

An Introduction to OpenACC Part II

Wei Feinstein
HPC User Services@LSU

LONI Parallel Programming Workshop 2015 Louisiana State University

Roadmap

- Recap of OpenACC
- OpenACC with GPU-enabled library
- Code profiling
- Code tuning with performance tool
- Programming on multi-GPUs

Compiler-directives high programming level

Heterogeneous Programming on GPUs

Applications

Libraries

Compiler Directives Programming Languages

"Drop-in"
Acceleration

Easily Accelerate Applications

Maximum Flexibility

OpenACC Execution Model

OpenACC Memory Model

Two separate memory spaces between host and accelerator

- Data transfer by DMA transfers
- Hidden from the programmer in OpenACC, so beware:
 - Latency
 - Bandwidth
 - Limited device memory size

Accelerator:

- No guarantee for memory coherence → beware of race conditions
- Cache management done by compiler, user may give hints

Data Flow

Data Flow

- Copy input data from CPU memory to GPU memory
- 2. Execute GPU Kernel

Data Flow

Basic OpenACC directives

C/C++

```
#pragma acc directive-name [clause [[,] clause]...]
```

Fortran

```
!$acc directive-name [clause [[,] clause]...]
```


"Kernels / Parallel" Constructs

Kernels

```
C/C++
    #pragma acc kernels [clauses]
Fortran
    !$acc kernels [clauses]
```

Parallel

```
C/C++
    #pragma acc parallel loop [clauses]

Fortran
    !$acc parallel loop [clauses]
```


"Data" Construct

Data: management of data transfer between host and device

```
C/C++
#pragma acc data [clauses]
Fortran
```

!\$acc data [clauses]

"host_data" Construct

```
C/C++
```

#pragma acc kernels host data use device(list)

Fortran

!\$acc kernels host data use device(list)

- Make the address of device data available on host
- Specified variable addresses refer to device memory
- Variables must be present on device
- Can only be used within a data region

OpenACC compilers

- PGI compiler for C, C++ and Fortran
- Cray CCE compilers for Cray systems
- CAPS compilers

OpenACC Standard

GPU Tools

Code performance increases with the deployment of GPU tools.

SAXPY

```
void saxpy(int n, float a, float *x, float *y) {
    for (int i = 0; i < n; ++i)
        y[i] = a*x[i] + y[i];
}</pre>
```


Saxpy_serial

```
void saxpy_acc(int n, float a, float *x, float *y) {
   for (int i = 0; i < n; ++i){
      y[i] = a * x[i] + y[i];
int main(){
// Initialize vectors x, y
     for (int i = 0; i < n; ++i) {
       x[i] = 1.0f; y[i] = 0.0f;
// Perform SAXPY
 saxpy_acc(n, a, x, y);
```


Saxpy_openacc_v1

```
void saxpy acc(int n, float a, float *x, float *y) {
   for (int i = 0; i < n; ++i){
      y[i] = a * x[i] + y[i];
int main(){
// Initialize vectors x, y
#pragma acc parallel loop <
    for (int i = 0; i < n; ++i) {
      x[i] = 1.0f; y[i] = 0.0f;
// Perform SAXPY
 saxpy_acc(n, a, x, y);
```

Parallel the loop

Saxpy_openacc_v2

```
void saxpy_acc(int n, float a, float *x, float *y) {
   for (int i = 0; i < n; ++i){
     y[i] = a * x[i] + y[i];
    } a
int main(){
// Initialize vectors x, y
#pragma acc data create(x[0:n]) copyout(y[0:n)] <</pre>
   #pragma acc parallel loop _
    for (int i = 0; i < n; ++i) {
      x[i] = 1.0f; y[i] = 0.0f;
// Perform SAXPY
 saxpy_acc(n, a, x, y);
```

Data management Parallel the loop

cublasSaxpy from cuBIAS library

```
void cublasSaxpy( int n, const float *alpha, const float *x, int incx, float *y, int incy)
```

- A function in the standard Basic Linear Algebra Subroutines (BLAS) library
- cuBLAS: GPU-accelerated drop-in library ready to be used on GPUs.

Saxpy_openacc_v2

```
void saxpy acc(int n, float a, float *x, float *y) {
   for (int i = 0; i < n; ++i){
      y[i] = a * x[i] + y[i];
    } a
int main(){
// Initialize vectors x, y
     for (int i = 0; i < n; ++i) {
      x[i] = 1.0f; y[i] = 0.0f;
// Perform SAXPY
 saxpy_acc(n, a, x, y);
```

Saxpy_cuBLAS

```
extern void
cublasSaxpy(int,float,float*,int,float*,int);
int main(){
// Initialize vectors x, y
    for (int i = 0; i < n; ++i) {
      x[i] = 1.0f; y[i] = 0.0f;
// Perform SAXPY
 #pragma acc host data use device(x,y
   cublasSaxpy(n, 2.0, x, 1, y, 1);
```

http://docs.nvidia.com/cuda

Saxpy_openacc_v2

```
void saxpy acc(int n, float a, float *x, float *y) {
   for (int i = 0; i < n; ++i){
      y[i] = a * x[i] + y[i];
    } a
int main(){
// Initialize vectors x, y
     for (int i = 0; i < n; ++i) {
      x[i] = 1.0f; y[i] = 0.0f;
// Perform SAXPY
 saxpy_acc(n, a, x, y);
```

Saxpy_cuBLAS

```
extern void
cublasSaxpy(int,float,float*,int,float*,int);
int main(){
// Initialize vectors x, y
    for (int i = 0; i < n; ++i) {
      x[i] = 1.0f; y[i] = 0.0f;
// Perform SAXPY
 #pragma acc deviceptr (x,y)
   cublasSaxpy(n, 2.0, x, 1, y, 1);
```

http://docs.nvidia.com/cuda

GPU Accelerated Libraries "Drop-in" Acceleration for your Applications

Linear Algebra FFT, BLAS, SPARSE, Matrix

Numerical & Math RAND, Statistics

The Himeno code

- 3D Poisson equation solver
 - Iterative loop evaluating 19-point stencil
 - Memory intensive, memory bandwidth bound
- Fortran and C implementations are available from http://accc.riken.jp/2467.htm

- The scalar version for simplicity
 - We will discuss the parallel version using OpenACC

Application Profiling

pgprof - PGI performance profiler

```
pgcc -Minfo=ccff -o yourcode_exe yourcode.c
pgcollect yourcode_exe
pgprof -exe yourcode_exe
```

gprof - GNU command line profiler

```
gcc -pg -o yourcode_exe yourcode.c
./yourcode_exe
gprof yourcode_exe gmon.out > yourcode_pro.output
```

nvprof - command line profiler -nvprof

Application Profiling

pgprof - PGI visual profiler

```
pgcc -Minfo=ccff -o yourcode_exe yourcode.c
pgcollect yourcode_exe
pgprof -exe yourcode_exe
```

gprof - GNU command line profiler

```
gcc -pg -o yourcode_exe yourcode.c
./yourcode_exe
gprof yourcode_exe gmon.out > yourcode_pro.output
```

nvprof - command line profiler -nvprof

Flat profile:

% cumulative seconds seconds seconds calls ms/call ms/call name 42.39 0.39 0.39 986 0.40 0.40 dp_ 26.09 0.63 0.24 129471 0.00 0.00 cal_tmscore_ 16.30 0.78 0.15 1004 0.15 0.53 get_score_ 7.61 0.85 0.07 132633 0.00 0.00 u3b_ 7.61 0.92 0.07 1006 0.07 0.38 tmsearch_ 0.00 0.92 0.00 497 0.00 0.00 make_sec_ 0.00 0.92 0.00 378 0.00 0.00 getbest_ 0.00 0.92 0.00 378 0.00 0.00 getbest_ 0.00 0.92 0.00 90 0.00 0.00 getbest_ 0.00 0.92 0.00 90 0.00 0.00 filter_ 0.00 0.92 0.00	Each sampl	e count:	s as 0.01	seconds.				
42.39						total		
26.09	time se	conds	seconds	calls	ms/call	ms/call	name	
16.30	42.39	0.39	0.39	986	0.40	0.40	dp_	
7.61	26.09	0.63	0.24	129471	0.00	0.00	cal_tmscore_	
7.61	16.30	0.78	0.15	1004	0.15	0.53	get_score_	
0.00			0.07				u3b_	
0.00			0.07			0.38		
0.00	0.00		0.00			0.00	make_sec_	
0.00								
0.00								
0.00 0.92 0.00 18 0.00 51.04 caltmsc_ 0.00 0.92 0.00 18 0.00 0.00 fillinvmap_ 0.00 0.92 0.00 18 0.00 0.00 get_initial3_ 0.00 0.92 0.00 18 0.00 0.00 get_score1_ 0.00 0.92 0.00 18 0.00 0.00 recomputefmatrix_ 0.00 0.92 0.00 6 0.00 0.00 fragdp_ 0.00 0.92 0.00 1 0.00 920.01 MAIN 0.00 0.92 0.00 1 0.00 920.01 MAIN 0.00 0.92 0.00 1 0.00 918.66 calbesttm_ 0.00 0.92 0.00 1 0.00 919.26 fragscan_ 0.00 0.92 0.00 1 0.00 90 smooth_ 0.00 0.92 0.00 1 0.00 919.26 super_align_								
0.00								
<pre>0.00 0.92 0.00 18 0.00 0.00 get_initial3_ 0.00 0.92 0.00 18 0.00 0.00 get_score1_ 0.00 0.92 0.00 18 0.00 0.00 recomputefmatrix_ 0.00 0.92 0.00 6 0.00 0.00 fragdp_ 0.00 0.92 0.00 1 0.00 920.01 MAIN 0.00 0.92 0.00 1 0.00 0.00 assignssp_ 0.00 0.92 0.00 1 0.00 918.66 calbesttm_ 0.00 0.92 0.00 1 0.00 919.26 fragscan_ 0.00 0.92 0.00 1 0.00 smooth_ 0.00 0.92 0.00 1 0.00 919.26 super_align_</pre> % the percentage of the total running time of the								
0.00								
<pre>0.00 0.92 0.00 18 0.00 0.00 recomputefmatrix_ 0.00 0.92 0.00 6 0.00 0.00 fragdp_ 0.00 0.92 0.00 1 0.00 920.01 MAIN 0.00 0.92 0.00 1 0.00 0.00 assignssp_ 0.00 0.92 0.00 1 0.00 918.66 calbesttm_ 0.00 0.92 0.00 1 0.00 919.26 fragscan_ 0.00 0.92 0.00 1 0.00 0.00 smooth_ 0.00 0.92 0.00 1 0.00 919.26 super_align_</pre> % the percentage of the total running time of the								
0.00								
<pre>0.00 0.92 0.00 1 0.00 920.01 MAIN 0.00 0.92 0.00 1 0.00 0.00 assignssp_ 0.00 0.92 0.00 1 0.00 918.66 calbesttm_ 0.00 0.92 0.00 1 0.00 919.26 fragscan_ 0.00 0.92 0.00 1 0.00 0.00 smooth_ 0.00 0.92 0.00 1 0.00 919.26 super_align_</pre> % the percentage of the total running time of the								
<pre>0.00 0.92 0.00 1 0.00 0.00 assignssp_ 0.00 0.92 0.00 1 0.00 918.66 calbesttm_ 0.00 0.92 0.00 1 0.00 919.26 fragscan_ 0.00 0.92 0.00 1 0.00 0.00 smooth_ 0.00 0.92 0.00 1 0.00 919.26 super_align_</pre> % the percentage of the total running time of the								
<pre>0.00 0.92 0.00 1 0.00 918.66 calbesttm_ 0.00 0.92 0.00 1 0.00 919.26 fragscan_ 0.00 0.92 0.00 1 0.00 0.00 smooth_ 0.00 0.92 0.00 1 0.00 919.26 super_align_ % the percentage of the total running time of the</pre>								
<pre>0.00 0.92 0.00 1 0.00 919.26 fragscan_ 0.00 0.92 0.00 1 0.00 0.00 smooth_ 0.00 0.92 0.00 1 0.00 919.26 super_align_ % the percentage of the total running time of the</pre>								
<pre>0.00 0.92 0.00 1 0.00 0.00 smooth_ 0.00 0.92 0.00 1 0.00 919.26 super_align_ %</pre>								
<pre>0.00 0.92 0.00 1 0.00 919.26 super_align_ % the percentage of the total running time of the</pre>								
% the percentage of the total running time of the								
	0.00	0.92	0.00	1	0.00	919.26	super_align_	
	<u>%</u>	the percentage of the total rupning time of the						
program doed by chip ranceron.								
cumulative a running sum of the number of seconds accounted								
seconds for by this function and those listed above it.								
		the number of seconds accounted for by this						
	seconds	function alone. This is the major sort for this						
CISCING.		listing.						
calls the number of times this function was invoked if	calls	the number of times this function was invoked, if						
	CG (C)	this function is profiled, else blank.						

Amdahl's Law

Performance Profiling via NVVP

Performance Profiling via NVVP

Performance Profiling via NVVP

Performance

Data transfer

- Data movement is expensive causing bottleneck to performance
- Minimize data movement
- Data caching
 - #pragma acc data copyin/copyout/copy
 - Allocate memory on device and copy data from host to device, or back, or both
 - #pragma acc data present

Improved performance with better data locality

Improved performance with better data locality

Improved performance with better data locality

Three Levels of Parallelism

OpenACC provides more detailed control over parallelization via gang, worker, and vector clauses

- Gang:
 - Share iterations across the gangs (grids) of a parallel region
- Worker:
 - Share iterations across the workers (warps) of the gang
- Vector:
 - Execute the iterations in SIMD mode

CUDA Kernels: Parallel Threads

- A kernel is a function executed on the GPU as an array of threads in parallel
- All threads execute the same code, can take different paths
- Each thread has an ID Select input/output data

 Control decisions

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

CUDA Kernels: Subdivide into Blocks

- Threads are grouped into blocks
- Blocks are grouped into a grid

CUDA Kernels: Subdivide into Blocks

- Threads are grouped into blocks
- Blocks are grouped into a grid
- A kernel is executed as a grid of blocks of threads

MAPPING OPENACC TO CUDA

OpenACC Execution Model on CUDA

The OpenACC execution model has three levels: gang, worker, and vector

For GPUs, the mapping is implementation-dependent. Some possibilities:

gang==block, worker==warp, and vector==threads of a warp

Depends on what the compiler thinks is the best mapping for the problem

OpenACC Execution Model on CUDA

The OpenACC execution model has three levels: gang, worker, and vector

For GPUs, the mapping is implementation-dependent.

...But explicitly specifying that a given loop should map to gangs, workers, and/or vectors is optional anyway

Further specifying the *number* of gangs/workers/vectors is also optional

So why do it? To tune the code to fit a particular target architecture in a straightforward and easily re-tuned way.

Three Levels of Parallelism

C/C++

```
#pragma acc parallel [num_gangs()/
num workers()/vectoor length()]
```

Fortran

```
!$acc parallel [num_gangs()/
num_workers()/vectoor_length()]
```

C/C++

```
#pragma acc loop[(num_gangs)/
(num workers)/(vectoor length)]
```

Fortran

```
!$acc parallel [(num_gangs)/
(num_workers)/(vectoor_length)]
```


Multiple GPUs card on a single node?

- Internal control variables (ICVs):
- Acc-device-type-var → Controls which type of accelerator is used
- Acc-device-num-var → Controls which accelerator device is used
- Setting ICVs by API calls
 - acc_set_device_type() acc_set_device_num()
- Querying of ICVs
 - acc_get_device_type() acc_get_device_num()


```
acc get num devices
```

 Returns the number of accelerator devices attached to host and the argument specifies type of devices to count

C:

- intacc_get_num_devices(acc_device_t)

Fortran:

- Integer function acc_get_num_devices(devicetype)


```
acc_set_device_num
```

- Sets ICV ACC DEVICE NUM
- Specifies which device of given type to use for next region Can not be called in a parallel, kernels or data region

C:

- Void acc_set_device_num(int,acc_device_t)

Fortran:

- Subroutine acc set device num(devicenum, devicetype)

- Acc_get_device_num
 - Return value of ICV ACC DEVICE NUM
 - Return which device of given type to use for next region
 - Can not be called in a parallel, kernels or data region
- C:
 - Void acc_get_device_num(acc_device_t)
- Fortran:
- Subroutine acc_get_device_num(devicetype)

Directive-based programming on single node with multi-GPU cards

```
SAXPY Code
// initialization
for (i = 0; i < n; i++){
    x[i] = 1.0; y[i] = 2.0;
// calculation
for (i = 0; i < n; i++){}
    y[i] = a*x[i] + y[i]*2;
```


Directive-based programming on single node with multi-GPU cards

```
// get # of GPU cards on this node
int gpu_ct=acc_get_num_devices(acc_device_nvidia);
// create one thread for each GPU kernel
#pragma omp parallel private(tid) num_threads(gpu_ct)
  // Obtain thread id
  tid = omp_get_thread_num();
  // assign one kernel to one OpenMP thread
  acc_set_device_num(tid +1 , acc_device_nvidia);
 #pragma acc data create(x[0:n],y[0:n]) copyin(a)
   #pragma acc kernels loop
        for (i = 0; i < n; i++){
            x[i] = 1.0; y[i] = 2.0;
   #pragma acc kernels loop
        for (i = 0; i < n; i++){
            y[i] = a*x[i] + y[i]*2;
 }//end of omp parallel
```


Directive-based programming on single node with multi-GPU cards

- OpenACC only supports one GPU
- Hybrid model:
 - OpenACC + OpenMP to support multi-GPU parallel programming
- Limitations
 - Lack direct device-to-device communications

Conclusions

- OpenACC is a powerful programming model using compiler directives
- Progressive, productive code porting
- Portable and easy to maintain
- Interoperability
- Advanced features provide deeper control

Introduction to OpenACC PartII Lab

Getting Started

Connect to shelob cluster:

ssh username@shelob.hpc.lsu.edu

Extract the lab to your account:

tar xzvf /home/user/himeno.tar.gz

Change to the lab directory:

cd himeno

Request a interactive node

qsub -I -A allocation -lwalltime=2:00:00 -lnodes=1:ppn=16

Login in to the interactive node

ssh –X shelobxxx

Goal: code profiling to identify the target for parallelization (use your own code would be great)

cd Practical1

pgprof: PGI visual profiler

pgcc –Minfo=ccff mycode.c –o mycode pgcollect mycode pgprof –exe mycode

Goal: code profiling to identify the target for parallelization (use your own code would be great)

gprof: GNU profiler

gcc mycode.c -o mycode -pg

./mycode

gprof mycode gmon.out >mycode_profile.output

Goal: Identify hot spots in your code to improve performance

cd Practical2

Compile source code (e.g. version 1)

make ver=01

Check performance at command line (-Minfo=accel is turned on)

./himeno.01

Use nvvp visual profiler by typing:

nvvp

Goal: use nvvp to fine tune your code for better performance via using more OpenACC directives

cd Practical3

Compile the source code (e.g. version 1)

make ver=01

Use nvvp visual profiler by typing:

nvvp

Goal: use OpenACC with GPU-enabled library cd Practical4

pgprof: PGI visual profiler

pgcc -Minfo=ccff mycode.c -o mycode pgcollect mycode pgprof -exe mycode

Goal: use multi-GPUs cards on a single node cd Practical5