Introduction to MP|
Programming — Part 1

Weil Feinstein, Le Yan

HPC@LSU

5/30/2016 LONI Parallel Programming Workshop 2016

Outline

* Introduction
* MPI program basics
* Point-to-point communication

5/30/2016 LONI Parallel Programming Workshop 2016

Why Parallel Computing

As computing tasks get larger and larger, may
need to enlist more computer resources

* Bigger: more memory and storage
e Faster: each processor is faster
 More: do many computations simultaneously

5/30/2016 LONI Parallel Programming Workshop 2016

Memory system models for
parallel computing

Different ways of sharing data among processors
— Shared Memory
— Distributed Memory

— Other memory models

* Hybrid model
* PGAS (Partitioned Global Address Space)

5/30/2016 LONI Parallel Programming Workshop 2016

Shared memory model

e All threads can access the
global address space data

* Data sharing achieved via \
y- C

writing to/reading from the
same memory location

 Example: OpenMP

5/30/2016 LONI Parallel Programming Workshop 2016

Distributed memory model

 Each process has its own address space
Data is local to each process 0O
 Data sharing achieved via "

explicit message passing
(through network)

O

de interconnect

 Example: MPI (Message Passing
Interface)

5/30/2016 LONI Parallel Programming Workshop 2016

MPI Programming Models

e Distributed

5/30/2016 LONI Parallel Programming Workshop 2016

Message Passing

Any data to be shared must be explicitly transferred
from one to another

Communication
medium: concrete
network,...

Entities: MPI
processes

5/30/2016 LONI Parallel Programming Workshop 2016

Why MPI?

* There are already network communication libraries
* Optimized for performance
* Take advantage of faster network transport
e Shared memory (within a node)
e Faster cluster interconnects (e.g. InfiniBand)
o TCP/IP if all else fails
* Enforces certain guarantees
* Reliable messages
* |n-order message arrival
* Designed for multi-node technical computing

5/30/2016 LONI Parallel Programming Workshop 2016

MPI History

2196 Qe EUI
e 1980-1990 \ / / Ex:‘:::ucs
/
e 1994:MPI-1 MP": S
e 1998:MPI-2
e 2012:MPI-3 ¥
Jon

5/30/2016 LONI Parallel Programming Workshop 2016

Message Passing Interface

 MPI defines a standard API for message passing

— The standard includes
* What functions are available
* The syntax of those functions
* What the expected outcome is when calling those functions

— The standard does NOT include

* Implementation details (e.g. how the data transfer occurs)
* Runtime details (e.g. how many processes the code run with etc.)

* MPI provides C/C++ and Fortran bindings

5/30/2016 LONI Parallel Programming Workshop 2016

Various MPI Implementations

 OpenMPI: open source, portability and simple
installation and config

 MPICH: open source, portable

e MVAPICH2: MPICH derivative
InfiniBand, iWARP and other RDMA-enabled
interconnects (GPUs)

* Intel MPI (IMPI): vendor-supported MPICH from
Intel

5/30/2016 LONI Parallel Programming Workshop 2016

High or low level programming?

* High level compared to other network libraries
e Abstract transport layer
* Supply higher-level operations
* Low level for scientists
* Handle problem decomposition
* Manually write code for every
communications among processes

5/30/2016 LONI Parallel Programming Workshop 2016

More about MPI

* MPI provides interface to libraries
* APIs and constants
* Binding to Fortran/C
e Several third-party bindings for Python, R
and more other languages
* Run MPI programs (e.g. mpiexec)

5/30/2016 LONI Parallel Programming Workshop 2016

Let’s try it
e Swhoami

 Smpiexec —np 4 whoami

5/30/2016 LONI Parallel Programming Workshop 2016

What just happened?

* mpiexec launched 4 processes

e Each process ran whoami’

* Each ran independently

* Usually launch no more MPI processes than
Hprocessors

* Use multiple nodes:
mpiexec —hostfile machine.lst —
np/-npp 4 app.exe

5/30/2016 LONI Parallel Programming Workshop 2016

Outline of a MPI Program

1. Initialize communications
MPI_INIT initializes the MPI environment
MPI_COMM _SIZE returns the number of processes
MPI_COMM_RANK returns this process’s index (rank)

2. Communicate to share data between processes
MPI_SEND sends a message
MPI_RECV receives a message

3. Exitin a “clean” fashion when MPI communication is done
MPI_FINALIZE sl

5/30/2016 LONI Parallel Programming Workshop 2016

Hello World (C)

include “mpi.h” Header file

int main(int argc, char* argv[])({
int nprocs, myid;
MPI Status status;

- Initialization
MPI Init(&argc, &argv);
MPI Comm size(MPI COMM WORLD, &nprocs);
MPI Comm rank(MPI COMM WORLD, &myid); commuhnication
printf("Hello World from process %d/%d
\n", myid, nprocs);

Computation and

MPI_ Finalize(); Termination
} \\.\ a1 1&5’?

5/30/2016 LONI Parallel Programming Workshop 2016

Hello World (C)

include “mpi.h” Header file

int main(int argc, char* argv[])({
int nprocs, myid;
MPI Status

[wfeinste@shelob1 hello]$ mpicc hello.c ation
[wfeinste@shelobl hello]S mpirun -np 4 ./a.out) g
Hello World from process 3/4 tationan
Hello World from process 0/4 Inication

MPI Init(&
MPI Comm_ S
MPI Comm r

printf ("He Hello World from process 2/4

\n", myid, nz Hello World from process 1/4

MPI_ Finalize(); Termination ‘
} A 8 iﬂt{‘

5/30/2016 LONI Parallel Programming Workshop 2016

Hello World (Fortran)

include "mpif.h" Header file

integer::nprocs, ierr, myid
integer::status(mpi_status_size)

call mpi_init(ierr) Initialization
call mpi_comm_size(mpi_comm_world, nprocs, ierr)
call mpi_comm_rank(mpi_comm_world, myid, ierr) Computation and

communication

write(*, '("Hello World from process ",13," /",13)') myid,
nprocs

call mpi_finalize(ierr) Termination

5/30/2016 LONI Parallel Programming Workshop 2016

Hello World (Fortran)

include "mpif.h" Header file

integer::nprocs, ierr, myid
integer::status(mpi_status_size)

call mpi_init(iesm)s —— Initialization
call mpi_¢ [wfeinste@shelobl hello]S mpif90 hello.f90
call mpi_ec [wfeinste@shelob1 hello]$ mpirun -np 4 ./a.out Jutation and

Hello World from process 3/ 4 nunication

write(*, (" Hello World from process 0/ 4
nprocs Hello World from process 1/ 4
Hello World from process 2/ 4
call mpi_finalize(ierr) Termination

5/30/2016 LONI Parallel Programming Workshop 2016

Naming Signature (C/Fortran)

* Function name convention
— C:MPI Xxxx(argl,..)
— Fortran: mpi xxx (not case sensitive)
e Errorhandles
If rc/ierr == MIPI_SUCCESS, then the call is successful.
* C:int rc = MPI Xxxx(argl,..)
* Fortran: call mpi some function (argl,..,lerr)

5/30/2016 LONI Parallel Programming Workshop 2016

Communicators (1)

e A communicatoris an identifier associated with a
group of processes

MPI Comm size(MPI Com MPI COMM WORLD, int &nprocs) (Ui !
MPI_Comm_rank(MPI_Com MPI_ COMM WORLD, int &myid) } =

5/30/2016 LONI Parallel Programming Workshop 2016

Communicators (2)

e A communicatoris an identifier associated with a
group of processes

— Can be regarded as the name given to an ordered list of
processes

— Each process has a unique rank, which starts from O
(usually referred to as “root”)
— |t is the context of MPI communications and operations

e Forinstance, when a function is called to send data to all
processes, MPIl needs to understand what “all” means

5/30/2016 LONI Parallel Programming Workshop 2016

Communicators (3)

e MPI_COMM_WORLD: the default communicator
contains all processes running a MPI program

* There can be many communicators
e.g., MPI Comm split(MPI Comm comm, int
color, int, kye, MPI Comm* newcomm)

* A process can belong to multiple communicators
— The rank is usually different

LONI Parallel Programming Workshop 2016

5/30/2016

Communicator Information

e Rank: unique id of each process

—C:MPI Comm Rank (MPI Comm comm, 1nt
*rank)

— Fortran: MPT COMM RANK (COMM, RANK, ERR)
* Get the size/processes of a communicator
— C: MPI_Comm_Size (MPI_Comm comm, 1int
*s1ze)
— Fortran: MPT COMM SIZE (COMM, SIZE, ERR)

5/30/2016 LONI Parallel Programming Workshop 2016

Compiling MPI Programs

* Not a part of the standard
— Could vary from platform to platform

— Or even from implementation to implementation on the same
platform

— mpicc/mpicxx/mpif77/mpif90: wrappers to compile MPI code
and auto link to startup and message passing libraries.

5/30/2016 LONI Parallel Programming Workshop 2016

MPI Compilers
 langusge ScriptName Underlying Compiler

C mpicc gcc
mpiicc icc
mpipgcc pgcc
C++ mpiCC g++
mpiicpc icpc
mpipgCC pgCC
Fortran mpifo0 f90
mpigfortran gfortran
mpiifort ifort
mpipgfo0 pgfo0

5/30/2016 LONI Parallel Programming Workshop 2016

Compiling and Running MPI Programs

* OnShelob:
— Compile
* Ctmpicc -o <executable name> <source file>
* Fortran:mpif90 -0 <executable name> <source file>
— Run

* mpirun —-hostfile $PBS NODEFILE —-np <number of
procs> <executable name> <input parameters>

5/30/2016 LONI Parallel Programming Workshop 2016

About Exercises

* Exercises
— Track a: Process color
— Track b: Matrix multiplication
— Track c: Laplace solver

* Your tasks:
* Fill in blanks to make MPI programs work under
/exercise directory
* Solutions are provided in /solution directory

5/30/2016 LONI Parallel Programming Workshop 2016

Exercise al: Process Color

* Write a MPI program where

— Processes with odd rank print to screen “Process x
has the color green”

— Processes with even rank print to screen “Process
X has the color red”

5/30/2016 LONI Parallel Programming Workshop 2016

Exercise b1l: Matrix Multiplication
C

5/30/2016 LONI Parallel Programming Workshop 2016

Exercise b1l: Matrix Multiplication

for(i=0;i<row;i++){ //row of first matrix
for(j=0; j<col; j++){ //column of second matrix
sum=0;

for (k=0;k<n;k++)
sum=sum+a[i][k]*b[k][]];
c[i][j]=sum; //final matrix

5/30/2016 LONI Parallel Programming Workshop 2016

Exercise b1l: Matrix Multiplication

* Goal: Distribute the work load among processes
in 1-d manner

* Each process initializes its own copy of A and B
 Then processes part of the workload

* Need to determine how to decompose
(which process deals which rows or columns)

 Assume that the dimension of Aand B is a
multiple of the number of processes

(need to check this in the program)
* Validate the result at the end B

5/30/2016 LONI Parallel Programming Workshop 2016

Exercise cl: Laplace Solver version 1

D
(x.y-1)
D| P | D

(x-1,y) | (xy) |(xt1y)

D

(xy+1)

Px,y = (Dx-l,y+ Dx,y-l +Dx+1,y+ Dx,y+1) / 4 B

5/30/2016 LONI Parallel Programming Workshop 2016

Exercise cl: Laplace Solver version 1

* Goal: Distribute the work load among
processes in 1-d manner

e.g. 4 MPI processes (color coded) to share the
work load

5/30/2016 LONI Parallel Programming Workshop 2016

Exercise cl: Laplace Solver version 1

X, showing decomposition

by color Xlocal for Blue processor
NN N NN N N
EENNNENN. ®® ® ® ® ® ® ®) Ghost points
NN N N NN N NN N N NN N
NN N N NN N NN N N NN N
0000000 (@ ® ® ® ® ® ® &) Ghost points
S 000O0 O 0O
SO0 0 0000
00000 0O

5/30/2016 LONI Parallel Programming Workshop 2016

Exercise cl: Laplace Solver version 1

* Goal: Distribute the work load among
processes in 1-d manner

— Find out the size of sub-matrix for each process

— Let each process report which part of the domain
it will work on, e.g. “Process x will process column
(row) x through column (row) y.”

* Row-wise (C) or column-wise (Fortran)

5/30/2016 LONI Parallel Programming Workshop 2016

MPI| Functions

* Environment management functions
— Initialization and termination

e Point-to-point communication functions
— Message transfer from one process to another

 Collective communication functions

— Message transfer involving all processes in a
communicator

5/30/2016 LONI Parallel Programming Workshop 2016

Point-to-point Communication

CPU 1 CPU 2
Process 0 Process 1
send receive

5/30/2016 LONI Parallel Programming Workshop 2016

Point-to-point Communication

* Blocking send/receive
— The sending process calls the MPI_SEND function

* C:int MPI Send(void *buf, int count, MPI Datatype
dtype, int dest, int tag, MPI Comm comm) ;

* Fortran:MPI SEND (BUF, COUNT, DTYPE, DEST, TAG, COMM,
TERR)

— The receiving process calls the MPI_RECV function

* C:1nt MPI Recv(void *buf, int count, MPI Datatype

dtype, 1Int source, int tag, MPI Comm comm, MPI Status
*status) ; B B

* Fortran:MPI RECV (BUF, COUNT, DTYPE, SOURCE, TAG, COMM,
STATUS, IERR)

5/30/2016 LONI Parallel Programming Workshop 2016

Send/Receive

int MPI Send(void *buf, int count, MPI Datatype dtype,
int dest, int tag, MPI Comm comm) ;

int MPI Recv(void *buf, int count, MPI Datatype dtype,
int source, int tag, MPI Comm comm, MPI Status *status)

A MPI message consists of two parts

— Message itself: data body
— Message envelope: routing info

e status:information of the message that is received

5/30/2016 LONI Parallel Programming Workshop 2016

Example: Gathering Array Data

* Gather some array data from each process and
place it in the memory of the root process

5/30/2016 LONI Parallel Programming Workshop 2016

Example: Gathering Array Data

integer,allocatable :: array(:)
! Initialize MPI
call mpi init(ierr)
call mpi:comm_size(mpi_comm_world,nprocs,ierr)
call mpi comm rank (mpi comm world,myid,ierr)
! Initialize the array
allocate (array (2*nprocs)) array(1l)=2*myid
array(2)=2*myid+1
! Send data to the root process
1if (myid.eqg.0) then do i=1,nprocs-1
call mpi recv(array(2*i+l) ,2,mpi_ integer,i, O,mpi comm world, status,ierr)

enddo

write(*,*) “The content of the array:” write(*,*) array
else

call mpi send(array,2,mpi integer,0,0, mpi comm world,ierr)

endif

5/30/2016 LONI Parallel Programming Workshop 2016

Blocking Operations
e MPI_SEND and MPI_RECV are blocking operations

— They will not return from the function call until the
communication is completed

— When a blocking send returns, the value(s) stored in the
variable can be safely overwritten

— When a blocking receive returns, the data has been
received and is ready to be used

5/30/2016 LONI Parallel Programming Workshop 2016

Deadlock (1)

Deadlock occurs when both processes awaits
the other to make progress

// Exchange data between two processes
If (process 0)

Receive data from process 1
Send data to process 1

If (process 1)
Receive data from process 0
Send data to process 0

e Guaranteed deadlock!

* Both receives wait for data, but no send can be o

called until the receive returns A o O

5/30/2016 LONI Parallel Programming Workshop 2016

Deadlock (2)

e How about this one?

// Exchange data between two processes
If (process 0)

Receive data from process 1
Send data to process 1

If (process 1)
Send data to process 0
Receive data from process 0

e No deadlock !
PO receives the data first, then sends the data to P1

 There will be performance penalty due to e

serialization of potentially concurrent operations. A E

5/30/2016 LONI Parallel Programming Workshop 2016

Deadlock (3)

e And this one?

// Exchange data between two processes
If (process 0)

Send data to process 1

Receive data from process 1
If (process 1)

Send data to process 0

Receive data from process 0

* |t depends

* If one send returns, then we are OKAY - most MPI
implementations buffer the message, so a send could
return even before the matching receive is posted.

* |Ifthe message is too large to be buffered, deadlock will : D;!

oCcCur. R

5/30/2016 LONI Parallel Programming Workshop 2016

Blocking vs. Non-blocking

* Blocking operations are data corruption proof, but
— Possible deadlock
— Performance penalty

* Non-blocking operations allow overlap of completion
and computation

— The process can work on other tasks between the
initialization and completion

— Should be used whenever possible

5/30/2016 LONI Parallel Programming Workshop 2016

Non-blocking Operations
(asynchronous)

e Separate initialization of a send or receive from
its completion

* Two calls are required to complete a send or receive
— Initialization
* Send:MPI ISEND
* Receive: MPI IRECV
— Completion: MPT WATIT

5/30/2016 LONI Parallel Programming Workshop 2016

Non-blocking Point-to-point Communication

 MPI_ISEND function

* C:int MPI Isend(voild *buf, 1nt count, MPI Datatype
dtype, 1int dest, int tag, MPI Comm comm,
MPI Request *request)

e Fortran:MPI ISEND (BUF, COUNT, DTYPE, DEST, TAG, COMM,
REQ, IERR)

* MPI_IRECV function

* Cint MPI Irecv(voild *buf, 1int count, MPI Datatype
dtype, 1int source, int tag, MPI Comm comm,
MPI Request *request)

* Fortran: MPI IRECV (BUF, COUNT, DTYPE, SOURCE, TAG, COMM,
REQ, IERR)
« MPI_WAIT
e C:int MPI Wait (MPI Request *request,

MPI Status *status); ,
* Fortran: MPT_WATIT (REQUEST, STATUS, IERR) © 'Y

5/30/2016 LONI Parallel Programming Workshop 2016

Example: Exchange Data with Non-
blocking calls

integer reqgids, reqgidr
integer status (mpi status size)

if (myid.eq.0) then
call mpi isend(to pl,n,mpi integer,1,100,mpi comm world,reqids,ierr)
call mpi irecv(from pl,n,mpi integer,1,10l1,mpi comm world,reqidr, ierr)
elseif (myid.eq.1l) then
call mpi isend(to_pO,n,mpi integer,0,10l1,mpi comm world, reqids,ierr)
call mpi irecv(from pO,n,mpi integer,0,100,mpi comm world,reqidr, ierr)
endif

call mpi wait(status,reqids,ierr)
call mpi wait(status,reqidr,ierr)

5/30/2016 LONI Parallel Programming Workshop 2016

Exercise a2: Find Global Maximum

* Goal: Find the maximum in an array
 Each process handle part of the array

* Every process needs to know the maximum at the
end of program

* Hints
e Step 1: each process send the local maximum to the
root process to find the global maximum
e Step 2: the root process send the global maximum to
all other processes .
P =i

5/30/2016 LONI Parallel Programming Workshop 2016

Exercise b2: Matrix Multiplication

* Modify b1 so that each process sends its
partial results to the root process

— The root process should have the whole matrix

* Validate the result at the root process

5/30/2016 LONI Parallel Programming Workshop 2016

Exercise c2: Laplace Solver

* Goal: develop a working MPI Laplace solver using
cl
— Distribute the workload in 1D manner

— Initialize the sub-matrix at each process and set the
boundary values

— At the end of each iteration
* Exchange boundary data with neighbors

* Find the global convergence error and
distribute to all processes - &

5/30/2016 LONI Parallel Programming Workshop 2016

Why MPI?
e Standardized

— With efforts to keep it evolving (MP1 3.0)
* Portability

— MPIl implementations are available on almost all platforms
e Scalability

— In the sense that it is not limited by the number of processors
that can access the same memory space

* Popularity
— De Facto programming model for distributed memory machines
* Nearly every big academic or commercial simulation or
data analysis running on multiple nodes uses MPI

directly or indirectly B

5/30/2016 LONI Parallel Programming Workshop 2016

Continue...

e MPI Part 2: Collective communications

 MPI Part 3: Understanding MPI applications

5/30/2016 LONI Parallel Programming Workshop 2016

