
Introduc)on	to	MPI		
Programming	–	Part	1	

	
Wei	Feinstein,	Le	Yan	

	
HPC@LSU	

	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 1	

Outline	

•  Introduc)on	
•  MPI	program	basics	
•  Point-to-point	communica)on	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 2	

Why	Parallel	Compu)ng	

As	compu)ng	tasks	get	larger	and	larger,	may	
need	to	enlist	more	computer	resources	
	
•  Bigger:	more	memory	and	storage	
•  Faster:	each	processor	is	faster	
•  More:	do	many	computa)ons	simultaneously	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 3	

Memory	system	models	for	
parallel	compu)ng	

				Different	ways	of	sharing	data	among		processors	
– Shared	Memory	
– Distributed	Memory	
– Other	memory	models	

•  Hybrid	model	
•  PGAS	(Par))oned	Global	Address	Space)	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 4	

Shared	memory	model	
•  All	threads	can	access	the		
global	address	space	

•  Data	sharing	achieved	via		
wri)ng	to/reading	from	the		
same	memory	loca)on	

•  Example:	OpenMP	

C	 C	 C	 C	

M	
data	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 5	

Distributed	memory	model	

•  Data	sharing	achieved	via		
explicit	message	passing		
(through	network)	

•  Example:	MPI	(Message	Passing		
Interface)	

Node	interconnect	

C	

M 	M 	M 	M	

C 	C 	C	

•  Each	process	has	its	own	address	space	
	Data	is	local	to	each	process	

data	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 6	

MPI	Programming	Models	

•  Distributed	
	

•  Distributed
+shared	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 7	

Message	Passing		
Any	data	to	be	shared	must	be	explicitly	transferred	
from	one	to	another		

i

m

k

l

Communication
medium: concrete

network,…

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 8	

Entities: MPI
processes

j

Why	MPI?	
•  There	are	already	network	communica)on	libraries	
•  Op)mized	for	performance	
•  Take	advantage	of	faster	network	transport		

•  Shared	memory	(within	a	node)	
•  Faster	cluster	interconnects	(e.g.	InfiniBand)		
•  TCP/IP	if	all	else	fails	

•  Enforces	certain	guarantees	
•  Reliable	messages	
•  In-order	message	arrival	

•  Designed	for	mul)-node	technical	compu)ng	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 9	

MPI	History	

•  1980-1990	

•  1994:MPI-1	
	
	
•  1998:MPI-2	

•  2012:MPI-3	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 10	

Message	Passing	Interface	
•  MPI	defines	a	standard	API	for	message	passing	

–  The	standard	includes	
•  What	func)ons	are	available	
•  The	syntax	of	those	func)ons	
•  What	the	expected	outcome	is	when	calling	those	func)ons	

–  The	standard	does	NOT	include	
•  Implementa)on	details	(e.g.	how	the	data	transfer	occurs)	
•  Run)me	details	(e.g.	how	many	processes	the	code	run	with		etc.)	

•  MPI	provides	C/C++	and	Fortran	bindings	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 11	

Various	MPI	Implementa)ons	
•  OpenMPI:	open	source,	portability	and	simple	
installa)on	and	config	

•  MPICH:	open	source,	portable		
•  MVAPICH2:	MPICH	deriva)ve	
	InfiniBand,	iWARP	and	other	RDMA-enabled 	 		
	interconnects	(GPUs)	

•  Intel	MPI	(IMPI):	vendor-supported	MPICH	from	
Intel	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 12	

High	or	low	level	programming?		

•  High	level	compared	to	other	network	libraries	
•  Abstract	transport	layer	
•  Supply	higher-level	opera)ons		

•  Low	level	for	scien)sts	
•  Handle	problem	decomposi)on	
•  Manually	write	code	for	every	
communica)ons	among	processes	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 13	

More	about	MPI	

•  MPI	provides	interface	to	libraries	
•  APIs	and	constants		
•  Binding	to	Fortran/C	
•  Several	third-party	bindings	for	Python,	R	
and	more	other	languages	

•  Run	MPI	programs	(e.g.	mpiexec)	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 14	

Let’s	try	it		
•  $whoami

•  $mpiexec –np 4 whoami
	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 15	

What	just	happened?	
•  mpiexec	launched	4	processes			
•  Each	process	ran	`whoami`	
•  Each	ran	independently	
•  Usually	launch	no	more	MPI	processes	than	
#processors	

•  Use	mul)ple	nodes:	
mpiexec –hostfile machine.lst –
np/-npp 4 app.exe

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 16	

Outline	of	a	MPI	Program	
1.  Ini)alize	communica)ons	

MPI_INIT	ini)alizes	the	MPI	environment		
MPI_COMM_SIZE	returns	the	number	of	processes		
MPI_COMM_RANK	returns	this	process’s	index	(rank)	

	
2.  Communicate	to	share	data	between	processes	

MPI_SEND	sends	a	message		
MPI_RECV	receives	a	message	
	

3. 	Exit	in	a	“clean”	fashion	when	MPI	communica)on	is	done	
	MPI_FINALIZE	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 17	

Hello	World	(C)	
Header	file			
	
	
Ini)aliza)on	
Computa)on	and		
communica)on	

	

Termina)on	

include “mpi.h”

int main(int argc, char* argv[]){
int nprocs, myid;
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
printf("Hello World from process %d/%d
\n", myid, nprocs);

MPI_Finalize();
…
}

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 18	

include “mpi.h”

int main(int argc, char* argv[]){
int nprocs, myid;
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
printf("Hello World from process %d/%d
\n", myid, nprocs);

MPI_Finalize();
…
}

Hello	World	(C)	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	

Header	file			
	
	
Ini)aliza)on	
Computa)on	and		
communica)on	

	

Termina)on	

19	

		[wfeinste@shelob1	hello]$	mpicc	hello.c	
		[wfeinste@shelob1	hello]$	mpirun	-np	4	./a.out		
		Hello	World	from	process	3/4		
		Hello	World	from	process	0/4		
		Hello	World	from	process	2/4		
		Hello	World	from	process	1/4		

Hello	World	(Fortran)	
include	"mpif.h"	
	
integer::nprocs,	ierr,	myid	
integer::status(mpi_status_size)	
	
call	mpi_init(ierr)	
call	mpi_comm_size(mpi_comm_world,	nprocs,	ierr)	
call	mpi_comm_rank(mpi_comm_world,	myid,	ierr)	
	
write(*,	'("Hello	World	from	process	",I3,"	/",I3)')	myid,	
nprocs	
	
call	mpi_finalize(ierr)	

….

Header	file			
	
	
Ini)aliza)on	

Computa)on	and		
communica)on	

	

Termina)on	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 20	

include	"mpif.h"	
	
integer::nprocs,	ierr,	myid	
integer::status(mpi_status_size)	
	
call	mpi_init(ierr)	
call	mpi_comm_size(mpi_comm_world,	nprocs,	ierr)	
call	mpi_comm_rank(mpi_comm_world,	myid,	ierr)	
	
write(*,	'("Hello	World	from	process	",I3,"	/",I3)')	myid,	
nprocs	
	
call	mpi_finalize(ierr)	

….

Header	file			
	
	
Ini)aliza)on	

Computa)on	and		
communica)on	

	

Termina)on	

		[wfeinste@shelob1	hello]$	mpif90	hello.f90		
		[wfeinste@shelob1	hello]$	mpirun	-np	4	./a.out				
		Hello	World	from	process			3	/		4	
		Hello	World	from	process			0	/		4	
		Hello	World	from	process			1	/		4	
		Hello	World	from	process			2	/		4	

Hello	World	(Fortran)	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 21	

•  Func)on	name	conven)on	
–  C:	MPI_Xxxx(arg1,…)
–  Fortran:	mpi_xxx (not	case	sensi)ve)	

•  Error	handles	
		If	rc/ierr	==	MPI_SUCCESS,	then	the	call	is	successful.	

•  C:	int rc = MPI_Xxxx(arg1,…)
•  Fortran:	call mpi_some_function(arg1,…,ierr)

Naming	Signature	(C/Fortran)	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 22	

Communicators	(1)	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 23	

•  A	communicator	is	an	iden)fier	associated	with	a		
group	of	processes	

MPI_Comm_size(MPI_Com MPI_COMM_WORLD, int &nprocs)
MPI_Comm_rank(MPI_Com MPI_COMM_WORLD, int &myid)

Communicators	(2)	
•  A	communicator	is	an	iden)fier	associated	with	a		
group	of	processes	
–  Can	be	regarded	as	the	name	given	to	an	ordered	list	of		
processes	

–  Each	process	has	a	unique	rank,	which	starts	from	0		
(usually	referred	to	as	“root”)	

–  It	is	the	context	of	MPI	communica)ons	and	opera)ons	
•  For	instance,	when	a	func)on	is	called	to	send	data	to	all		
processes,	MPI	needs	to	understand	what	“all”	means	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 24	

Communicators	(3)	
•  MPI_COMM_WORLD:	the	default	communicator		
contains	all	processes	running	a	MPI		program	

•  There	can	be	many	communicators	
e.g., MPI_Comm_split(MPI_Comm comm, int
color, int, kye, MPI_Comm* newcomm)

•  A	process	can	belong	to	mul)ple	communicators	
–  The	rank	is	usually	different	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 25	

Communicator	Informa)on	
•  Rank:	unique	id	of	each	process	

– C:	MPI_Comm_Rank(MPI_Comm comm, int
*rank)

– Fortran:	MPI_COMM_RANK(COMM,RANK,ERR)
•  Get	the	size/processes	of	a	communicator	

comm, int – C:	MPI_Comm_Size(MPI_Comm
*size)

– Fortran:	MPI_COMM_SIZE(COMM,SIZE,ERR)

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 26	

Compiling	MPI	Programs	
•  Not	a	part	of	the	standard	

–  Could	vary	from	plavorm	to	plavorm	
–  Or	even	from	implementa)on	to	implementa)on	on	the	same		
plavorm	

–  mpicc/mpicxx/mpif77/mpif90:	wrappers	to	compile	MPI	code	
and	auto	link	to	startup	and	message	passing	libraries.	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 27	

MPI	Compilers	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 28	

Language	 Script	Name	 Underlying	Compiler	

C	 mpicc 		 gcc	

mpiicc	 icc	

mpipgcc	 pgcc	

C++	 mpiCC	 g++	

mpiicpc	 icpc	

mpipgCC	 pgCC	

Fortran	 mpif90	 f90	

mpigfortran	 gfortran	

mpiifort	 ifort	

mpipgf90	 pgf90	

Compiling	and	Running	MPI	Programs	
•  On	Shelob:	

–  Compile	
•  C:	mpicc –o <executable name> <source file>
•  Fortran:	mpif90 –o <executable name> <source file>

–  Run	
•  mpirun –hostfile $PBS_NODEFILE –np <number of
procs> <executable name> <input parameters>

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 29	

About	Exercises	
•  Exercises	

–  Track	a:	Process	color	
–  Track	b:	Matrix	mul)plica)on	
–  Track	c:	Laplace	solver	

•  Your	tasks:		
•  Fill	in	blanks	to	make	MPI	programs	work	under	

	/exercise	directory	
•  Solu)ons	are	provided	in	/solu)on	directory	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 30	

Exercise	a1:	Process	Color	

•  Write	a	MPI	program	where	
– Processes	with	odd	rank	print	to	screen	“Process	x		
has	the	color	green”	

– Processes	with	even	rank	print	to	screen	“Process		
x	has	the	color	red”	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 31	

Exercise	b1:	Matrix	Mul)plica)on			
A																							B 	 		 	 		 											C	

C1,1	=	Σ	(A1,i	×	Bi,1)	
i=1	

i=n	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 32	

Exercise	b1:	Matrix	Mul)plica)on	

for(i=0;i<row;i++){ //row	of	first	matrix	
 for(j=0;j<col;j++){ //column	of	second	matrix	
 sum=0;
 for(k=0;k<n;k++)
 sum=sum+a[i][k]*b[k][j];
 c[i][j]=sum; //final	matrix
 }
}

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 33	

Exercise	b1:	Matrix	Mul)plica)on			
•  Goal:	Distribute	the	work	load	among	processes		
in	1-d	manner	

	
•  Each	process	ini)alizes	its	own	copy	of	A	and	B	
•  Then	processes	part	of	the	workload	

•  Need	to	determine	how	to	decompose	
(which	process	deals		which	rows	or	columns)	

•  Assume	that	the	dimension	of	A	and	B	is	a	
mul)ple	of	the		number	of	processes		

		 	(need	to	check	this	in	the	program)	
•  Validate	the	result	at	the	end	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 34	

Exercise	c1:	Laplace	Solver	version	1	

Px,y		=	(Dx-1,y	+	Dx,y-1	+Dx+1,y	+	Dx,y+1)	/	4	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 35	

Exercise	c1:	Laplace	Solver	version	1	

•  Goal:	Distribute	the	work	load	among		
processes	in	1-d	manner	
e.g.	4	MPI	processes	(color	coded)	to	share	the	
work	load	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 36	

Exercise	c1:	Laplace	Solver	version	1	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 37	

Exercise	c1:	Laplace	Solver	version	1	

•  Goal:	Distribute	the	work	load	among		
processes	in	1-d	manner	
– Find	out	the	size	of	sub-matrix	for	each	process	
– Let	each	process	report	which	part	of	the	domain		
it	will	work	on,	e.g.	“Process	x	will	process	column		
(row)	x	through	column	(row)	y.”	

•  Row-wise	(C)	or	column-wise	(Fortran)	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 38	

MPI	Func)ons	
•  Environment	management	func)ons	

–  Ini)aliza)on	and	termina)on	
•  Point-to-point	communica)on	func)ons	

– Message	transfer	from	one	process	to	another	
•  Collec)ve	communica)on	func)ons	

– Message	transfer	involving	all	processes	in	a		
communicator	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 39	

Point-to-point	Communica)on	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 40	

Point-to-point	Communica)on	
•  Blocking	send/receive	

–  The	sending	process	calls	the	MPI_SEND	func)on	
•  C:	int MPI_Send(void *buf, int count, MPI_Datatype
 dtype, int dest, int tag, MPI_Comm comm);

•  Fortran:	MPI_SEND(BUF, COUNT, DTYPE, DEST, TAG, COMM,
 IERR)

–  The	receiving	process	calls	the	MPI_RECV	func)on	
•  C:	int MPI_Recv(void *buf, int count, MPI_Datatype
 dtype, int source, int tag, MPI_Comm comm, MPI_Status
 *status);

•  Fortran:	MPI_RECV(BUF, COUNT, DTYPE, SOURCE, TAG, COMM,
 STATUS, IERR)

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 41	

int MPI_Send(void *buf, int count, MPI_Datatype dtype,
int dest, int tag, MPI_Comm comm);

int MPI_Recv(void *buf, int count, MPI_Datatype dtype,
int source, int tag, MPI_Comm comm, MPI_Status *status)	

•  A	MPI	message	consists	of	two	parts	
– Message	itself:	data	body	
– Message	envelope:	rou)ng	info	
	

•  status: informa)on	of	the	message	that	is		received	

Send/Receive	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 42	

Example:	Gathering	Array	Data	
•  Gather	some	array	data	from	each	process		and	
place	it	in	the	memory	of	the	root	process	

P0	 0	 1	 P1	 2	 3	 P2	 4	 5	 P3	 6	 7	

P0	 0	 1	 2	 3	 4	 5	 6	 7	

43	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 43	

Example:	Gathering	Array	Data	
…
integer,allocatable :: array(:)
! Initialize MPI
call
call
call

mpi_init(ierr)
mpi_comm_size(mpi_comm_world,nprocs,ierr)
mpi_comm_rank(mpi_comm_world,myid,ierr)

! Initialize the array
allocate(array(2*nprocs)) array(1)=2*myid
array(2)=2*myid+1
! Send data to the root process
if (myid.eq.0) then do i=1,nprocs-1

call mpi_recv(array(2*i+1),2,mpi_integer,i, 0,mpi_comm_world,status,ierr)
enddo
write(*,*) “The content of the array:” write(*,*) array

else
call mpi_send(array,2,mpi_integer,0,0, mpi_comm_world,ierr)
endif

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 44	

Blocking	Opera)ons	

•  MPI_SEND	and	MPI_RECV	are	blocking	opera)ons	
	

– They	will	not	return	from	the	func)on	call	un)l		the	
communica)on	is	completed	

– When	a	blocking	send	returns,	the	value(s)	stored		in	the	
variable	can	be	safely	overwriWen	

– When	a	blocking	receive	returns,	the	data	has		been	
received	and	is	ready	to	be	used	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 45	

Deadlock	(1)	
Deadlock	occurs	when	both	processes	awaits		
the	other	to	make	progress	

// Exchange data between two processes
If (process 0)

Receive data from process 1
Send data to process 1

If (process 1)
Receive data from process 0
Send data to process 0

•  Guaranteed	deadlock!	
•  Both	receives	wait	for	data,	but	no	send	can	be	

called	un)l	the	receive	returns	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 46	

Deadlock	(2)	
•  How	about	this	one?	

// Exchange data between two processes
If (process 0)

Receive data from process 1
Send data to process 1

If (process 1)
Send data to process 0
Receive data from process 0

•  No	deadlock	!		
•  P0	receives	the	data		first,	then	sends	the	data	to	P1	
•  There		will	be	performance	penalty	due	to	

serializa)on	of	poten)ally	concurrent	opera)ons.	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 47	

Deadlock	(3)	
•  And	this	one?	

// Exchange data between two processes
If (process 0)

Send data to process 1
Receive data from process 1

If (process 1)
Send data to process 0
Receive data from process 0

•  It	depends	
•  If	one	send	returns,	then	we	are		OKAY	-	most	MPI	

implementa)ons	buffer	the	message,		so	a	send	could	
return	even	before	the	matching		receive	is	posted.		

•  If	the		message	is	too	large	to	be	buffered,	deadlock	will	
occur.	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 48	

Blocking	vs.	Non-blocking	
•  Blocking	opera)ons	are	data	corrup)on	proof,	but	

–  Possible	deadlock	
–  Performance	penalty	

•  Non-blocking	opera)ons	allow	overlap	of	comple)on		
and	computa)on	
–  The	process	can	work	on	other	tasks	between	the		
ini)aliza)on	and	comple)on	

–  Should	be	used	whenever	possible	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 49	

Non-blocking	Opera)ons	
(asynchronous)	

•  Separate	ini)aliza)on	of	a	send	or	receive	from	
its	comple)on	

•  Two	calls	are	required	to	complete	a	send	or		receive	
–  Ini)aliza)on	

•  Send:	MPI_ISEND
•  Receive:	MPI_IRECV

–  Comple)on:	MPI_WAIT

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 50	

Non-blocking	Point-to-point	Communica)on	
•  MPI_ISEND	func)on	

•  C:	int MPI_Isend(void *buf, int count, MPI_Datatype
 dtype, int dest, int tag, MPI_Comm comm,
 MPI_Request *request)	

•  Fortran:	MPI_ISEND(BUF, COUNT, DTYPE, DEST, TAG, COMM,
REQ, IERR)

•  MPI_IRECV	func)on	
•  C:	int MPI_Irecv(void *buf, int count, MPI_Datatype

 dtype, int source, int tag, MPI_Comm comm,
 MPI_Request *request)

•  Fortran: 	MPI_IRECV(BUF, COUNT, DTYPE, SOURCE, TAG, COMM,
 REQ, IERR)

•  MPI_WAIT	
•  C:	int MPI_Wait(MPI_Request *request,
 MPI_Status *status);

•  Fortran:	MPI_WAIT(REQUEST, STATUS, IERR)

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 51	

Example:	Exchange	Data	with	Non-		
blocking	calls	

integer reqids,reqidr
integer status(mpi_status_size)

if (myid.eq.0) then

mpi_isend(to_p1,n,mpi_integer,1,100,mpi_comm_world,reqids,ierr)
mpi_irecv(from_p1,n,mpi_integer,1,101,mpi_comm_world,reqidr,ierr)
（myid.eq.1) then
mpi_isend(to_p0,n,mpi_integer,0,101,mpi_comm_world,reqids,ierr)
mpi_irecv(from_p0,n,mpi_integer,0,100,mpi_comm_world,reqidr,ierr)

call
call

elseif
call
call

endif

call mpi_wait(status,reqids,ierr)
call mpi_wait(status,reqidr,ierr)

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 52	

Exercise	a2:	Find	Global	Maximum	
•  Goal:	Find	the	maximum	in	an	array	

•  Each	process	handle	part	of	the	array	
•  Every	process	needs	to	know	the	maximum	at	the	

end		of	program	
•  Hints	

•  Step	1:	each	process	send	the	local	maximum	to	the	
root		process	to	find	the	global	maximum	

•  Step	2:	the	root	process	send	the	global	maximum	to	
all		other	processes	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 53	

Exercise	b2:	Matrix	Mul)plica)on	

•  Modify	b1	so	that	each	process	sends		its	
par)al	results	to	the	root	process	
– The	root	process	should	have	the	whole	matrix	

•  Validate	the	result	at	the	root	process	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 54	

Exercise	c2:	Laplace	Solver	

•  Goal:	develop	a	working	MPI	Laplace	solver	using	
c1	
– Distribute	the	workload	in	1D	manner	
–  Ini)alize	the	sub-matrix	at	each	process	and	set	the		
boundary	values	

– At	the	end	of	each	itera)on	
•  Exchange	boundary	data	with	neighbors	
•  Find	the	global	convergence	error	and	
distribute	to	all		processes	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 55	

Why	MPI?	
•  Standardized	

–  With	efforts	to	keep	it	evolving	(MPI	3.0)	
•  Portability	

–  MPI	implementa)ons	are	available	on	almost	all	plavorms	
•  Scalability	

–  In	the	sense	that	it	is	not	limited	by	the	number	of	processors		
that	can	access	the	same	memory	space	

•  Popularity	
–  De	Facto	programming	model	for	distributed	memory	machines	

•  Nearly	every	big	academic	or	commercial	simula)on	or	
data	analysis	running	on	mul)ple	nodes	uses	MPI	
directly	or	indirectly	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 56	

Con)nue…	
•  MPI	Part	2:	Collec)ve	communica)ons	
	
•  MPI	Part	3:	Understanding	MPI	applica)ons	

5/30/2016	 LONI	Parallel	Programming	Workshop	2016	 57	

