
OpenMP programming
Part II

Shaohao Chen

High performance computing @ Louisiana State University

Part II

 Optimization for performance

 Trouble shooting and debug

Common Misunderstandings and Frequent Errors

Debug

 Use OpenMP with Intel Xeon Phi

native mode

offloading

Optimization for performance

• It may be possible to quickly write a correctly functioning OpenMP program,
but not so easy to create a program that provides the desired level of
performance.

• The most intuitive implementation is often not the best one when it comes to
performance, but the parallel inefficiency is not directly visible simply by
inspecting the source.

• Programmers have developed some rules of thumb on how to write efficient
code.

 Optimize serial code

• Memory access patterns: rowwise for C and columnwise for Fortran.

• Lower data precision if possible

• Common subexpression elimination

• Loop unrolling

• Loop fusion

• Loop tiling

• If-statement collapse

 Cases for optimizing OpenMP parallel codes will be introduced at
the following slides.

#pragma omp parallel shared(n,a,b,c,d,sum) private(i)

{

#pragma omp for nowait

for (i=0; i<n; i++) a[i] += b[i];

#pragma omp for nowait

for (i=0; i<n; i++) c[i] += d[i];

#pragma omp barrier

#pragma omp for nowait reduction(+:sum)

for (i=0; i<n; i++) sum += a[i] + c[i];

} /*-- End of parallel region --*/

Case 1.1: A reduced number of barriers

• Use the nowait clause where
possible, carefully inserting
explicit barriers at specific
points in the program as
needed.

• Here vectors a and c are
independently updated.
Therefore a thread that has
finished its work in the first
loop can safely enter the
second loop.

• The barrier ensures that a and
c have been updated before
they are used.

• The atomic construct avoids the data racing condition. Therefore this code gives a correct result.

• But the additions are performed one by one and there is additional performance penalty.

• This code is even slower than a normal serial code!

sum = 0;

#pragma omp parallel for shared(n,a,sum) private(i) // Optimization: use reduction instead of atomic

for (i=0; i<n; i++)

{

#pragma omp atomic

sum = sum + a[i];

} /*-- End of parallel for --*/

printf("Value of sum after parallel region: %d\n",sum);

Case 1.2: avoid using atomic/critical constructs in a large loop

#pragma omp parallel shared(a,b) private(c,d)

{

......

#pragma omp critical

{

a += 2 * c;

c = d * d; // Optimization: move this line out of critical region

}

} /*-- End of parallel region --*/

Case 1.3: Avoid Large Critical Regions

• The more code contained in
the critical region, the greater
the likelihood that threads
have to wait to enter it, and
the longer the potential wait
times.

• The first statement is protected
by the critical region to avoid a
data race of the shared
variable a.

• The second statement however
involves private data only.
There is no data race. It should
be removed from the critical
region.

#pragma omp parallel for

for (.....){

/*-- Work-sharing loop 1 --*/

}

#pragma omp parallel for

for (.....){

/*-- Work-sharing loop 2 --*/

}

Case 1.4: Maximize Parallel Regions

• Overheads are associated with starting and terminating a parallel region.

• Large parallel regions offer more opportunities for using data in cache and provide a bigger
context for other compiler optimizations.

• The code in the right panel is better, because it has fewer implied barriers, and there might be
potential for cache data reuse between loops.

#pragma omp parallel

{

#pragma omp for /*-- Work-sharing loop 1 --*/

{ }

#pragma omp for /*-- Work-sharing loop 2 --*/

{ }

}

for (i=0; i<n; i++)

for (j=0; j<n; j++){

#pragma omp parallel for

for (k=0; k<n; k++){

.........

}

}

Case 1.5: Avoid Parallel Regions in Inner Loops

• In the left panel, the overheads of the parallel region are incurred n2 times.

• The code in the right panel is better, because the parallel construct overheads are minimized.

#pragma omp parallel

{

for (i=0; i<n; i++)

for (j=0; j<n; j++){

#pragma omp for

for (k=0; k<n; k++){

.........

}

}

}

False sharing

• Cache coherence mechanism: When a cache line is modified by one processor, other caches
holding a copy of the same line are notified that the line has been modified elsewhere. At
such a point, the copy of the line on other processors is invalidated.

• False sharing: When two or more threads update different data elements in the same cache
line simultaneously, they interfere with each other.

• Note that a modest amount of false sharing does not have a significant impact on
performance. However, if some or all of the threads update the same cache line frequently,
performance degrades.

• Typically, the computing results in false sharing cases are still correct.

• False sharing is likely to significantly impact performance under the following conditions:

1. Shared data is modified by multiple threads.

2. The access pattern is such that multiple threads modify the same cache line(s).

3. These modifications occur in rapid succession.

Case 1.6: Avoid false sharing (I)

• Each thread has its own copy of a[i], thus there is no data race and the computing result is
correct.

• But all elements of a accesses to the same cache line, which results in false sharing and thus
degrades the performance.

#pragma omp parallel for shared(Nthreads,a) schedule(static,1)

for (int i=0; i<Nthreads; i++) a[i] += i; // Optimization: use a[i][0] instead of a[i]

• Example I of false sharing case:

• This case can be optimized by array padding: Accesses to different elements a[i][0] are now
separated by a cache line. As a result, the update of an element no longer affects other
elements.

Case 1.7: Avoid false sharing (II)

• Variable b is not modified, thus it does not cause false sharing.

• Variable a is modified, thus it causes false sharing.

• If there are a number of such initializations, they could reduce program performance. In a more
efficient implementation, variable a is declared and used as a private variable instead.

#pragma omp parallel shared(a,b) // Optimization: variable a should be private.

{

a = b + 1;

......

}

• Example II of false sharing:

Trouble shooting

• Up to now, we can see that it is easy to develop an OepnMP parallel program from a serial
program. But it still remains the programmer’s responsibility to identify and properly express
the parallelism.

• One of the biggest drawbacks of shared-memory parallel programming is the high potential
to meet a data race condition. In the case of race condition, the thread reading the value
might get the old value or the updated one, or some other erroneous value if the update
requires more than one store operation. This usually leads to indeterministic behavior, with
the program producing different results from run to run.

• In the following, some common misunderstandings and frequent Errors will be analyzed.

Case 2.1: data race due to loop-carried dependence

#pragma omp parallel for shared(n,a,b) private(i)

for (i=0; i<n-1; i++) a[i] = a[i] + b[i];

Different threads could simultaneously execute the statement a[i] = a[i+1] + b[i] for different
values of i. Thus there arises the distinct possibility that for some value of i, the thread
responsible for executing iteration i+1 does so before iteration i is executed. When the statement
is executed for iteration i, the new value of a[i+1] is read, leading to an incorrect result.

• It is good to parallelize an iteration-independent loop

• But it could induce a race condition to parallelize an iteration-dependent loop

#pragma omp parallel for shared(n,a,b) private(i)

for (i=0; i<n-1; i++) a[i] = a[i+1] + b[i];

• By default, most variables (except loop variables) declared outside the parallel region are shared.

• Data race: multiple threads simultaneously store a different value in the same variable X.

int X; // shared by default

#pragma omp parallel // Correction: explicitly specify the data-sharing attributes

{

int Xlocal = omp_get_thread_num();

X = omp_get_thread_num(); /*-- Data race --*/

printf("Xlocal = %d X = %d\n", Xlocal, X);

} /*-- End of parallel region --*/

Case 2.2: data race due to implied sharing

• It is better to explicitly specify the data-sharing attributes of variables and not rely on the
default data-sharing attribute.

• For good performance, it is often best to minimize sharing of variables.

• The variables i and x are not explicitly declared as private.

• A loop variable is implicitly declared to be private according to the OpenMP default data-sharing rules.

• But the normal variable x is shared by default. This leads to a data race condition.

int i;

double h, x, sum=0.0;

h = 1.0/(double) n;

#pragma omp prarallel for reduction(+:sum) shared(h) // Correction: private(x) should be added.

for (i=1; i <= n; i++) {

x = h * ((double)i - 0.5);

sum += (1.0 / (1.0 + x*x));

}

pi = h * sum;

Case 2.3: data race due to missing private declaration

• In C, the index variables of the parallel for-loop (i in this case) are private by default, but this
does not extend to the index variables of loops at a deeper nesting level (j in this case). This
results in undefined runtime behavior.

int i, j;

#pragma omp parallel for // correct version 1: private(j) should be explicitly added.

for (i=0; i<n; i++)

for (j=0; j<m; j++) { // correct version 2: declare j here, for (int j=0; j<m; j++)

a[i][j] = compute(i,j);

}

Case 2.4: a loop variable that is implicitly shared

• In Fortran, loop index variables are private by default, because variables cannot be declared
locally in a code block, such as a loop.

• First, variable b is used but not initialized within the parallel loop.

• Second, the values of variables a and b are undefined after the parallel loop.

int i, a, b=0;

#pragma omp parallel for private(i,a,b)

// Correction: #pragma omp parallel for private(i) firstprivate(b) lastprivate(a,b)

for (i=0; i<n; i++) {

b++;

a = b+i;

} /*-- End of parallel for --*/

c = a + b;

Case 2.5: incorrect use of the private clause

• The firstprivate and lastprivate clauses should be used in this case.

• This code fragment implicitly assumes that variable Xinit is available to all threads after it is
initialized by the master thread. This is incorrect. The master thread might not have executed
the assignment when another thread reaches it.

int Xinit, Xlocal;

#pragma omp parallel shared(Xinit) private(Xlocal)

{

#pragma omp master // correct version 1: use single construct instead, #pragma omp single

{

Xinit = 10;

}

// correct version 2: insert a barrier here, #pragma omp barrier

Xlocal = Xinit; /*-- Xinit might not be available for other threads yet --*/

} /*-- End of parallel region --*/

Case 2.6: incorrect use of the master construct

• The nowait clause can help to increase performance by removing unnecessary barriers at the
end of work-sharing constructs, however, care must be taken not to rely on assumptions about
which thread executes which loop iterations.

• A compiler may choose to employ different strategies for dealing with remainder iterations in
order to take advantage of memory alignment.

• The second loop might read values of array b that have not yet been written to in the first loop,
even with static work scheduling, if n is not a multiple of the number of threads.

#pragma omp for schedule(static) nowait // Correction: remove nowait clause

for (i=0; i<n; i++) b[i] = (a[i] + a[i-1]) / 2.0;

#pragma omp for schedule(static) nowait

for (i=0; i<n; i++) z[i] = sqrt(b[i]);

Case 2.7: incorrect assumptions about work scheduling

• Nested parallelism is implemented at the level of parallel regions, not work-sharing constructs.

#pragma omp parallel shared(n,a,b)

{

#pragma omp for

for (int i=0; i<n; i++) {

a[i] = i + 1;

#pragma omp for // Correction: parallel should be added, #pragma omp parallel for

for (int j=0; j<n; j++) b[i][j] = a[i]*2.0;

}

} /*-- End of parallel region --*/

Case 2.8: incorrectly nested directives

• Also, a barrier should not be in a work-sharing construct, a critical section, or a master construct.

#pragma omp parallel

{

if (omp_get_thread_num() == 0){

.....

#pragma omp barrier // Correction: the barrier should be out of the if-else region

}

else{

.....

#pragma omp barrier

}

} /*-- End of parallel region --*/

Case 2.9: illegal use of the barrier

• The barrier is not encountered by all threads in the team, and therefore this is not illegal.

work1(){

/*-- Some work performed here --*/

#pragma omp barrier // Correction: remove this barrier

}

work2(){

/*-- Some work performed here --*/

}

main(){

#pragma omp parallel sections

{

#pragma omp section

work1();

#pragma omp section

work2();

} // An implicit barrier

}

Case 2.10: a deadlock situation

• If executed by two threads,
this program never finishes.

• Thread1 executing work1
waits forever in the explicit
barrier, which thread2 will
never encounter.

• Thread2 executing work2
waits forever in the implicit
barrier at the end of the
parallel sections construct,
which thread1 will never
encounter.

• Note: Do not insert a barrier
that is not encountered by all
threads of the same team.

!$OMP PARALLEL SHARED(n,a,b,c) ! This code is to calculate dot product of two vectors

!!$OMP& PRIVATE(i,cl) ! Correction: delete the first exclamation mark !

!$OMP DO

do i = 1, n

cl = cl + b(i)*a(i) ! calculate dot product for local parts of the vectors simultaneously

end do

!$OMP END DO

!$OMP CRITICAL

c = c + cl ! add up all parts one by one

!$OMP END CRITICAL

!$OMP END PARALLEL

Case 2.11: an extra exclamation mark in Fortran code

• As a result the compiler ignores the private clause. Loop variable i is private by default, as
intended, but variable cl is shared. This introduces a data race.

#pragma omp parallel

{

work1(); /*-- Executed in parallel --*/

work2(); /*-- Executed in parallel --*/

}

#pragma omp parallel // Correction: a curly bracket { should be added.

work3(); /*-- Executed in parallel --*/

work4(); /*-- Executed sequentially --*/

}

Case 2.12: missing a curly bracket in C code

• It is very likely an error was made in the definition of the second parallel region.

• Without the curly bracket, only the statement following the parallel directive is executed in
parallel. In this case, function work4 is executed by the master thread only.

int icount; // global variable, default to be shared

void lib_func() {

// Correction: use atomic or critical constructs here

icount++;

do_lib_work();

}

main (){

#pragma omp parallel

{

lib_func();

} /*-- End of parallel region -- */

}

Case 2.13: a function call that is not thread-safe

• The library keeps track of
how often its routines are
called by incrementing a
global counter, which is
default to be shared.

• If this function is executed by
multiple threads within a
parallel region, all threads
read and modify the shared
counter variable, leading to a
race condition.

class anInt { // Declare and define a class

public:

int x;

anInt(int i = 0){ x = i; };

void addInt (int y){ x = x + y; } // Correction 1: use critical here

};

main(){

anInt a(10); // This class object is shared by default

#pragma omp parallel

{

a.addInt(5); // Correction 2: use critical here

}

}

Case 2.14: unsafe use of a shared C++ object

• The class objects and
methods in C++ are default
to be shared. If they are
used within OpenMP
parallel regions, race
conditions can result.

• In order to make the code
thread-safe, the invocation
of the method or the
update of the shared
variable within the method
should be enclosed by a
critical region.

Debug

 Verification of the Sequential Version

• The first step when debugging a parallel application should always be the verification of the
sequential version.

• Run the sequential code first and make sure that the computing result is correct.

• Run the loops backwards. If the result is wrong, the loops cannot be executed in parallel.

 Verification of the Parallel Code

• Run the OpenMP version of the program on one thread. If the error shows up then, there
is most likely a basic error in the code.

• Selectively enable/disable OpenMP directives to zoom in on the part of the program
where the error originates.

Keeping Sequential and Parallel Programs as a
Single Source Code

• Conditional compilation in C

#ifdef _OPENMP
#include <omp.h>

#else
#define omp_get_thread_num() 0

#endif
.

int TID = omp_get_thread_num();

• If one does not compile using the OpenMP option (flag), the OpenMP directives are simply
ignored, and a sequential executable is generated.

• Conditional compilation in Fortran

#ifdef _OPENMP
use omp_lib

#endif
.

integer:: TID
.

#ifdef _OPENMP
TID = omp_get_thread_num()

#else
TID = 0

#endif

Debug tools

 GNU gdb debugger

 DDT by Allinea

 TotalView by Etnus

A debugger allows the user to:

• stop a running program more or less at any point in the source

• examine and also change variables to do a “what if” kind of analysis.

• monitor the change of a specific memory location.

GNU gdb

• gdb program -- start gdb debugger

• run [arglist] -- start your program [with arglist]

• break [file:]line -- set breakpoint at line number [in file]

• break [file:]:func -- set breakpoint at a function [in file]

• delete [n] -- delete all breakpoints [or breakpoint n]

• print expr --- display the value of an expression

• c -- continue running your program

• next -- next line, stepping over function calls

• step -- next line, stepping into function calls

• help [command] – list classes of commands or describe command

• quit or q or Ctr-d -- exit gdb

• gdb work sheet: http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

Use OpenMP with Xeon Phi

 native mode

 offload

explicit offload

auto offload

Intel Xeon Phi coprocessor (accelerator)

(parameters for Xeon Phi 7120P)

• Add-on to CPU-based system

• PCI express (6.66 ~ 6.93 GB/s)

• IP-addressable

• 16 GB memory

• 61 x86 64-bit cores (244 threads)

• single-core 1.2 GHz

• 512-bit vector registers

• 1.208 TeraFLOPS = 61 cores * 1.238 GHz *
16 DP FLOPs/cycle/core

A typical compute node on SuperMIC

• host

20 cores

64 GB memory

Native mode

 An example: vector addition, parallelized with OpenMP.

• No change to normal CPU source codes.

 Compilation

• Always compile codes on the host. Compiler is not available on Xeon Phi.

• icc -O3 -openmp vector_omp.c -o vec.omp.cpu # CPU binary

• icc -O3 -openmp -mmic vector_omp.c -o vec.omp.mic # MIC binary

execute natively

 execute CPU binary on the host

• export OMP_NUM_THREADS=20 # set OepnMP threads on host. Maximum is 20.

• ./vec.omp.cpu # run on the host

 execute MIC binary on Xeon Phi natively

• ssh mic0 # login mic0

• export LD_LIBRARY_PATH=/usr/local/compilers/Intel/composer_xe_2013.5.192/compiler/lib/mic

specify libs for MIC

• export OMP_NUM_THREADS=244 # Set OepnMP threads on mic0. Maximum is 244.

• ./vec.omp.mic # Run natively on mic0

Offload

 Example for explicit offload

offload

CPU

MIC

CPU

Explicit Offload: compile and run

 Compile

• The same as compiling normal CPU codes. Without -mmic.

• icc -openmp name.c -o name.off # C

• ifort -openmp name.f90 -o name.off # Fortran

 Execute offloading jobs from the host

• export MIC_ENV_PREFIX=MIC # set the prefix if launch from the host.

• export MIC_OMP_NUM_THREADS=240 # set number of threads for MIC (The default is the
maximum, that is 240, not 244. Leave one core with 4 threads to execute offloading.)

• ./name.off # launch from the host

Offload an OpenMP region

 Offload with explicit control of data transfer (in C)

 Spread OpenMP threads to 240 workers (logical threads) of MIC.

 Offload with explicit control of data transfer (in Fortran)

Automatic offload with Intel MKL

an example for auto offload

……

cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, m, n, p, alpha, A, p, B,
n, beta, C, n); // Double-precision General Matrix Multiplication

……

Auto offload: compile and run

References

