel programming of

heterogeneous CPU/GPU systems.

 It provides a model for accelerator programming that is portable

across operating systems and various types of host CPUs and

accelerators.

6/3/2014 Introduction to OpenACC 5

OpenACC Directives

6/3/2014 Introduction to OpenACC 6

Program myproject
 ... serial code ...
!$acc kernels
 do k = 1,n1
 do i = 1,n2
 ... parallel code ...
 enddo
 enddo
!$acc end kernels
 ...
End Program myproject

CPU GPU

Your original

Fortran or C code

Simple Compiler hints

Compiler Parallelizes

code

Works on many-core

GPUs & multicore CPUs

OpenACC

compiler

Hints

Outline of today’s topic

 OpenACC overview

 First OpenACC program and basic OpenACC directives

 Data region concept

 How to parallize our examples:

– Laplacian solver

 Hands-on exercise

– Matrix Multiplication

– SAXPY

– Calculate 𝜋

6/3/2014 Introduction to OpenACC 7

History of OpenACC

 OpenACC was developed by The Portland Group (PGI), Cray, CAPS

and NVIDIA. PGI, Cray, and CAPs have spent over 2 years developing

and shipping commercial compilers that use directives to enable GPU

acceleration as core technology.

 The small differences between their approaches allowed the formation

of a group to standardize a single directives approach for accelerators

and CPUs.

 Full OpenACC 2.0 Specification available online

– http://www.openacc-standard.org/

– Implementations available now from PGI, Cray, and CAPS

6/3/2014 Introduction to OpenACC 8

The Standard for GPU Directives

 Simple and high-level :

– Directive are the easy path to accelerate compute intensive

applications. Non-GPU programmers can play along.

– Single Source: Compile the same program for accelerators or serial, No

involvement of OpenCL, CUDA, etc.

 Open and performance portable:

– OpenACC is an open GPU directives standard, making GPU

programming straightforward and portable across parallel and multi-core

processors

– Supports GPU accelerators and co-processors from multiple vendors,

current and future versions.

 Powerful and Efficient:

– Directives allow complete access to the massive parallel power of GPU.

– Experience shows very favorable comparison to low-level

implementations of same algorithms.

– Developers can port and tune parts of their application as resources and

profiling dictates. No need to restructure the program.

6/3/2014 Introduction to OpenACC 9

Directive-based programming

 Directives provide a high-level alternative

– Based on original source code (Fortran, C, C++)

– Easier to maintain/port/extend code

– Users with OpenMP experience find it a familiar programming model

– Compiler handles repetitive coding (cudaMalloc, cudaMemcpy...)

– Compiler handles default scheduling; user tunes only where needed

 Possible performance sacrifice

– Small performance sacrifice is acceptable

– trading-off portability and productivity against this

– after all, who hand-codes in assembly for CPUs these days?

 As researchers in science and engineering, you often need to balance

between:

 Time needed to develop your code

 Time needed to focus on the problem itself

6/3/2014 Introduction to OpenACC 10

OpenACC Execution Model

6/3/2014 Introduction to OpenACC 11

Application Code

Offload to
GPU
Parallization

Compute-Intensive
Functions

Rest of Sequential
CPU Code

 Sequential code executes in a Host (CPU) thread

 Parallel code executes in many Device (GPU) threads across multiple

processing elements

CPU
Optimized for
Serial Tasks

GPU Accelerator
Optimized for Many

Parallel Tasks

General Directive Syntax and Scope

 Fortran

!$acc directive [clause [,] clause]...]

Often paired with a matching end directive surrounding a
structured code block

!$acc end directive

 C

#pragma acc directive [clause [,] clause]...]

{

Often followed by a structured code block (compound
statement)

}

6/3/2014 Introduction to OpenACC 12

The “restrict” keyword in C
 Declaration of intent given by the programmer to the compiler

– Applied to a pointer, e.g. float *restrict ptr;

– Meaning: “for the lifetime of ptr, only it or a value directly derived from it

(such as ptr + 1) will be used to access the object to which it points”*

– In simple, the ptr will only point to the memory space of itself

 OpenACC compilers often require restrict to determine independence.

– Otherwise the compiler can’t parallelize loops that access ptr

– Note: if programmer violates the declaration, behavior is undefined.

6/3/2014 Introduction to OpenACC 13

*http://en.wikipedia.org/wiki/Restrict

THE RESTRICT CONTRACT

I, [insert your name], a PROFESSIONAL or AMATEUR [circle

one] programmer, solemnly declare that writes through this

pointer will not effect the values read through any other

pointer available in the same context which is also

declared as restricted.

* Your agreement to this contract is implied by use of the

restrict keyword ;)

http://en.wikipedia.org/wiki/Restrict
http://en.wikipedia.org/wiki/Restrict

The First Simple Exercise: SAXPY

6/3/2014 Introduction to OpenACC 14

subroutine saxpy(n, a, x, y)
 real :: x(:), y(:), a
 integer :: n, i
!$acc kernels
 do i=1,n
 y(i) = a*x(i)+y(i)
 enddo
!$acc end kernels
end subroutine saxpy

...
!Perform SAXPY on 1M elements
call saxpy(2**20, 2.0, x_d, y_d)
...

void saxpy(int n,
 float a,
 float *x,
 float *restrict y)
{
#pragma acc kernels
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}

...
// Perform SAXPY on 1M elements
saxpy(1<<20, 2.0, x, y);
...

*restrict:
“y does not alias x”

Complete saxpy.c

 Only a single line to the above example is needed to produce an

OpenACC SAXPY in C.

6/3/2014 Introduction to OpenACC 15

int main(int argc, char **argv)
{
 int n = 1<<20; // 1 million floats

 float *x = (float*)malloc(n*sizeof(float));
 float *y = (float*)malloc(n*sizeof(float));
 for (int i = 0; i < n; ++i) {
 x[i] = 2.0f;
 y[i] = 1.0f;
 }
 saxpy(n, 3.0f, x, y);
 free(x);
 free(y);
 return 0;
}

void saxpy(int n,
 float a,
 float *x,
 float *restrict y)
{
#pragma acc kernels
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}

SAXPY code (only functions) in CUDA C

// define CUDA kernel function

__global__ void saxpy_kernel(float a, float* x, float* y, int n){

 int i;

 i = blockIdx.x*blockDim.x + threadIdx.x;

 if(i <= n) y[i] = a*x[i] + y[i];

}

void saxpy(float a, float* x, float* y, int n){

 float *xd, *yd;

 // manage device memory

 cudaMalloc((void**)&xd, n*sizeof(float));

 cudaMalloc((void**)&yd, n*sizeof(float));

 cudaMemcpy(xd, x, n*sizeof(float), cudaMemcpyHostToDevice);

 cudaMemcpy(yd, y, n*sizeof(float), cudaMemcpyHostToDevice);

 // calls the kernel function

 saxpy_kernel<<< (n+31)/32, 32 >>>(a, xd, yd, n);

 cudaMemcpy(x, xd, n*sizeof(float), cudaMemcpyDeviceToHost);

 // free device memory after use

 cudaFree(xd);

 cudaFree(yd);

}

6/3/2014 Introduction to OpenACC 16

CUDA C/OpenACC – Big Difference

 With CUDA, we changed the structure of the old code. Non-CUDA

programmers can’t understand new code. It is not even ANSI standard

code.

– We have separate sections for the host code, and the GPU device

code. Different flow of code. Serial path now gone forever.

– Although CUDA C gives you maximum flexibility, the effort needed for

restructuring the code seems to be high.

– OpenACC seems ideal for researchers in science and engineering.

6/3/2014 Introduction to OpenACC 17

Compiler output of the first example

 C

pgcc -acc -Minfo=accel -ta=nvidia,time saxpy_1stexample.c

 Fortran

pgf90 -acc -Minfo=accel -ta=nvidia,time saxpy_1stexample.c

 Use “man pgcc/pgf90” to check the meaning of the compiler switches.

 Compiler output :

6/3/2014 Introduction to OpenACC 18

pgcc -acc -Minfo=accel -ta=nvidia,time saxpy_1stexample.c

saxpy:

 26, Generating present_or_copyin(x[:n])

 Generating present_or_copy(y[:n])

 Generating NVIDIA code

 27, Loop is parallelizable

 Accelerator kernel generated

 27, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

 Emit information about accelerator region targeting.

Add PGI compiler to your environment

[hpctrn58@shelob1 ~]$ cat ~/.soft

This is the .soft file.

It is used to customize your environment by setting up environment

variables such as PATH and MANPATH.

To learn what can be in this file, use 'man softenv'.

+portland-14.3

@default

[hpctrn58@shelob1 ~]$ resoft

[hpctrn58@shelob1 ~]$ man pgcc

[hpctrn58@shelob1 ~]$ cp –r /home/fchen14/loniworkshop2014/ ./

[hpctrn58@shelob1 ~]$ cd ~/loniworkshop2014/saxpy/openacc/exercise

[hpctrn58@shelob1 ~]$ vi saxpy_1stexample.c

[hpctrn58@shelob1 ~]$ pgcc -acc -Minfo=accel -ta=nvidia,time
saxpy_1stexample.c

6/3/2014 Introduction to OpenACC 19

Runtime output

[fchen14@shelob001 c]$./a.out

Accelerator Kernel Timing data

/home/fchen14/loniworkshop2014/laplace/openacc/c/saxpy_1stexample.c

 saxpy NVIDIA devicenum=0

 time(us): 2,247

 26: data region reached 1 time

 26: data copyin reached 2 times

 device time(us): total=1,421 max=720 min=701 avg=710

 29: data copyout reached 1 time

 device time(us): total=637 max=637 min=637 avg=637

 26: compute region reached 1 time

 26: kernel launched 1 time

 grid: [4096] block: [256]

 device time(us): total=189 max=189 min=189 avg=189

 elapsed time(us): total=201 max=201 min=201 avg=201

6/3/2014 Introduction to OpenACC 20

2,247 = 1,421 + 637 + 189

OpenACC kernels directive

 What is a kernel? A function that runs in parallel on the GPU.

– The kernels directive expresses that a region may contain parallelism

and the compiler determines what can be safely parallelized.

– The compiler breaks code in the kernel region into a sequence of

kernels for execution on the accelerator device.

– When a program encounters a kernels construct, it will launch a

sequence of kernels in order on the device.

 The compiler identifies 2 parallel loops and generates 2 kernels below.

6/3/2014 Introduction to OpenACC 21

#pragma acc kernels
{
 for (i = 0; i < n; i++){
 x[i] = 1.0;
 y[i] = 2.0;
 }
 for (i = 0; i < n; i++){
 y[i] = a*x[i] + y[i];
 }
}

!$acc kernels
do i = 1, n
 x(i) = 1.0
 y(i) = 2.0
end do
do i = 1, n
 y(i) = y(i) + a * x(i)
end do
!$acc end kernels

OpenACC parallel directive

 Similar to OpenMP, the parallel directive identifies a block of code as

having parallelism.

 Compiler generates one parallel kernel for that loop.

 C

#pragma acc parallel [clauses]

 Fortran

!$acc parallel [clauses]

6/3/2014 Introduction to OpenACC 22

#pragma acc parallel
{
 for (i = 0; i < n; i++){
 x[i] = 1.0 ;
 y[i] = 2.0 ;
 }
 for (i = 0; i < n; i++){
 y[i] = a*x[i] + y[i];
 }
}

!$acc parallel
do i = 1, n
 x(i) = 1.0
 y(i) = 2.0
end do
do i = 1, n
 y(i) = y(i) + a * x(i)
end do
!$acc end parallel

OpenACC loop directive

 Loops are the most likely targets for parallelizing.

– The Loop directive is used within a parallel or kernels directive

identifying a loop that can be executed on the accelerator device.

– The loop directive can be combined with the enclosing parallel or

kernels

– The loop directive clauses can be used to optimize the code. This

however requires knowledge of the accelerator device.

– Clauses: gang, worker, vector, num_gangs, num_workers

 C: #pragma acc [parallel/kernels] loop [clauses]

 Fortran: !$acc [parallel/kernels] loop [clauses]

6/3/2014 Introduction to OpenACC 23

#pragma acc loop
for (i = 0; i < n; i++){
 y[i] = a*x[i] + y[i];
}

!$acc loop
do i = 1, n
 y(i) = y(i) + a * x(i)
end do
!$acc end loop

OpenACC kernels vs parallel

 kernels

– Compiler performs parallel analysis and parallelizes what it believes is

safe.

– Can cover larger area of code with single directive.

 parallel

– Requires analysis by programmer to ensure safe parallelism.

– Straightforward path from OpenMP

 Both approaches are equally valid and can perform equally well.

6/3/2014 Introduction to OpenACC 24

Clauses

 data management clauses

– copy(...),copyin(...), copyout(...)

– create(...), present(...)

– present_or_copy{,in,out}(...) or pcopy{,in,out}(...)

– present_or_create(...) or pcreate(...)

 reduction(operator:list)

 if (condition)

 async (expression)

6/3/2014 Introduction to OpenACC 25

Runtime Libraries

 System setup routines

– acc_init(acc_device_nvidia)

– acc_set_device_type(acc_device_nvidia)

– acc_set_device_num(acc_device_nvidia)

 Synchronization routines

– acc_async_wait(int)

– acc_async_wait_all()

 For more information, refer to the OpenACC standard

6/3/2014 Introduction to OpenACC 26

Second example: Jacobi Iteration

 Solve Laplace equation in 2D:

– Iteratively converges to correct value (e.g. Temperature), by computing

new values at each point from the average of neighboring points.

𝛻2𝑓 𝑥, 𝑦 = 0

6/3/2014 Introduction to OpenACC 27

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4

A(i,j) A(i+1,j) A(i-1,j)

A(i,j-1)

A(i,j+1)

Graphical representation for Jacobi iteration

Current Array: A

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 2.0 4.0 6.0 8.0 10.0 12.0 1.0

1.0 3.0 5.0 7.0 9.0 11.0 13.0 1.0

1.0 2.0 6.0 1.0 3.0 7.0 5.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

6/3/2014 Introduction to OpenACC 28

Next Array: Anew

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 2.25 3.56 6.0 1.0

1.0 5.0 1.0

1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Serial version of the Jacobi Iteration

while (error > tol && iter < iter_max)

{

 error=0.0;

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

 A[j-1][i] + A[j+1][i]);

 error = fmax(error, abs(Anew[j][i] - A[j][i]);

 }

 }

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 A[j][i] = Anew[j][i];

 }

 }

 iter++;

}

6/3/2014 Introduction to OpenACC 29

Iterate until

converged

Iterate across matrix

elements

Calculate new value

from neighbors

Compute max error

for convergence

Swap input/output

arrays

First Attempt in OpenACC

// first attempt in C

while (error > tol && iter < iter_max) {

 error=0.0;

#pragma acc kernels

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

 A[j-1][i] + A[j+1][i]);

 error = max(error, abs(Anew[j][i] - A[j][i]);

 }

 }

#pragma acc kernels

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 A[j][i] = Anew[j][i];

 }

 }

 iter++;

}

6/3/2014 Introduction to OpenACC 30

Execute GPU kernel

for loop nest

Execute GPU kernel

for loop nest

Compiler Output

pgcc -acc -Minfo=accel -ta=nvidia,time laplace_openacc.c -o laplace_acc.out

main:

 65, Generating present_or_copyin(Anew[1:4094][1:4094])

 Generating present_or_copyin(A[:4096][:4096])

 Generating NVIDIA code

 66, Loop is parallelizable

 67, Loop is parallelizable

 Accelerator kernel generated

 66, #pragma acc loop gang /* blockIdx.y */

 67, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

 70, Max reduction generated for error

 75, Generating present_or_copyin(Anew[1:4094][1:4094])

 Generating present_or_copyin(A[1:4094][1:4094])

 Generating NVIDIA code

 76, Loop is parallelizable

 77, Loop is parallelizable

 Accelerator kernel generated

 76, #pragma acc loop gang /* blockIdx.y */

 77, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

6/3/2014 Introduction to OpenACC 31

present_or_copyin

present_or_copyin

Performance of First Jacobi ACC Attempt

 CPU: Intel(R) Xeon(R) CPU E5-2670 @ 2.60GHz

 GPU: Nvidia Tesla K20Xm

 The OpenACC code is even slower than the single thread/serial

version of the code

 What is the reason for the significant slow-down?

6/3/2014 Introduction to OpenACC 32

Execution Time (sec) Speedup

OpenMP 1 threads 45.64 --

OpenMP 2 threads 30.05 1.52

OpenMP 4 threads 24.91 1.83

OpenMP 8 threads 25.24 1.81

OpenMP 16 threads 26.19 1.74

OpenACC w/GPU 190.32 0.24

Output Timing Information from Profiler

 Use compiler flag: -ta=nvidia, time

– Link with a profile library to collect simple timing information for

accelerator regions.

 OR set environmental variable: export PGI_ACC_TIME=1

– Enables the same lightweight profiler to measure data movement and

accelerator kernel execution time and print a summary at the end of

program execution.

 Either way can output profiling information

6/3/2014 Introduction to OpenACC 33

Accelerator Kernel Timing data (1st attempt)
time(us): 88,460,895

 60: data region reached 1000 times

 60: data copyin reached 8000 times

 device time(us): total=22,281,725 max=2,909 min=2,752 avg=2,785

 71: data copyout reached 8000 times

 device time(us): total=20,120,805 max=2,689 min=2,496 avg=2,515

 60: compute region reached 1000 times

 63: kernel launched 1000 times

 grid: [16x512] block: [32x8]

 device time(us): total=2,325,634 max=2,414 min=2,320 avg=2,325

 elapsed time(us): total=2,334,977 max=2,428 min=2,329 avg=2,334

 63: reduction kernel launched 1000 times

 grid: [1] block: [256]

 device time(us): total=25,988 max=90 min=24 avg=25

 elapsed time(us): total=35,063 max=99 min=33 avg=35

 71: data region reached 1000 times

 71: data copyin reached 8000 times

 device time(us): total=21,905,025 max=2,849 min=2,725 avg=2,738

 79: data copyout reached 8000 times

 device time(us): total=20,121,342 max=2,805 min=2,496 avg=2,515

 71: compute region reached 1000 times

 74: kernel launched 1000 times

 grid: [16x512] block: [32x8]

 device time(us): total=1,680,376 max=1,758 min=1,670 avg=1,680

 elapsed time(us): total=1,689,640 max=1,768 min=1,679 avg=1,689

6/3/2014 Introduction to OpenACC 34

Total 42.4 sec spent on data

transfer

Total 42.0 sec spent on data

transfer

Around 84 sec on data transfer, huge

bottleneck

Overview of the GPU nodes

 CPU: Two 2.6 GHz 8-Core Sandy Bridge Xeon 64-bit Processors (16)

– 64GB 1666MHz Ram

 GPU: Two NVIDIA Tesla K20Xm

– 14 SMX

– 2688 SP Cores

– 896 DP Cores

– 6G global memory

6/3/2014 Introduction to OpenACC 35

K20Xm Full chip block diagram

SMX (192 SP, 64 DP)

Basic Concepts on Offloading

 CPU and GPU have their respective memory, connected through PCI-e

bus

 Processing Flow of the offloading

1. Copy input data from CPU memory to GPU memory

2. Load GPU program and execute

3. Copy results from GPU memory to CPU memory

6/3/2014 Introduction to OpenACC 36

PCI-e Bus

GPU CPU

GPU Memory CPU Memory

Offloading

1. CPU -> GPU

3. CPU <- GPU

2

Excessive Data Transfers

6/3/2014 Introduction to OpenACC 37

// first attempt in C

while (error > tol && iter < iter_max) {

 error=0.0;

#pragma acc kernels

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

 A[j-1][i] + A[j+1][i]);

 error = max(error, abs(Anew[j][i] - A[j][i]);

 }

 }

#pragma acc kernels

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 A[j][i] = Anew[j][i];

 }

 }

 iter++;

}

2 copies happen every
iteration

Copy

Copy

Copy

2 copies happen every
iteration

Copy

A, Anew on host A, Anew on accelerator

A, Anew on host A, Anew on accelerator

A, Anew on host A, Anew on accelerator

A, Anew on host A, Anew on accelerator

Rules of Coprocessor (GPU) Programming

 Transfer the data across the PCI-e bus onto the device and keep it

there.

 Give the device enough work to do (avoid preparing data).

 Focus on data reuse within the coprocessor(s) to avoid memory

bandwidth bottlenecks.

6/3/2014 Introduction to OpenACC 38

OpenACC Data Management with Data Region

 C syntax

#pragma acc data [clause]

{ structured block/statement }

 Fortran syntax

!$acc data [clause]

structured block

!$acc end data

 Data regions may be nested.

6/3/2014 Introduction to OpenACC 39

Data Clauses

 copy (list)

/* Allocates memory on GPU and copies data from host to GPU

when entering region and copies data to the host when exiting region.*/

 copyin (list)

/* Allocates memory on GPU and copies data from host to GPU when
entering region. */

 copyout (list)

/* Allocates memory on GPU and copies data to the host when exiting
region. */

 create (list)

/* Allocates memory on GPU but does not copy. */

 present (list)

/* Data is already present on GPU from another containing data region.
*/

 and present_or_copy[in|out], present_or_create, deviceptr.

6/3/2014 Introduction to OpenACC 40

Second Attempt: OpenACC C

#pragma acc data copy(A), create(Anew)

while (error > tol && iter < iter_max) {

 error=0.0;

 #pragma acc kernels

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

 A[j-1][i] + A[j+1][i]);

 error = max(error, abs(Anew[j][i] - A[j][i]);

 }

 }

#pragma acc kernels

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 A[j][i] = Anew[j][i];

 }

 }

 iter++;

}

6/3/2014 Introduction to OpenACC 41

Copy A in at beginning of
loop, out at end. Allocate

Anew on accelerator

Second Attempt: OpenACC Fortran

!$acc data copy(A), create(Anew)

do while (err > tol .and. iter < iter_max)

 err=0._fp_kind

!$acc kernels

 do j=1,m

 do i=1,n

 Anew(i,j) = .25_fp_kind * (A(i+1, j) + A(i-1, j) + &

 A(i , j-1) + A(i , j+1))

 err = max(err, Anew(i,j) - A(i,j))

 end do

 end do

!$acc end kernels

...

iter = iter +1

end do

!$acc end data

6/3/2014 Introduction to OpenACC 42

Copy A in at beginning of loop,
out at end. Allocate Anew on

accelerator

Second Attempt: Performance

 Significant speedup after the insertion of the data region directive

 CPU: Intel Xeon CPU E5-2670 @ 2.60GHz

 GPU: Nvidia Tesla K20Xm

6/3/2014 Introduction to OpenACC 43

Execution Time (sec) Speedup

OpenMP 1 threads 45.64 --

OpenMP 2 threads 30.05 1.52

OpenMP 4 threads 24.91 1.83

OpenACC w/GPU

(data region)
4.47

10.21 (serial)

5.57 (4 threads)

Accelerator Kernel Timing data (2nd attempt)

 time(us): 4,056,477

 54: data region reached 1 time

 54: data copyin reached 8 times

 device time(us): total=22,249 max=2,787 min=2,773 avg=2,781

 84: data copyout reached 9 times

 device time(us): total=20,082 max=2,510 min=11 avg=2,231

 60: compute region reached 1000 times

 63: kernel launched 1000 times

 grid: [16x512] block: [32x8]

 device time(us): total=2,314,738 max=2,407 min=2,311 avg=2,314

 elapsed time(us): total=2,323,334 max=2,421 min=2,319 avg=2,323

 63: reduction kernel launched 1000 times

 grid: [1] block: [256]

 device time(us): total=24,904 max=78 min=24 avg=24

 elapsed time(us): total=34,206 max=87 min=32 avg=34

 71: compute region reached 1000 times

 74: kernel launched 1000 times

 grid: [16x512] block: [32x8]

 device time(us): total=1,674,504 max=1,727 min=1,657 avg=1,674

 elapsed time(us): total=1,683,604 max=1,735 min=1,667 avg=1,683

6/3/2014 Introduction to OpenACC 44

Only 42.2 ms spent on data

transfer

Array Shaping

 Compiler sometimes cannot determine size of arrays

– Sometimes we just need to use a portion of the arrays

– we will see this example in the exercise

 Under such case, we must specify explicitly using data clauses and

array “shape” for this case

 C

#pragma acc data copyin(a[0:size]), copyout(b[s/4:3*s/4])

 Fortran

!$pragma acc data copyin(a(1:size)), copyout(b(s/4:3*s/4))

 The number between brackets are the beginning element followed by

the number of elements to copy:

– [start_element:number_of_elements_to_copy]

– In C/C++, this means start at a[0] and continue for “size” elements.

 Note: data clauses can be used on data, kernels or parallel

6/3/2014 Introduction to OpenACC 45

Update Construct

 Fortran

#pragma acc update [clause ...]

 C

!$acc update [clause ...]

 Used to update existing data after it has changed in its corresponding

copy (e.g. update device copy after host copy changes)

 Move data from GPU to host, or host to GPU. Data movement can be

conditional, and asynchronous.

6/3/2014 Introduction to OpenACC 46

Further Speedups

 OpenACC gives us more detailed control over parallelization via gang,

worker, and vector clauses

– PE (processing element) as a SM (streaming multiprocessor)

– gang == CUDA threadblock

– worker == CUDA warp

– vector == CUDA thread

 By understanding more about OpenACC execution model and GPU

hardware organization, we can get higher speedups on this code

 By understanding bottlenecks in the code via profiling, we can

reorganize the code for higher performance

6/3/2014 Introduction to OpenACC 47

Finding Parallelism in your code

 (Nested) for loops are best for parallelization

– Large loop counts needed to offset GPU/memcpy overhead

 Iterations of loops must be independent of each other

– To help compiler:

• restrict keyword

• independent clause

 Compiler must be able to figure out sizes of data regions

– Can use directives to explicitly control sizes

 Pointer arithmetic should be avoided if possible

– Use subscripted arrays, rather than pointer-indexed arrays.

 Function calls within accelerated region must be inlineable.

6/3/2014 Introduction to OpenACC 48

Exercise 1

 For the matrix multiplication code

𝐴 ∙ 𝐵 = 𝐶

 where:

𝑎𝑖,𝑗 = 𝑖 + 𝑗

𝑏𝑖,𝑗 = 𝑖 ∙ 𝑗

𝑐𝑖,𝑗 = 𝑎𝑖,𝑘 ∙ 𝑏𝑘,𝑗
𝑘

1. For mm_acc_v0.c, speedup the matrix multiplication code segment

using OpenACC directives

2. For mm_acc_v1.c:

3. Change A, B and C to dynamic arrays, i.e., the size of the matrix can be

specified at runtime;

4. Complete the function matmul_acc using the OpenACC directives;

5. Compare performance with serial and OpenMP results

6/3/2014 Introduction to OpenACC 49

Exercise 2

 Complete the saxpy example using OpenACC directives.

𝑦 = 𝑎 ∙ 𝑥 + 𝑦
 Calculate the result of a constant times a vector plus a vector:

– where a is a constant, 𝑥 and 𝑦 are one dimensional vectors.

1. Add OpenACC directives for initialization of x and y arrays;

2. Add OpenACC directives for the code for the vector addition;

3. Compare the performance with OpenMP results;

6/3/2014 Introduction to OpenACC 50

Exercise 3

 Calculate 𝜋 value using the equation:

4.0

1.0 + 𝑥2

1

0

= 𝜋

with the numerical integration:

4.0

1.0 + 𝑥𝑖 ∙ 𝑥𝑖
∆𝑥

𝑛

𝑖=1

≈ 𝜋

1. Complete the code using OpenACC directives

6/3/2014 Introduction to OpenACC 51

