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Parallel computing

• Requirements for Parallel Computing

• How does MPI meet these requirements?
◦ Specify parallel execution – single program on

multiple data (SPMD) and tasks;

◦ Data communication – two- and one- side
communication (explicit or implicit);

◦ Synchronization – synchronization functions;
• Data parallelism;

pseudo code1 for i from imin to imax, do
2 c(i) = a(i) + b(i)
3 end do

• Task (functional) parallelism;

1 { for c(i) = a(i) + b(i) } 2 { for d(j) = sin(a(j)) }
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Parallel programming

• Fundamental steps of designing parallel algorithms;

• Shall we design parallel algorithms based on the existing

serial algorithms? Think in parallel!
• Foster model:

• (1) Partitioning
Divide a large problem into many small ones (tasks);

Domain decomposition;

ψ(x, y)

• Load balance: be sure that each task has the same or
similar amount of data to process;
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Parallel programming

• (2) Data communication

• Unless your application doesn’t need any exchange of data

(trivial parallelism), we have to deal with data communication

between different tasks;
◦ Local communication: for a given task it only needs to talk

to a very limited number of other tasks;

◦ Global communication: a relatively large number of tasks
are involved;

• Data communication is not free!

• Reduce the number of data communication calls and reduce

the amount of data that needs to be transferred;

• Be sure that each MPI task has the same or nearly the same

number of communication calls and amount of data;
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Parallel programming

• (3) Agglomeration

• This is related with the overhead of data communications;

• Trade-off between the number of MPI tasks and the overhead

of data communication;

• Combines several small tasks into a larger task;

• Sometimes, reducing the number of MPI tasks might improve

the data locality;

• Generally, a rule of thumb is that sending/receiving fewer but

longer messages is better than sending/receiving more, but

shorter messages;

• More computation and less communication;
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Parallel programming

• (4) Mapping

• How were multiple tasks assigned to multiple cores?

• Generally, this is probably the most difficult step;

• Maximize CPU utilization and minimize data communication;

• Something beyond load balance: internode and intranode
communication ;

• For a given size of the problem and fixed number of cores,
how shall we assign tasks to cores: static and dynamic?

• Static: (1) load balance; (2) regular communication pattern;
(3) one task/core; (4) each core plays almost the same role;

• Dynamic: master-worker model and dispatches tasks to
available cores;

• Maintain load balance (computation and communication) and
make the code scalable;
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Potential Pitfalls

• Some common reasons for MPI code hanging or deadlock;

• Message passing should not be overtaking;

Source Destination

M1

M2

Source1

Source2

Destination

M1

M2

• (1) MPI_Recv does not match MPI_Send (rank or tag).

◦ There is a MPI_Send, but no matching MPI_Recv;

◦ There is a MPI_Recv, but no matching MPI_Send;

• (2) Collective MPI calls are not called so by all MPI ranks in

the communicator (say, the issue with only one rank calling

MPI_Bcast);



Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 9/56

The Sieve of Eratosthenes
for Prime Numbers

collin
Text Box
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Find Prime Numbers

• MPI programming for prime number searching below N ;

• The serial Sieve of Eratosthenes algorithm;

• One of the ancient but effective iterative methods;

Step 1. Generate a list for 2, 3, 4,· · · , and N ;
Step 2. Let k = 2, the first prime in the list;
Step 3. Repeat the following procedure:

◦ Delete all multiples of k in the region [k2, N ].

◦ Locate the smallest number > k. Set the new k to it.

◦ Until k2 > N .

Step 4. All remaining numbers are primes.

• Let’s consider N = 55;
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The Sieve of Eratosthenes
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The Sieve of Eratosthenes
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The Sieve of Eratosthenes

• How can we parallelize it using MPI?

• Domain (or data) decomposition;

(1) Break up the entire list into many smaller consecutive
blocks (Partitioning);

(2) Shall data communication occur locally or globally
(data communication)?

(3) We combine the searching multiple of k and marking
them out as a larger task (agglomeration);

(4) We can assign one block to one MPI task (mapping);

• In this case, we have global data communication, because

each MPI task needs to know the value of k;

• How often do we need to make data communication?
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The Sieve of Eratosthenes

• Load balance: Let’s consider N = 2016 on 10 cores; block

size is 201 for all cores, except the last task has 206;

• Can we do better?

(1) r = mod (N − 1, p);

(2) block size of ⌈(N − 1)/p⌉ for the first of the r MPI tasks,

(3) block size of ⌊(N − 1)/p⌋ for the rest of the p− r MPI

tasks;

• 5 MPI tasks have the block size of 201, and the rest of the 5

tasks have the block size of 202;

• A much better data distribution and it’s quite general!

• Version 0: (1) istart, iend; (2) primes(:), marked(:); (3)

search all integers in [istart,iend] for multiple of k; (4) call

MPI_Allreduce to determine the next global k;
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The Sieve of Eratosthenes
1 ALLOCATE(idata(istart:iend),marked(istart:iend))
2 marked = .true. ; k = 2 Fortran
3 do while( k*k <= pmax ) version 0
4 istart_min = max(istart+2,k*k) - 2
5 iend_max = min(iend+2,pmax) - 2
6 do i = istart_min, iend_max
7 itemp = mod(idata(i),k)
8 if(itemp == 0) marked(i) = .false.
9 end do ; kmin = pmax

10 do i = istart, iend
11 if( marked(i).and.idata(i) > k ) then
12 kmin = idata(i)
13 EXIT ; end if ; end do
14 call MPI_ALLREDUCE(kmin,k,1,MPI_INTEGER, &
15 MPI_MIN,MPI_COMM_WORLD,ierr)
16 end do
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The Sieve of Eratosthenes
1 ALLOCATE(idata(istart:iend),marked(istart:iend))
2 marked = .true. ; k = 2 Fortran
3 do while( k*k <= pmax ) version 1
4 istart_min = max(istart+2,k*k) - 2
5 iend_max = min(iend+2,pmax) - 2
6 do i = istart_min, iend_max
7 itemp = mod(idata(i) i+2,k)
8 if(itemp == 0) marked(i) = .false.
9 end do ; kmin = pmax

10 do i = istart, iend
11 if( marked(i).and.idata(i) i+2 > k ) then
12 kmin = idata(i) i+2
13 EXIT ; end if ; end do
14 call MPI_ALLREDUCE(kmin,k,1,MPI_INTEGER, &
15 MPI_MIN,MPI_COMM_WORLD,ierr)
16 end do



Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 17/56

The Sieve of Eratosthenes

• Can we do better? Take a look at the do loop (lines 6-9);

1 marked = (bool ∗) malloc (chunk*sizeof(bool));
2 for(i=0; i<chunk; i++) marked[i] = true; C
3 iend_max = MIN(iend+2,pmax); k = 2; version 2
4 do { istart_min = MAX(istart+2,k*k);
5 rmn = istart_min % k;
6 if(rmn != 0) istart_min = istart_min - rmn + k;
7 for(i = istart_min; i <= iend_max; i+=k) {
8 marked[i-istart-2] = false; } kmin = pmax;
9 for( i = istart; i <= iend; i++) {

10 if( marked[i-istart-2] && i > k ) {
11 kmin = i; break; } }
12 MPI_Allreduce(&kmin,&k,1,MPI_INT, \
13 MPI_MIN,MPI_COMM_WORLD);
14 } while ( k*k <= pmax );
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The Sieve of Eratosthenes

• Can we do even better? Delete all even integers!

1 k = 3;
2 do { C
3 istart_min = MAX(istart,k*k);; version 3
4 rmn = istart_min % k;
5 if(rmn != 0) istart_min = istart_min - rmn + k;
6 for(i = istart_min; i <= iend_max; i+=k) {

7 if( i%2 != 0 ) { lk = (i-istart)/2;
8 marked[lk] = false; } }

9 kmin = pmax; for( i=istart; i<=iend; i+=2) {
10 llk=(i-istart)/2;
11 if( marked[llk] && i>k ) { kmin = i; break; } }
12 MPI_Allreduce(&kmin,&k,1,MPI_INT, \
13 MPI_MIN,MPI_COMM_WORLD);
14 } while ( k*k <= pmax );
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Exercises 1 & 2

• Exercise 1: Based on the mpi_primes_v3, replace the

collective MPI_Allreduce by other MPI data communications.

[Hint] Break up MPI_Allreduce into two MPI commands.

• Exercise 2: We have found out the number of primes below

N . Starting from mpi_primes_v3, add the necessary code

segment to print out all the primes from small to large below

N .

[Hint] Let all other MPI tasks send the data to the master,
and let the master print the primes out.
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MPI Input/Output
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MPI Input/Output

• The next problem we face is the parallel MPI I/O;

• (1) Assign one MPI task to take care of all the I/O, and send

(receive) the necessary data to (from) other MPI tasks;

• (2) Each MPI task handles the same input or output file, but

works on a different part of the file (the best solution);

core

RAM

disk file

serial output
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MPI Input/Output

• The next problem we face is the parallel MPI I/O;

• (1) Assign one MPI task to take care of all the I/O, and send

(receive) the necessary data to (from) other MPI tasks;

• (2) Each MPI task handles the same input or output file, but

works on a different part of the file (the best solution);

core

RAM

disk file

serial output

core 0

RAM

disk file 0

core 1

RAM

disk file 1

core 2

RAM

disk file 2

core 3

RAM

disk file 3

parallel output (trivial)
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MPI Input/Output

• The next problem we face is the parallel MPI I/O;

• (1) Assign one MPI task to take care of all the I/O, and send

(receive) the necessary data to (from) other MPI tasks;

• (2) Each MPI task handles the same input or output file, but

works on a different part of the file (the best solution);

core

RAM

disk file

serial output

core 0

RAM

disk file

core 1

RAM

core 2

RAM

core 3

RAM

parallel output (better)
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MPI Input/Output

• The next problem we face is the parallel MPI I/O;

• (1) Assign one MPI task to take care of all the I/O, and send

(receive) the necessary data to (from) other MPI tasks;

• (2) Each MPI task handles the same input or output file, but

works on a different part of the file (the best solution);

core

RAM

disk file

serial output

core 0

RAM

disk file

core 1

RAM

core 2

RAM

core 3

RAM

parallel output (best)
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MPI Input/Output

• (1) One MPI collects all info, and makes the I/O; the amount

of data gathered from all MPI tasks may not be the same;

• MPI_Gatherv(∗sbuf, int scount, MPI_Datatype stype, \

∗rbuf, int ∗rcounts, int ∗displs, MPI_Datatype rtype, int root, \

MPI_Comm comm); Not really MPI I/O!

For root, define

displs=(int *) malloc
(numprocs*sizeof(int));

displs[i] =
∑i−1

k=0
s[k];

displs[0]=0;
displs[1]=s[0];
displs[2]=s[0]+s[1];
displs[3]=s[0]+s[1]+s[2];
. . .

core 0

core 1

Communicator

core 2

core 3

core 4

core 5

sbuf[ ]

scount

sbuf[ ]

scount

sbuf[ ]

scount

sbuf[ ]
scount

sbuf[ ]

scountrbuf[ ]

rcounts[ ]
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MPI Input/Output

• (2) Each MPI task handles the same input or output file;

int MPI_File_open(MPI_Comm comm,char ∗dfilename, \
int amode, MPI_Info info, MPI_File ∗fh);

int MPI_File_set_view(MPI_File fh,MPI_Offset disp,\
MPI_Datatype etype, MPI_Datatype filetype, \
char ∗datarep, MPI_Info info);

int MPI_File_write_at(MPI_File fh, MPI_Offset
offset, ∗buf, int count, MPI_Datatype datatype,
MPI_Status ∗status);

For all MPI tasks, set
disp=0; (global offset)
local offset;
For instance,
for core 2:

core 0 core 1 core 2 core 3

offset count
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MPI Input/Output

• MPI also supports nonblocking I/O;

int MPI_File_iwrite_at(MPI_File fh, MPI_Offset offset, \
∗buf, int count, MPI_Datatype datatype, \
MPI_Request ∗request);

int MPI_Wait(MPI_Request ∗request, MPI_Status ∗status);

• Overlap computation or communication with the I/O;

• Note that files are in binary or unformatted;

• How can we assure that the output file makes sense?

• One way to check is to measure the file size and compare

with what it should be;

int MPI_File_get_size(MPI_File fh, MPI_Offset ∗size);

• size is in bytes;
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MPI Matrix-Vector
Multiplications
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MPI matrix-vector products

• Matrix-vector multiplications are very common in physics,

applied math, and engineering;

• Many practical problems can be represented in the matrix

form, and it is likely matrix-vector products and systems of

linear equations need to be handled. Iterative methods in

linear algebra depend on matrix-vector products;

• Matrix-matrix products can be reduced to multiple

matrix-vector products;

• Let’s say we need to compute a power of matrices operating

on a vector: c = Ak · b = AAA · · ·A · b;

• Remember FLOPS for square matrix-matrix product ∼ O(n3),

while matrix-vector ∼ O(n2);

• ci =
∑

j
Aijbj
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MPI matrix-vector products

A11 A12 A13 A14 A15 A16 A17 A18 A19 A110

A81 A82 A83 A84 A85 A86 A87 A88 A89 A810

A

b1

b2

b3

b4

b5

×

b6

b7

b8

b9

b10

b

c1

c2

c3

c4

c5

=
c6

c7

c8

c9

c10

c

• How can we parallelize it
using MPI?

• At least three options A:

(1) Column-wise block
decomposition;

(2) Row-wise block
decomposition;

(3) 2D domain decompo-
sition;

In all three cases, how should we distribute vectors b and c?
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MPI matrix-vector products

• (1) Column-wise block decomposition;

core 0 core 1 core 2

• Maintain load balance;

each MPI task takes

(almost) same number

of columns;

• The same strategy as

those of primes;

• Vectors are block striped;

• Vectors b and c are

handled in the same way;
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MPI matrix-vector products

• (1) Column-wise block decomposition;

core 0 core 1 core 2

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

}

core 0

}

core 1

}

core 2

• Maintain load balance;

each MPI task takes

(almost) same number
of columns;

• The same strategy as
those of primes;

• Vectors are block striped;

• Vectors b and c are
handled in the same way;

• What about data
communication?
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MPI matrix-vector products

• Data communication in column-wise decomposition;

1. A MPI task computes
its own contributions to
a vector element;

2. A task needs to
gather the contributions
from all other tasks;

3. It sums up all contri-
butions;

4. Different tasks may
have different numbers
of vector elements;

5. Use MPI_Alltoallv;

core 0 core 1 core 2

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

}

core 0

}

core 1

}

core 2

sum 0 (c1) sum 1 (c1) sum 2 (c1)

sum 0 (c8) sum 1 (c8) sum 2 (c8)

b1

b2

b3

b4

b5

×

b6

b7

b8

b9

b10

c1

c2

c3

c4

c5

=
c6

c7

c8

c9

c10
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MPI matrix-vector products

• Data communication in column-wise decomposition;

• We use MPI I/O to read in all matrix and vector elements;
1 do i = 1, nsize
2 c_local_temp(i) = 0.0_idp Fortran
3 do j = istart, iend version 0
4 c_local_temp(i) = c_local_temp(i) &
5 + matrix(i,j) * vector_inp(j)
6 end do
7 end do subroutine matvec()

• call MPI_Alltoallv;

• The difference between MPI_Gatherv and MPI_Alltoallv;

• After gathering all pieces of data from other tasks and itself,

each MPI task needs to reorganize the data to obtain the

final output vector;
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MPI matrix-vector products

• The difference between MPI_Gatherv and MPI_Alltoallv;

core 0

core 1

Communicator

core 2

core 3

core 4

core 5

sbuf[ ]

scount

sbuf[ ]

scount

sbuf[ ]

scount

sbuf[ ]
scount

sbuf[ ]

scountrbuf[ ]

rcounts[ ]

core 0

core 1

Communicator

core 2

core 3

core 4

core 5

sbuf[ ]

scount

sbuf[ ]

scount

sbuf[ ]

scount

sbuf[ ]
scount

sbuf[ ]

scountrbuf[ ]

rcounts[ ]

MPI_Gatherv MPI_Alltoallv
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MPI matrix-vector products

• The difference between MPI_Gatherv and MPI_Alltoallv;
core 0
12

0

1

2

core 1
9

0

1

2

core 2
9

0

1

2

core 0

core 1

Communicator

core 2

core 3

core 4

core 5

sbuf[ ]

scount

sbuf[ ]

scount

sbuf[ ]

scount

sbuf[ ]
scount

sbuf[ ]

scountrbuf[ ]

rcounts[ ]
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MPI matrix-vector products

• Again, can we do better?

• Remember Fortran stores 2D arrays in column-wise, while C

stores 2D arrays in row-wise;

• Fortran version 0 is not optimized in terms of the way the

matrix elements are addressed;

1 c_local_temp = 0.0_idp Fortran
2 do j = istart, iend version 1
3 do i = 1, nsize
4 c_local_temp(i) = c_local_temp(i) &
5 + matrix(i,j) * vector_inp(j)
6 end do
7 end do subroutine matvec()

• Exchange the loops;

• The compilers wouldn’t do this for you;
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MPI matrix-vector products

• (2) Row-wise block decomposition;

core 0

core 1

core 2

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

}

core 0

}

core 1

}

core 2

sum 0 (c1) sum 1 (c1) sum 2 (c1)

sum 0 (c8) sum 1 (c8) sum 2 (c8)

b1

b2

b3

b4

b5

×

b6

b7

b8

b9

b10

c1

c2

c3

c4

c5

=
c6

c7

c8

c9

c10

• Maintain load balance;

each MPI task takes

(almost) same number

of rows;

• The same strategy as

those of column-wise;

• What about vectors?

• Vectors b and c are

handled in the same way;
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MPI matrix-vector products

• (2) Row-wise block decomposition;

core 0

core 1

core 2

b1

b2

b3

b4

b5

×

b6

b7

b8

b9

b10

c1

c2

c3

c4

c5

=
c6

c7

c8

c9

c10

• Maintain load balance;

each MPI task takes

(almost) same number

of rows;

• The same strategy as

those of column-wise;

• How about vectors?

• Each MPI task has
entire vectors b and c;

• Data communications
for vector c;
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Benchmark an MPI Application

• Increasing FLOPS per unit time is one of our endless goals

in the HPC community;

• Maintaining parallel scalability: how an MPI code behave

with increasing numbers of cores or threads;

• Before we are able to benchmark an MPI application, be sure

that the results are correct!

• Strong scaling and weak scaling from different

perspectives of measurements;

• We are interested to spot this information in your allocation

proposals!

• Rank 0 measures time_s = MPI_Wtime(); time_e =

MPI_Wtime(); elapsed_time = time_e - time_s in second;

• Average wall-clock time or a shortest wall-clock time?



Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 41/56

Benchmark an MPI Application

• Examples: run mpi_matve_v1 and _v2 (104 times of c = A · b);

n = 5760
n = 1440
n = 1200
n = 576
n = 144

Number of cores

S
p
ee
d
u
p

version 1

QB2 (LONI)

20181614121086421

12

11

10

9

8

7

6

5

4

3

2

1

0
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Benchmark an MPI Application

• Examples: run mpi_matve_v1 and _v2 (104 times of c = A · b);

n = 5760
n = 1440
n = 1200
n = 576
n = 144

Number of cores

S
p
ee
d
u
p

version 1

QB2 (LONI)

4035302520151051

12

11

10

9

8

7

6

5

4

3

2

1

0
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Benchmark an MPI Application

• Examples: run mpi_matve_v1 and _v2 (104 times of c = A · b);

n = 5760
n = 1440
n = 1200
n = 576
n = 144

Number of cores

S
p
ee
d
u
p

version 1

QB2 (LONI)

4035302520151051

12

11

10

9

8

7

6

5

4

3

2

1

0

Number of cores

2880, v1

1200, v2
5760, v1

5760, v2
1440, v2

1440, v1

1200, v1

576, v2

576, v1

144, v2

144, v1

2880, v2QB2 (LONI)

4035302520151051

10

1

40

30

20

8

6

4

2

0.7

• Performance really depends on the algorithms, problem

sizes, etc;
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Exercises 3

• Exercise 3: Run mpi_matvec_v1 for matrix sizes of 144, 576,

1200, and 1440, respectively. The number of MPI tasks is

from 1 to 16. Benchmark the wall-clock time.

(1) What is the max speedup you could get?

(2) How would you explain the performance difference for
small and large matrices?
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MPI matrix-vector products

• (3) 2D domain decomposition (DD);

• 1D column- and row-wise decomposition are particular cases

of 2D domain decomposition;

core 0

core 1

core 2

core 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

• More MPI tasks in 2D cases;

• Vectors are block striped (same as the column-wise case);
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MPI matrix-vector products

• Generally, 2D DD is much more complicated than 1D cases;

• (1) We only consider a square matrix times a vector;

• (2) Assume the number of MPI tasks is a square number;

• (3) Matrix size should be dividable by the number of MPI

tasks along row (or column) dimension;

• Create a 2D Cartesian (x, y) DD;

1 MPI_Cart_create(MPI_COMM_WORLD,2,dimes,bdperiodic,\
2 topology,&COMM2D);
3 MPI_Comm_rank(COMM2D,&my_id);
4 MPI_Cart_coords(COMM2D,my_id,2,coords_2d);
5 mycoods_x = coords_2d[0];
6 mycoods_y = coords_2d[1]; C version 2

• A new communicator COMM2D;

• bdperiodic and topology;
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MPI matrix-vector products

• 2D Cartesian coordinates;

x

y

0
(0,0)

1
(0,1)

2
(0,2)

3
(0,3)

4
(0,4)

5
(1,0)

6
(1,1)

7
(1,2)

8
(1,3)

9
(1,4)

10
(2,0)

11
(2,1)

12
(2,2)

13
(2,3)

14
(2,4)

15
(3,0)

16
(3,1)

17
(3,2)

18
(3,3)

19
(3,4)

20
(4,0)

21
(4,1)

22
(4,2)

23
(4,3)

24
(4,4)

• Need to manipulate matrix

elements in row or column

patterns;

• Use x or y coordinates to

map operation on MPI tasks;

• Analyze data communication

for vectors b and c;
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MPI matrix-vector products

• 2D Cartesian coordinates;

x

y

0
(0,0)

1
(0,1)

2
(0,2)

3
(0,3)

4
(0,4)

5
(1,0)

6
(1,1)

7
(1,2)

8
(1,3)

9
(1,4)

10
(2,0)

11
(2,1)

12
(2,2)

13
(2,3)

14
(2,4)

15
(3,0)

16
(3,1)

17
(3,2)

18
(3,3)

19
(3,4)

20
(4,0)

21
(4,1)

22
(4,2)

23
(4,3)

24
(4,4)

0

1

2

3

4

0 5 10 15 20

x

y

0
(0,0)

1
(0,1)

2
(0,2)

3
(0,3)

4
(0,4)

5
(1,0)

6
(1,1)

7
(1,2)

8
(1,3)

9
(1,4)

10
(2,0)

11
(2,1)

12
(2,2)

13
(2,3)

14
(2,4)

15
(3,0)

16
(3,1)

17
(3,2)

18
(3,3)

19
(3,4)

20
(4,0)

21
(4,1)

22
(4,2)

23
(4,3)

24
(4,4)

• From the left-most cores to the top-most cores; then roll

down for all rows;
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MPI matrix-vector products

• 2D Cartesian coordinates;

x

y

0
(0,0)

1
(0,1)

2
(0,2)

3
(0,3)

4
(0,4)

5
(1,0)

6
(1,1)

7
(1,2)

8
(1,3)

9
(1,4)

10
(2,0)

11
(2,1)

12
(2,2)

13
(2,3)

14
(2,4)

15
(3,0)

16
(3,1)

17
(3,2)

18
(3,3)

19
(3,4)

20
(4,0)

21
(4,1)

22
(4,2)

23
(4,3)

24
(4,4)

0

1

2

3

4

0 5 10 15 20

x

y

0
(0,0)

1
(0,1)

2
(0,2)

3
(0,3)

4
(0,4)

5
(1,0)

6
(1,1)

7
(1,2)

8
(1,3)

9
(1,4)

10
(2,0)

11
(2,1)

12
(2,2)

13
(2,3)

14
(2,4)

15
(3,0)

16
(3,1)

17
(3,2)

18
(3,3)

19
(3,4)

20
(4,0)

21
(4,1)

22
(4,2)

23
(4,3)

24
(4,4)

• From the left-most cores to the top-most cores; then roll

down for all rows;
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MPI matrix-vector products

1 MPI_Comm_split(MPI_COMM_WORLD,mycoods_y,mycoods_x,\
2 &COMM_ROW);
3 MPI_Comm_rank(COMM_ROW,&my_id_row);
4 MPI_Comm_split(MPI_COMM_WORLD,mycoods_x,mycoods_y,\
5 &COMM_COL);
6 MPI_Comm_rank(COMM_COL,&my_id_col);

• How many COMM_ROW or COMM_COL do we have?
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MPI matrix-vector products

1 MPI_Comm_split(MPI_COMM_WORLD,mycoods_y,mycoods_x,\
2 &COMM_ROW);
3 MPI_Comm_rank(COMM_ROW,&my_id_row);
4 MPI_Comm_split(MPI_COMM_WORLD,mycoods_x,mycoods_y,\
5 &COMM_COL);
6 MPI_Comm_rank(COMM_COL,&my_id_col);

• How many COMM_ROW or COMM_COL do we have?

COMM ROW

COMM ROW

COMM ROW

COMM ROW

COMM ROW

COMM COL

COMM COL

COMM COL

COMM COL

COMM COL
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MPI matrix-vector products

1 MPI_Bcast(vector,chunk,MPI_DOUBLE,0,COMM_COL);
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MPI matrix-vector products

1 MPI_Bcast(vector,chunk,MPI_DOUBLE,0,COMM_COL);

0

M
P
I
B
ca
st

0

M
P
I
B
ca
st

0
M
P
I
B
ca
st
0

M
P
I
B
ca
st

0

M
P
I
B
ca
st

• Should we use COMM_ROW

or COMM_COL?

• Several small subsets of

MPI_WORLS_WORLD;

• In this case, all subsets

are named in the same

way;

• All cores in the same

column have the same

chunk of the vector;

• Data communication

within the same subset;
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MPI matrix-vector products

• After local matrix-vector products, each MPI task has its own

contribution to the final vector c;

1 MPI_Reduce(c_local_temp,vector_out,chunk, \
2 MPI_DOUBLE,MPI_SUM,0,COMM_ROW);

1 if(mycoods_x == 0 && my_id != master_id) {
2 my_id_trans = my_id * noblock_1d;
3 MPI_Send(vector_inp,chunk,MPI_DOUBLE, \
4 my_id_trans,0,MPI_COMM_WORLD); }
5 else if( mycoods_y == 0 && my_id != master_id) {
6 my_id_trans = my_id / noblock_1d;
7 MPI_Recv(vector_inp,chunk,MPI_DOUBLE, \
8 my_id_trans,0,MPI_COMM_WORLD,&istatus); }
9

10 MPI_Bcast(vector_inp,chunk,MPI_DOUBLE, \
11 0,COMM_COL);
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Exercises 4 & 5

• Exercise 4: In the code mpi_matvec_v2.c (.f90),

MPI_Reduce was used, so MPI task with rank 0 gathered the

final answer. Can we replace MPI_Reduce with

MPI_Allreduce?

• Exercise 5: In the same code, the post data communication

was done in the main program and was separated from the

function (routine) of matvec. Make the other version (say,

mpi_matvec_v3) in such a way that the post data

communication is carried in the function of matvec;
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Further Reading

Using MPI, Portable Parallel Programming with the

Message-Passing Interface, W. Gropp, E. Lusk, and

A. Skjellum (The MIT Press, 2014).

Parallel Programming in C with MPI and

OpenMP, M. J. Quinn (McGraw Hill, 2004).

Questions?
sys-help@loni.org
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