LSLU

An Introduction to OpenACC
Part I

Wei Feinstein
HPC User Services@LSU

LONI Parallel Programming Workshop 2015
Louisiana State University

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 1

LS

Roadmap

e Recap of OpenACC

* OpenACC with GPU-enabled library
* Code profiling

* Code tuning with performance tool
* Programming on multi-GPUs

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll p)

LSL) weri

Large Scale of Multi-core GPU Many-core
applications CPU CPU

Deep
Learning

Costal Storm
Prediction

[V la Vol .|

Compiler-directives
high programming level

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 3

Heterogeneous Programming on GPUs

“Drop-in” Easily Accelerate Maximum
Acceleration Applications Flexibility

= N]|
OpenACC Execution Model

Application Code

l)

l ——

$acc parallel

Rest of Sequential
CPU Code

Compute-Intensive Functions

GPU Generate Parallel Code for GPU | dacc end pal'a"el CPU

A REENENE NEEENENE ()
SSeasiSs Semmmmse (
SomomEEE mmmmmmmm (

(

‘_

|

|

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 5

=
OpenACC Memory Model

Two separate memory spaces between host and accelerator
m Data transfer by DMA transfers

s Hidden from the programmer in OpenACC, so beware:

= Latency
= Bandwidth

= Limited device memory size
Accelerator:

» No guarantee for memory coherence — beware of race conditions

s Cache management done by compiler, user may give hints

4th HPC Parallel Programming Workshop An Introduction to OpenACC-Partll

LS

Data Flow

CPU Memory

1. Copy input data from CPU memory to
GPU memory

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 7

LS

Data Flow

CPU

CPU Memory

1. Copy input data from CPU memory to
GPU memory
2. Execute GPU Kernel

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 8

LS

Data Flow

CPU Memg

1. Copy input data from CPU memory to
GPU memory

2. Execute GPU Kernel

3. Copy results from GPU memory to
CPU memory

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 9

LS

Basic OpenACC directives

C/C++

#pragma acc directive-name [clause [[,] clause]...]
Fortran

'Sacc directive-name [clause [[,] clause]...]

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 10

LS

“Kernels / Paralle

III

« Kernels
C/C++

fpragma acc kernels [clauses]

Fortran

!Sacc kernels [clauses]

 Parallel
C/C++

fpragma acc parallel loop [clauses]

Fortran

'Sacc parallel loop [clauses]

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll

Constructs

11

LSl
“Data” Construct

Data: management of data transfer between host and device

C/C++
fpragma acc data [clauses]

Fortran

!Sacc data [clauses]

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll)

LS
"host_data” Construct

C/C++

#pragma acc kernels host data use device(list)

Fortran

!Sacc kernels host data use device (list)

 Make the address of device data available on host
e Specified variable addresses refer to device memory

* \Variables must be present on device

Can only be used within a data region

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 13

LS
OpenACC compilers

* PGI compiler for C, C++ and Fortran
e Cray CCE compilers for Cray systems
* CAPS compilers

OpenACC Standard

&ANVIDIA PGI

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 14

GPU Tools

Code performance increases
with the deployment of GPU tools.

GPU directives

GPU libraries

CPU only

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll

SAXPY

Saxpy_serial

Saxpy_openacc_v1

Parallel the loop

Saxpy_openacc_v2

Data management
Parallel the loop

LS
cublasSaxpy from cuBIAS library

void cublasSaxpy(int n,
const float *alpha,
const float *x,

int Incx,
float *Y,
int incy)

®* A function in the standard Basic Linear Algebra Subroutines
(BLAS) library

 CuBLAS: GPU-accelerated drop-in library ready to be used on
GPUs.

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 20

Saxpy_openacc_v2 Saxpy_cuBLAS

http://docs.nvidia.com/cuda

Saxpy_openacc_v2 Saxpy_cuBLAS

http://docs.nvidia.com/cuda

LS

GPU Accelerated Libraries
“Drop-in” Acceleration for your Applications

Linear Algebra (woia \ =

FFT BLAS, g cuFFT, Q MAGMA

SPARSE, Matrix CUREE . —— —
CuSPARSE ¥ O

Numerical &
Math

RAND, Statistics

Data Struct.
& Al

Sort, Scan, Zero Sum

NVIDIA
Math Lib

Visual
Processing

Image & Video

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 23

LS

The Himeno code

e 3D Poisson equation solver
o lterative loop evaluating 19-point stencil
e Memory intensive, memory bandwidth bound

e Fortran and C implementations are
available from http://accc.riken.jp/2467.htm

e The scalar version for simplicity
o We will discuss the parallel version using OpenACC

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 25

1 Sl
Application Profiling

* pgprof - PGl performance profiler

pgcc —Minfo=ccff —o yourcode_exe yourcode.c
pgcollect yourcode exe
pgprof —exe yourcode_exe

L

* gprof - GNU command line profiler

gcc —pg —o yourcode_exe yourcode.c
.Jyourcode_exe
gprof yourcode_exe gmon.out > yourcode_pro.output

* nvprof - command line profiler -nvprof

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 27

% PGPROF

File Edit Wiew Sort Help

(Find: | & & [Hotspot: Seconds

pgprof.out |

| Function Seconds v

(i) jacobi g.3674 N 7

(i) initat 0.2347| 3

Sorted By Seconds

‘ % Process/ Thread Browser for application "./himeno_pg'

Frofile Seconds

paprof. out o020 100%
»Fo 020 I 100%

‘ % Process | Thread Viewer for routine 'jacobi’

Routine Seconds
jacohi
» Py

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll

X| PGPROF
File Edit Yiew Sort Hzlp
[Find: |'”l & qp [HDtSth: Seconds

jacohi {source) 2 |

- |[Source Seconds

%
(04
r (04
or{loop=0; Toop<nn;++Toopd{ . 0%

gosa = 0.0; . (034
0%
0%

)8
0%
2%
0%
0%
0%
0%
(04
0%
0%

¥
Melelely] 0%
Melelely] 0%
Melelely] 0%
Ralulely] 0%
3265 554
Ralelely 0%
(04

Tori{k=1 ; k<kmax-1 ; ++kd
Tor{j=1 ; Jj<imax-1 ; ++Jj2
Tor{i=1 ; di<imax-1 ; +—i3{
s0 = a[o] k] [31 0] plk 103 100+1]
+ a[1] [k1 [3] [A] plk 100+110 1
+ a[2] [k] [3] [i] pk+1100 10 1
+ b [07 [k] [3] 0] Pk 1[03+1] [+1] plk 1[03-11[0+1]
plk 1[03+11[1-1] plk 103-11[01-11 2
b [1] [k] [3] [A] plk+1] O+1100] plk+11[0-1100]
plk-170C0+110] plk-13[03-1310 1 2
b [2] [k]1 [3] [1] plk+11[03 1 [1+1] pLk+11[03 1[1-1]
plk-11[03 J1[i+1] plk-11[03 J[1-11 2
cOJk10E10] % plk J03 100-1]
c[AJk10EI0] % plk J03-110 1
c[2Jk10EI0] % plk-1300 10 1
wrkl[k] [31 0073

> O C O

o000 OO/

> OO

oMo o]

Cos0 % a3l k][I0 - pOk] 03301 3 % bnd[k] 031 0G0

%" Process/ Thread Browser for routine ‘jacobi’

Routine Seconds

Jjacohi
$ Fo 5. 3674 [N
%” Process, Thread Yiewer for line 257
Line Seconds

257 5. 2265 NN
$ Fo 5. 3265 NG

| Parallelism l Histogram l @ Compiler Feedback l System Configuration 1 Accelerator Performance |

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll

=
Application Profiling
* pgprof - PGI visual profiler

pgcc —Minfo=ccff —o yourcode_exe yourcode.c
pgcollect yourcode exe
pgprof —exe yourcode_exe

* gprof - GNU command line profiler

gcc —pg —o yourcode_exe yourcode.c
.Jyourcode_exe
gprof yourcode_exe gmon.out > yourcode_pro.output

* nvprof - command line profiler -nvprof

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 30

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

42.39 0.39 0.39 986 0.40 0.40 dp_

26.09 0.63 0.24 129471 0.00 0.00 cal_tmscore_
16.30 0.78 0.15 1004 0.15 0.53 get_score_
7.61 0.85 0.07 132633 0.00 0.00 u3b_
7.61 0.92 0.07 1006 0.07 9.38 tmsearch_
0.00 0.92 0.00 497 0.00 0.00 make_sec_
0.00 0.92 0.00 378 0.00 0.00 get_ngl_
0.00 0.92 0.00 90 0.00 0.00 getbest_
0.00 0.92 0.00 90 0.00 9.18 make_iter_
0.00 0.92 0.00 25 0.00 0.00 filter_
0.00 0.92 0.00 18 0.00 51.04 caltmsc_
0.00 0.92 0.00 18 0.00 0.00 fillinvmap_
0.00 0.92 0.00 18 0.00 0.00 get_initial3_
0.00 0.92 0.00 18 0.00 0.00 get_scorel_
0.00 0.92 0.00 18 0.00 0.00 recomputefmatrix_
0.00 0.92 0.00 6 0.00 0.00 fragdp_
0.00 0.92 0.00 1 0.00 920.01 MAIN__
0.00 0.92 0.00 1 0.00 .00 assignssp_
0.00 0.92 0.00 1 0.00 918.66 calbesttm_
0.00 0.92 0.00 1 0.00 919.26 fragscan_
0.00 0.92 0.00 1 0.00 0.00 smooth_
0.00 0.92 0.00 1 0.00 919.26 super_align_
% the percentage of the total running time of the

time program used by this function.

cumulative a running sum of the number of seconds accounted
seconds for by this function and those listed above it.

self the number of seconds accounted for by this

seconds function alone. This is the major sort for this

listing.
calls the number of times this function was invoked, if

this function is profiled, else blank.

LS EMI

Amdahl’s Law

Parallel Portion
-50%

—75%

- 90%

—95%

IIII II

ER/4EENEEEENEEEN
BZZsuilllNEEEEEN
ii.llllllllllll

Number of Processors

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll

32

LSL) eni
Performance Profiling via NVVP

O @ | NVIDIA Visual Profiler
File View Help

T Analysis 82 . [Details | B Console | T Settings Q X| Create New Session
Results

Executable Properties

Set executable properties

Connection: Local 2 | | Manage...
Toolkit: \CUDA Toolkit 6.5 (/home/packages/cuda/6.5/bin/)]

File: /C/himend | Browse...

Working directory: |/home/wfeinste/dbxmcf-himeno-e2ec869d8f92/Practical2/C H'Browse...v

Arguments: \

Environment: Name Value Add

Delete

Cancel

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 34

LS EMI

Performance Profiling via NVVP

[[% NVIDIA Visual Profiler
File View Run Help

Y B | sy <

% *NewSessionl &3

=| Process "himeno.01" (11465)
—| Thread 898769376
Driver APl
Profiling Overhead
=| [0] Tesla K20Xm
—| Context 1 (CUDA)
I MemCpy (HtoD)
T MemCpy (DtoH)
=] Compute
-SF 77.7% jacobi_246...
-<F 22.3% jacobi_263..
= Streams
Stream 13

il Analysis 23 o) Details | Bl Console | Cm Settings

_:| . Results

Low Compute [Memcpy Efficiency | 2.112 ms / 277.225 ms = 0.008]

The amount of time performing compute is low relative to the amount of time required for
2. Check Overall GPU Usage | MEMCPY.

The analysis results on the right # Low Memcpy/Compute Overlap [0ns/ 2.112 ms = 0%]

indicate potential problems in how The percentage of time when memcpy is being performed in parallel with compute is low.

1. CUDA Application Analysi:

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll

LS EMI

Performance Profiling via NVVP

[NON %/ NVIDIA Visual Profiler
File View Run Help

O E oS-

& *NewSessionl 2

=| Process "himeno.01" (11465)
—=| Thread 898769376
Driver API
Profiling Overhead
= [0] Tesla K20Xm
—| Context 1 (CUDA)
Tmemcy o) | (N EH | | BN
U MemCpy (DtoH) I I
= Compute |
¥ 77.7% jacobi_246... |
T 22.3% jacobi_263.. |
=| Streams

Stream 13 . @

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll

Performance

Why did OpenACC
slow down here?

~
ie)
©
=
>
~
[72]
o
=
o
Q
0]
o
@)

I

I I I I I ! 0.03
Serial 2 threads 4 threads 8 threads 16 threads OpenACC

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll

LSl)
Data transfer

 Data movement is expensive causing bottleneck to
performance

* Minimize data movement
e Data caching
— #pragma acc data copyin/copyout/copy

* Allocate memory on device and copy data from
host to device, or back, or both

— #pragma acc data present

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 39

LS EMI

Improved performance with better data Iocallty

§ *NewSessionl § *NewSession3 2

0.218 S
=| Process "himeno.03" (12353)
=| Thread 4126724576
“ oriver A7 ST T cvem
Profiling Overhead .
=| [0] Tesla K20Xm
—| Context 1 (CUDA)

T MemCpy (HtoD) JuIA MR AR
T MemCpy (DtoH) I LT
= Compute | I I

7 73.0% jacobi_249... IR NN
T 15.0% jacobi 275._.. A UNHMRHRWAMn

L I
(< Ii[

SF 11 0L iarnhi PRA

Tl Analysis 82 - [Details & Console Cm Settings

‘_:‘ = Results

& Low Memcpy/Compute Overlap [0 ns / 314434 us = 0% |

1. CUDA Application Analysis The percentage of time when memcpy is being performed in parallel with compute is low.

2. Check Overall GPU Usage | ; | o\ Kernel Concurrency [0 ns/3.563 ms = 0% |
The analysis results on the right
indicate potential problems in how
your application is taking advantage ¢ | & Inefficient Memcpy Size

the GPU's available compute and data | g memory copies do not enable the GPU to fully use the host to device bandwidth.
movement capabilities. You should

examine the information provided wit /a for memcnve accounting for 100% of
each result to determine if you can & Low Memcpy Throughput [5.241 ME/s avg, for memcpys accounting for 100% o

fall memcp | |
make changes to vour application to | | The memory copies are not fully using the avallable host to device bandwidth.

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll

The percentage of time when two kernels are being executed in parallel is low.

@
F|Ie View Run Help

= O [) -
& = g, =g Sy

| NVIDIA Visual Profiler

R[22 &
Q2 2

% *NewSessionl % *NewSession3 &3

5 ms 314.45 ms 3@:5 314.5 ms 314.525 ms 314.55 ms

Driver AP e fjeove JIR 1 0 J] 1

—| Process "himeno.03" (12353)
—| Thread 4126724576

Profiling Owverhead
=/ [0] Tesla K20Xm
—| Context 1 (CUDA)
T MemCpy (HtoD)
i MemCpy (DtoH)
= Compute
I 73.0% jacobi_249..
T 15.0% jacobi_275_...
" 11.3% jacobi_266_...
T 0.4% initmt_211_g...
I 0.3% initmt 192 _g..

= Streams
|

Tl Analysis 22 o) Details| &

1. CUDA Application Analy:
2. Check Overall GPU Usag

The analysis results on the right
indicate potential problems in how
your application is taking adwvantac
the GPU's available compute and ¢
mowvement capabilities. You shoulc
examine the information provided
each result to determine if you ca
make changes to your application
increase GPU utilization.

[jacobi_24
jacobi_245_gpu|
-

<]
Console | Cm Settings
Results
% Low Memcpy/Compute Overlap [0 ns / 314.434 s = 0% |
The percentage of time when memcpy is being performed in parallel with compute is low.

s Low Kernel Concurrency [0 ns / 2.563 ms = 0%]
The percentage of time when two kernels are being executed in parallel is low.

% Inefficient Memcpy Size
Small memory copies do not enable the GPU to fully use the host to device bandwidth.

4 Low Memcpy Throughput| 5241 MBE/s avg, for memcpys accounting for 100% of 2

The memory copies are not fully using the available host to device bandwidth.

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll

A~
=
e
[
<
~
72}
o
=
i)
L
L
o
79

]

Serial

2 threads

4t HPC Parallel Programming Workshop

4 threads

8 threads

16 threads

An Introduction to OpenACC-Partll

OpenACC

LS

Three Levels of Parallelism

OpenACC provides more detailed control over parallelization via
gang, worker, and vector clauses

* Gang:
— Share iterations across the gangs (grids) of a parallel region
 Worker:

— Share iterations across the workers (warps) of the gang
* Vector:

— Execute the iterations in SIMD mode

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 44

LS

CUDA Kernels: Parallel Threads

A kernel is a function executed
on the GPU as an array of
threads in parallel

All threads execute the same
code, can take different paths

Each thread has an ID Select
input/output data
Control decisions

AN AN
N
\ \
\

float x =
input[threadldx.x];

float y = func(x);
output[threadldx.x] =
Y

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 45

LS

Threads are grouped into blocks

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 46

LS -
CUDA Kernels: Subdivide into Blocks \

Threads are grouped into blocks
Blocks are grouped into a grid

4th HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 47

=
L 4B

CUDA Kernels: Subdivide into Bloks

Threads are grouped into blocks
Blocks are grouped into a grid
A kernel is executed as a grid of blocks of threads

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll

48

NVIDIA

MAPPING OPENACC TO
CUDA

LS
OpenACC Execution Model on CUDA

The OpenACC execution model has three levels:
gang, worker, and vector

For GPUs, the mapping is implementation-dependent.
Some possibilities:

gang==block, worker==warp, and vector==threads of a warp

Depends on what the compiler thinks is the best mapping for the
problem

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 50

—N
&

We).). Y
— s

——i“\",,; Y

OpenACC Execution Model on CUDA

The OpenACC execution model has three levels:
gang, worker, and vector

For GPUs, the mapping is implementation-dependent.

...But explicitly specifying that a given loop should map to
gangs, workers, and/or vectors is optional anyway
Further specifying the number of gangs/workers/vectors is also optional

Sowhydoit? To tune the code to fit a particular target architecture in a
straightforward and easily re-tuned way.

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 51

LS

Three Levels of Parallelism
C/C++

#pragma acc parallel [num gangs()/
num_workers () /vectoor length ()]

Fortran

!Sacc parallel [num gangs()/
num workers () /vectoor length ()]

C/C++

#pragma acc loop|[(num gangs) /
(num workers) / (vectoor length)]

Fortran
!Sacc parallel [(num gangs)/
(num workers) / (vectoor length)]

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 5

Multiple GPUs card on a single node?

LS

Device Management

* Internal control variables (ICVs):
— Acc-device-type-var — Controls which type of accelerator is used

— Acc-device-num-var — Controls which accelerator device is used

« Setting ICVs by API calls
— acc_setl _device type() acc_set _device_num()
* Querying of ICVs

— acc_get device type() acc_get device _num()

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 54

LS

Device Management

acc _get num devices

» Returns the number of accelerator devices attached to
host and the argument specifies type of devices to count

C:
— Intacc _get num devices (acc device t)

Fortran:
— Integer function acc get num devices (devicetype)

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 55

LS

Device Management

acc set device num
. Sets ICV—ACC_DEVI CE_NUM
« Specifies which device of given type to use for next region Can not be called
in a parallel, kernels or data region

C:
— Void acc set device num(int,acc device t)

Fortran:

— Subroutine
acc set device num(devicenum,devicetype)

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 56

LS

Device Management

* Acc _get device num
— Return value of ICV ACC_ DEVICE NUM
— Return which device of given type to use for next region
— Can not be called in a parallel, kernels or data region

- C:
— Void acc get device num(acc device t)
* Fortran:

— Subroutine acc get device num(devicetype)

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 57/

Directive-based programming on
single node with multi-GPU cards

SAXPY Code

// initialization
for (i =0; i < n; i++){
x[i] = 1.0; yl[i] = 2.0;

// calculation
for (i = 0; i < n; i++){
yl[i] = axx[i] + y[i]*2;

Directive-based programming on
single node with multi-GPU cards

// get # of GPU cards on this node

int gpu_ct=acc_get_num_devices(acc_device_nvidia);

// create one thread for each GPU kernel

#pragma omp parallel private(tid) num_threads(gpu_ct)
{

// Obtain thread id
tid = omp_get_thread_num();
// assign one kernel to one OpenMP thread
acc_set_device_num(tid +1 , acc_device_nvidia);
#pragma acc data create(x[0:n],y[0:n]) copyin(a)
#pragma acc kernels loop
for (i = 0; 1 < n; i++){
x[i] = 1.0; yl[i] = 2.0;
}

#pragma acc kernels loop
for (i = 0; i < n; i++){
yl[i] = axx[i] + y[i]*2;
}

}//end of omp parallel

LS

Directive-based programming on
single node with multi-GPU cards

 OpenACC only supports one GPU
* Hybrid model:

— OpenACC + OpenMP to support multi-GPU
parallel programming

* Limitations

— Lack direct device-to-device communications

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 60

LS

Conclusions

 OpenACCis a powerful programming model
using compiler directives

* Progressive, productive code porting
* Portable and easy to maintain

* |nteroperability
e Advanced features provide deeper control

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll 61

Introduction to OpenACC
Partll Lab

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll

LS LMl
Getting Started

Connect to shelob cluster:
ssh username@shelob.hpc.lsu.edu
Extract the lab to your account:
tar xzvf /home/user/himeno.tar.gz
Change to the lab directory:
cd himeno
Request a interactive node
gsub —I —A allocation —lwalltime=2:00:00 —Inodes=1:ppn=16
Login in to the interactive node
ssh =X shelobxxx

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll

LS (W Y e |

Exercise 1

Goal: code profiling to identify the target for parallelization
(use your own code would be great)

cd Practicall
pgprof: PGl visual profiler

pgcc —Minfo=ccff mycode.c —o mycode

pgcollect mycode

pgprof —exe mycode

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll

LS (W Y e |

Exercise 1

Goal: code profiling to identify the target for
parallelization (use your own code would be great)

gprof: GNU profiler
gcc mycode.c —o mycode —pg
./mycode
gprof mycode gmon.out >mycode_profile.output

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll

LS (W Y e |

Exercise 2

Goal: Identify hot spots in your code to improve
performance

cd Practical2
Compile source code (e.g. version 1)
make ver=01

Check performance at command line (-Minfo=accel is
turned on)

./himeno.01
Use nvvp visual profiler by typing:
nvvp

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll

LS (W Y e |

Exercise 3

Goal: use nvvp to fine tune your code for better
performance via using more OpenACC directives

cd Practical3

Compile the source code (e.g. version 1)
make ver=01

Use nvvp visual profiler by typing:
nvvp

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll

=

Exercise 4

Goal: use OpenACC with GPU-enabled library
cd Practical4

pgprof: PGI visual profiler
pgcc —Minfo=ccff mycode.c —o mycode
pgcollect mycode
pgprof —exe mycode

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll

=

Exercise 5

Goal: use multi-GPUs cards on a single node
cd Practical5

4t HPC Parallel Programming Workshop An Introduction to OpenACC-Partll

