
Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 1/56

Understanding MPI Applications: A
Perspective of Parallel Algorithms

Xiaoxu Guan

High Performance Computing, LSU

May 31, 2016

0 1 2 3 4 5 6 7

s01 s23 s45 s67

s03 s47

s07

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 2/56

Overview

• Requirements for Parallel Computing

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 2/56

Overview

• Requirements for Parallel Computing

• Fundamental Steps of Designing Parallel Algorithms

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 2/56

Overview

• Requirements for Parallel Computing

• Fundamental Steps of Designing Parallel Algorithms

• Foster’s Methodology
◦ Partitioning;
◦ Data Communication;
◦ Agglomeration;
◦ Mapping;

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 2/56

Overview

• Requirements for Parallel Computing

• Fundamental Steps of Designing Parallel Algorithms

• Foster’s Methodology
◦ Partitioning;
◦ Data Communication;
◦ Agglomeration;
◦ Mapping;

• Potential Pitfalls and Maintaining Good Performance

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 2/56

Overview

• Requirements for Parallel Computing

• Fundamental Steps of Designing Parallel Algorithms

• Foster’s Methodology
◦ Partitioning;
◦ Data Communication;
◦ Agglomeration;
◦ Mapping;

• Potential Pitfalls and Maintaining Good Performance

• Three MPI Examples
◦ Find Prime Numbers
◦ MPI Input/Output
◦ Matrix-Vector Products
◦ Benchmark an MPI Application

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 2/56

Overview

• Requirements for Parallel Computing

• Fundamental Steps of Designing Parallel Algorithms

• Foster’s Methodology
◦ Partitioning;
◦ Data Communication;
◦ Agglomeration;
◦ Mapping;

• Potential Pitfalls and Maintaining Good Performance

• Three MPI Examples
◦ Find Prime Numbers
◦ MPI Input/Output
◦ Matrix-Vector Products
◦ Benchmark an MPI Application

• Further Reading

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 3/56

Parallel computing

• Requirements for Parallel Computing

• How does MPI meet these requirements?
◦ Specify parallel execution – single program on

multiple data (SPMD) and tasks;

◦ Data communication – two- and one- side
communication (explicit or implicit);

◦ Synchronization – synchronization functions;
• Data parallelism;

pseudo code1 for i from imin to imax, do
2 c(i) = a(i) + b(i)
3 end do

• Task (functional) parallelism;

1 { for c(i) = a(i) + b(i) } 2 { for d(j) = sin(a(j)) }

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 4/56

Parallel programming

• Fundamental steps of designing parallel algorithms;

• Shall we design parallel algorithms based on the existing

serial algorithms? Think in parallel!
• Foster model:

• (1) Partitioning
Divide a large problem into many small ones (tasks);

Domain decomposition;

ψ(x, y)

• Load balance: be sure that each task has the same or
similar amount of data to process;

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 5/56

Parallel programming

• (2) Data communication

• Unless your application doesn’t need any exchange of data

(trivial parallelism), we have to deal with data communication

between different tasks;
◦ Local communication: for a given task it only needs to talk

to a very limited number of other tasks;

◦ Global communication: a relatively large number of tasks
are involved;

• Data communication is not free!

• Reduce the number of data communication calls and reduce

the amount of data that needs to be transferred;

• Be sure that each MPI task has the same or nearly the same

number of communication calls and amount of data;

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 6/56

Parallel programming

• (3) Agglomeration

• This is related with the overhead of data communications;

• Trade-off between the number of MPI tasks and the overhead

of data communication;

• Combines several small tasks into a larger task;

• Sometimes, reducing the number of MPI tasks might improve

the data locality;

• Generally, a rule of thumb is that sending/receiving fewer but

longer messages is better than sending/receiving more, but

shorter messages;

• More computation and less communication;

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 7/56

Parallel programming

• (4) Mapping

• How were multiple tasks assigned to multiple cores?

• Generally, this is probably the most difficult step;

• Maximize CPU utilization and minimize data communication;

• Something beyond load balance: internode and intranode
communication ;

• For a given size of the problem and fixed number of cores,
how shall we assign tasks to cores: static and dynamic?

• Static: (1) load balance; (2) regular communication pattern;
(3) one task/core; (4) each core plays almost the same role;

• Dynamic: master-worker model and dispatches tasks to
available cores;

• Maintain load balance (computation and communication) and
make the code scalable;

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 8/56

Potential Pitfalls

• Some common reasons for MPI code hanging or deadlock;

• Message passing should not be overtaking;

Source Destination

M1

M2

Source1

Source2

Destination

M1

M2

• (1) MPI_Recv does not match MPI_Send (rank or tag).

◦ There is a MPI_Send, but no matching MPI_Recv;

◦ There is a MPI_Recv, but no matching MPI_Send;

• (2) Collective MPI calls are not called so by all MPI ranks in

the communicator (say, the issue with only one rank calling

MPI_Bcast);

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 9/56

The Sieve of Eratosthenes
for Prime Numbers

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 10/56

Find Prime Numbers

• MPI programming for prime number searching below N ;

• The serial Sieve of Eratosthenes algorithm;

• One of the ancient but effective iterative methods;

Step 1. Generate a list for 2, 3, 4,· · · , and N ;
Step 2. Let k = 2, the first prime in the list;
Step 3. Repeat the following procedure:

◦ Delete all multiples of k in the region [k2, N].

◦ Locate the smallest number > k. Set the new k to it.

◦ Until k2 > N .

Step 4. All remaining numbers are primes.

• Let’s consider N = 55;

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 11/56

The Sieve of Eratosthenes

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

2n

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

2n, 3n

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

2n, 3n, 5n,

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 12/56

The Sieve of Eratosthenes

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

2n

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

2n, 3n

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

2n, 3n, 5n,

7n

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 13/56

The Sieve of Eratosthenes

• How can we parallelize it using MPI?

• Domain (or data) decomposition;

(1) Break up the entire list into many smaller consecutive
blocks (Partitioning);

(2) Shall data communication occur locally or globally
(data communication)?

(3) We combine the searching multiple of k and marking
them out as a larger task (agglomeration);

(4) We can assign one block to one MPI task (mapping);

• In this case, we have global data communication, because

each MPI task needs to know the value of k;

• How often do we need to make data communication?

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 14/56

The Sieve of Eratosthenes

• Load balance: Let’s consider N = 2016 on 10 cores; block

size is 201 for all cores, except the last task has 206;

• Can we do better?

(1) r = mod (N − 1, p);

(2) block size of ⌈(N − 1)/p⌉ for the first of the r MPI tasks,

(3) block size of ⌊(N − 1)/p⌋ for the rest of the p− r MPI

tasks;

• 5 MPI tasks have the block size of 201, and the rest of the 5

tasks have the block size of 202;

• A much better data distribution and it’s quite general!

• Version 0: (1) istart, iend; (2) primes(:), marked(:); (3)

search all integers in [istart,iend] for multiple of k; (4) call

MPI_Allreduce to determine the next global k;

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 15/56

The Sieve of Eratosthenes
1 ALLOCATE(idata(istart:iend),marked(istart:iend))
2 marked = .true. ; k = 2 Fortran
3 do while(k*k <= pmax) version 0
4 istart_min = max(istart+2,k*k) - 2
5 iend_max = min(iend+2,pmax) - 2
6 do i = istart_min, iend_max
7 itemp = mod(idata(i),k)
8 if(itemp == 0) marked(i) = .false.
9 end do ; kmin = pmax

10 do i = istart, iend
11 if(marked(i).and.idata(i) > k) then
12 kmin = idata(i)
13 EXIT ; end if ; end do
14 call MPI_ALLREDUCE(kmin,k,1,MPI_INTEGER, &
15 MPI_MIN,MPI_COMM_WORLD,ierr)
16 end do

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 16/56

The Sieve of Eratosthenes
1 ALLOCATE(idata(istart:iend),marked(istart:iend))
2 marked = .true. ; k = 2 Fortran
3 do while(k*k <= pmax) version 1
4 istart_min = max(istart+2,k*k) - 2
5 iend_max = min(iend+2,pmax) - 2
6 do i = istart_min, iend_max
7 itemp = mod(idata(i) i+2,k)
8 if(itemp == 0) marked(i) = .false.
9 end do ; kmin = pmax

10 do i = istart, iend
11 if(marked(i).and.idata(i) i+2 > k) then
12 kmin = idata(i) i+2
13 EXIT ; end if ; end do
14 call MPI_ALLREDUCE(kmin,k,1,MPI_INTEGER, &
15 MPI_MIN,MPI_COMM_WORLD,ierr)
16 end do

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 17/56

The Sieve of Eratosthenes

• Can we do better? Take a look at the do loop (lines 6-9);

1 marked = (bool ∗) malloc (chunk*sizeof(bool));
2 for(i=0; i<chunk; i++) marked[i] = true; C
3 iend_max = MIN(iend+2,pmax); k = 2; version 2
4 do { istart_min = MAX(istart+2,k*k);
5 rmn = istart_min % k;
6 if(rmn != 0) istart_min = istart_min - rmn + k;
7 for(i = istart_min; i <= iend_max; i+=k) {
8 marked[i-istart-2] = false; } kmin = pmax;
9 for(i = istart; i <= iend; i++) {

10 if(marked[i-istart-2] && i > k) {
11 kmin = i; break; } }
12 MPI_Allreduce(&kmin,&k,1,MPI_INT, \
13 MPI_MIN,MPI_COMM_WORLD);
14 } while (k*k <= pmax);

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 18/56

The Sieve of Eratosthenes

• Can we do even better? Delete all even integers!

1 k = 3;
2 do { C
3 istart_min = MAX(istart,k*k);; version 3
4 rmn = istart_min % k;
5 if(rmn != 0) istart_min = istart_min - rmn + k;
6 for(i = istart_min; i <= iend_max; i+=k) {

7 if(i%2 != 0) { lk = (i-istart)/2;
8 marked[lk] = false; } }

9 kmin = pmax; for(i=istart; i<=iend; i+=2) {
10 llk=(i-istart)/2;
11 if(marked[llk] && i>k) { kmin = i; break; } }
12 MPI_Allreduce(&kmin,&k,1,MPI_INT, \
13 MPI_MIN,MPI_COMM_WORLD);
14 } while (k*k <= pmax);

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 19/56

Exercises 1 & 2

• Exercise 1: Based on the mpi_primes_v3, replace the

collective MPI_Allreduce by other MPI data communications.

[Hint] Break up MPI_Allreduce into two MPI commands.

• Exercise 2: We have found out the number of primes below

N . Starting from mpi_primes_v3, add the necessary code

segment to print out all the primes from small to large below

N .

[Hint] Let all other MPI tasks send the data to the master,
and let the master print the primes out.

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 20/56

MPI Input/Output

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 21/56

MPI Input/Output

• The next problem we face is the parallel MPI I/O;

• (1) Assign one MPI task to take care of all the I/O, and send

(receive) the necessary data to (from) other MPI tasks;

• (2) Each MPI task handles the same input or output file, but

works on a different part of the file (the best solution);

core

RAM

disk file

serial output

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 22/56

MPI Input/Output

• The next problem we face is the parallel MPI I/O;

• (1) Assign one MPI task to take care of all the I/O, and send

(receive) the necessary data to (from) other MPI tasks;

• (2) Each MPI task handles the same input or output file, but

works on a different part of the file (the best solution);

core

RAM

disk file

serial output

core 0

RAM

disk file 0

core 1

RAM

disk file 1

core 2

RAM

disk file 2

core 3

RAM

disk file 3

parallel output (trivial)

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 23/56

MPI Input/Output

• The next problem we face is the parallel MPI I/O;

• (1) Assign one MPI task to take care of all the I/O, and send

(receive) the necessary data to (from) other MPI tasks;

• (2) Each MPI task handles the same input or output file, but

works on a different part of the file (the best solution);

core

RAM

disk file

serial output

core 0

RAM

disk file

core 1

RAM

core 2

RAM

core 3

RAM

parallel output (better)

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 24/56

MPI Input/Output

• The next problem we face is the parallel MPI I/O;

• (1) Assign one MPI task to take care of all the I/O, and send

(receive) the necessary data to (from) other MPI tasks;

• (2) Each MPI task handles the same input or output file, but

works on a different part of the file (the best solution);

core

RAM

disk file

serial output

core 0

RAM

disk file

core 1

RAM

core 2

RAM

core 3

RAM

parallel output (best)

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 25/56

MPI Input/Output

• (1) One MPI collects all info, and makes the I/O; the amount

of data gathered from all MPI tasks may not be the same;

• MPI_Gatherv(∗sbuf, int scount, MPI_Datatype stype, \

∗rbuf, int ∗rcounts, int ∗displs, MPI_Datatype rtype, int root, \

MPI_Comm comm); Not really MPI I/O!

For root, define

displs=(int *) malloc
(numprocs*sizeof(int));

displs[i] =
∑i−1

k=0
s[k];

displs[0]=0;
displs[1]=s[0];
displs[2]=s[0]+s[1];
displs[3]=s[0]+s[1]+s[2];
. . .

core 0

core 1

Communicator

core 2

core 3

core 4

core 5

sbuf[]

scount

sbuf[]

scount

sbuf[]

scount

sbuf[]
scount

sbuf[]

scountrbuf[]

rcounts[]

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 26/56

MPI Input/Output

• (2) Each MPI task handles the same input or output file;

int MPI_File_open(MPI_Comm comm,char ∗dfilename, \
int amode, MPI_Info info, MPI_File ∗fh);

int MPI_File_set_view(MPI_File fh,MPI_Offset disp,\
MPI_Datatype etype, MPI_Datatype filetype, \
char ∗datarep, MPI_Info info);

int MPI_File_write_at(MPI_File fh, MPI_Offset
offset, ∗buf, int count, MPI_Datatype datatype,
MPI_Status ∗status);

For all MPI tasks, set
disp=0; (global offset)
local offset;
For instance,
for core 2:

core 0 core 1 core 2 core 3

offset count

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 27/56

MPI Input/Output

• MPI also supports nonblocking I/O;

int MPI_File_iwrite_at(MPI_File fh, MPI_Offset offset, \
∗buf, int count, MPI_Datatype datatype, \
MPI_Request ∗request);

int MPI_Wait(MPI_Request ∗request, MPI_Status ∗status);

• Overlap computation or communication with the I/O;

• Note that files are in binary or unformatted;

• How can we assure that the output file makes sense?

• One way to check is to measure the file size and compare

with what it should be;

int MPI_File_get_size(MPI_File fh, MPI_Offset ∗size);

• size is in bytes;

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 28/56

MPI Matrix-Vector
Multiplications

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 29/56

MPI matrix-vector products

• Matrix-vector multiplications are very common in physics,

applied math, and engineering;

• Many practical problems can be represented in the matrix

form, and it is likely matrix-vector products and systems of

linear equations need to be handled. Iterative methods in

linear algebra depend on matrix-vector products;

• Matrix-matrix products can be reduced to multiple

matrix-vector products;

• Let’s say we need to compute a power of matrices operating

on a vector: c = Ak · b = AAA · · ·A · b;

• Remember FLOPS for square matrix-matrix product ∼ O(n3),

while matrix-vector ∼ O(n2);

• ci =
∑

j
Aijbj

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 30/56

MPI matrix-vector products

A11 A12 A13 A14 A15 A16 A17 A18 A19 A110

A81 A82 A83 A84 A85 A86 A87 A88 A89 A810

A

b1

b2

b3

b4

b5

×

b6

b7

b8

b9

b10

b

c1

c2

c3

c4

c5

=
c6

c7

c8

c9

c10

c

• How can we parallelize it
using MPI?

• At least three options A:

(1) Column-wise block
decomposition;

(2) Row-wise block
decomposition;

(3) 2D domain decompo-
sition;

In all three cases, how should we distribute vectors b and c?

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 31/56

MPI matrix-vector products

• (1) Column-wise block decomposition;

core 0 core 1 core 2

• Maintain load balance;

each MPI task takes

(almost) same number

of columns;

• The same strategy as

those of primes;

• Vectors are block striped;

• Vectors b and c are

handled in the same way;

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 32/56

MPI matrix-vector products

• (1) Column-wise block decomposition;

core 0 core 1 core 2

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

}

core 0

}

core 1

}

core 2

• Maintain load balance;

each MPI task takes

(almost) same number
of columns;

• The same strategy as
those of primes;

• Vectors are block striped;

• Vectors b and c are
handled in the same way;

• What about data
communication?

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 33/56

MPI matrix-vector products

• Data communication in column-wise decomposition;

1. A MPI task computes
its own contributions to
a vector element;

2. A task needs to
gather the contributions
from all other tasks;

3. It sums up all contri-
butions;

4. Different tasks may
have different numbers
of vector elements;

5. Use MPI_Alltoallv;

core 0 core 1 core 2

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

}

core 0

}

core 1

}

core 2

sum 0 (c1) sum 1 (c1) sum 2 (c1)

sum 0 (c8) sum 1 (c8) sum 2 (c8)

b1

b2

b3

b4

b5

×

b6

b7

b8

b9

b10

c1

c2

c3

c4

c5

=
c6

c7

c8

c9

c10

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 34/56

MPI matrix-vector products

• Data communication in column-wise decomposition;

• We use MPI I/O to read in all matrix and vector elements;
1 do i = 1, nsize
2 c_local_temp(i) = 0.0_idp Fortran
3 do j = istart, iend version 0
4 c_local_temp(i) = c_local_temp(i) &
5 + matrix(i,j) * vector_inp(j)
6 end do
7 end do subroutine matvec()

• call MPI_Alltoallv;

• The difference between MPI_Gatherv and MPI_Alltoallv;

• After gathering all pieces of data from other tasks and itself,

each MPI task needs to reorganize the data to obtain the

final output vector;

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 35/56

MPI matrix-vector products

• The difference between MPI_Gatherv and MPI_Alltoallv;

core 0

core 1

Communicator

core 2

core 3

core 4

core 5

sbuf[]

scount

sbuf[]

scount

sbuf[]

scount

sbuf[]
scount

sbuf[]

scountrbuf[]

rcounts[]

core 0

core 1

Communicator

core 2

core 3

core 4

core 5

sbuf[]

scount

sbuf[]

scount

sbuf[]

scount

sbuf[]
scount

sbuf[]

scountrbuf[]

rcounts[]

MPI_Gatherv MPI_Alltoallv

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 36/56

MPI matrix-vector products

• The difference between MPI_Gatherv and MPI_Alltoallv;
core 0
12

0

1

2

core 1
9

0

1

2

core 2
9

0

1

2

core 0

core 1

Communicator

core 2

core 3

core 4

core 5

sbuf[]

scount

sbuf[]

scount

sbuf[]

scount

sbuf[]
scount

sbuf[]

scountrbuf[]

rcounts[]

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 37/56

MPI matrix-vector products

• Again, can we do better?

• Remember Fortran stores 2D arrays in column-wise, while C

stores 2D arrays in row-wise;

• Fortran version 0 is not optimized in terms of the way the

matrix elements are addressed;

1 c_local_temp = 0.0_idp Fortran
2 do j = istart, iend version 1
3 do i = 1, nsize
4 c_local_temp(i) = c_local_temp(i) &
5 + matrix(i,j) * vector_inp(j)
6 end do
7 end do subroutine matvec()

• Exchange the loops;

• The compilers wouldn’t do this for you;

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 38/56

MPI matrix-vector products

• (2) Row-wise block decomposition;

core 0

core 1

core 2

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

}

core 0

}

core 1

}

core 2

sum 0 (c1) sum 1 (c1) sum 2 (c1)

sum 0 (c8) sum 1 (c8) sum 2 (c8)

b1

b2

b3

b4

b5

×

b6

b7

b8

b9

b10

c1

c2

c3

c4

c5

=
c6

c7

c8

c9

c10

• Maintain load balance;

each MPI task takes

(almost) same number

of rows;

• The same strategy as

those of column-wise;

• What about vectors?

• Vectors b and c are

handled in the same way;

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 39/56

MPI matrix-vector products

• (2) Row-wise block decomposition;

core 0

core 1

core 2

b1

b2

b3

b4

b5

×

b6

b7

b8

b9

b10

c1

c2

c3

c4

c5

=
c6

c7

c8

c9

c10

• Maintain load balance;

each MPI task takes

(almost) same number

of rows;

• The same strategy as

those of column-wise;

• How about vectors?

• Each MPI task has
entire vectors b and c;

• Data communications
for vector c;

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 40/56

Benchmark an MPI Application

• Increasing FLOPS per unit time is one of our endless goals

in the HPC community;

• Maintaining parallel scalability: how an MPI code behave

with increasing numbers of cores or threads;

• Before we are able to benchmark an MPI applicaiton, be sure

that the results are correct!

• Strong scaling and weak scaling from different

perspectives of measurements;

• We are interested to spot this information in your allocation

proposals!

• Rank 0 measures time_s = MPI_Wtime(); time_e =

MPI_Wtime(); elapsed_time = time_e - time_s in second;

• Average wall-clock time or a shortest wall-clock time?

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 41/56

Benchmark an MPI Application

• Examples: run mpi_matve_v1 and _v2 (104 times of c = A · b);

n = 5760
n = 1440
n = 1200
n = 576
n = 144

Number of cores

S
p
ee
d
u
p

version 1

QB2 (LONI)

20181614121086421

12

11

10

9

8

7

6

5

4

3

2

1

0

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 42/56

Benchmark an MPI Application

• Examples: run mpi_matve_v1 and _v2 (104 times of c = A · b);

n = 5760
n = 1440
n = 1200
n = 576
n = 144

Number of cores

S
p
ee
d
u
p

version 1

QB2 (LONI)

4035302520151051

12

11

10

9

8

7

6

5

4

3

2

1

0

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 43/56

Benchmark an MPI Application

• Examples: run mpi_matve_v1 and _v2 (104 times of c = A · b);

n = 5760
n = 1440
n = 1200
n = 576
n = 144

Number of cores

S
p
ee
d
u
p

version 1

QB2 (LONI)

4035302520151051

12

11

10

9

8

7

6

5

4

3

2

1

0

Number of cores

2880, v1

1200, v2
5760, v1

5760, v2
1440, v2

1440, v1

1200, v1

576, v2

576, v1

144, v2

144, v1

2880, v2QB2 (LONI)

4035302520151051

10

1

40

30

20

8

6

4

2

0.7

• Performance really depends on the algorithms, problem

sizes, etc;

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 44/56

Exercises 3

• Exercise 3: Run mpi_matvec_v1 for matrix sizes of 144, 576,

1200, and 1440, respectively. The number of MPI tasks is

from 1 to 16. Benchmark the wall-clock time.

(1) What is the max speedup you could get?

(2) How would you explain the performance difference for
small and large matrices?

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 45/56

MPI matrix-vector products

• (3) 2D domain decomposition (DD);

• 1D column- and row-wise decomposition are particular cases

of 2D domain decomposition;

core 0

core 1

core 2

core 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

• More MPI tasks in 2D cases;

• Vectors are blocked stripped (same as the column-wise

case);

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 46/56

MPI matrix-vector products

• Generally, 2D DD is much more complicated than 1D cases;

• (1) We only consider a square matrix times a vector;

• (2) Assume the number of MPI tasks is a square number;

• (3) Matrix size should be dividable by the number of MPI

tasks along row (or column) dimension;

• Create a 2D Cartesian (x, y) DD;

1 MPI_Cart_create(MPI_COMM_WORLD,2,dimes,bdperiodic,\
2 topology,&COMM2D);
3 MPI_Comm_rank(COMM2D,&my_id);
4 MPI_Cart_coords(COMM2D,my_id,2,coords_2d);
5 mycoods_x = coords_2d[0];
6 mycoods_y = coords_2d[1]; C version 2

• A new communicator COMM2D;

• bdperiodic and topology;

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 47/56

MPI matrix-vector products

• 2D Cartesian coordinates;

x

y

0
(0,0)

1
(0,1)

2
(0,2)

3
(0,3)

4
(0,4)

5
(1,0)

6
(1,1)

7
(1,2)

8
(1,3)

9
(1,4)

10
(2,0)

11
(2,1)

12
(2,2)

13
(2,3)

14
(2,4)

15
(3,0)

16
(3,1)

17
(3,2)

18
(3,3)

19
(3,4)

20
(4,0)

21
(4,1)

22
(4,2)

23
(4,3)

24
(4,4)

• Need to manipulate matrix

elements in row or column

patterns;

• Use x or y coordinates to

map operation on MPI tasks;

• Analyze data communication

for vectors b anc c;

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 48/56

MPI matrix-vector products

• 2D Cartesian coordinates;

x

y

0
(0,0)

1
(0,1)

2
(0,2)

3
(0,3)

4
(0,4)

5
(1,0)

6
(1,1)

7
(1,2)

8
(1,3)

9
(1,4)

10
(2,0)

11
(2,1)

12
(2,2)

13
(2,3)

14
(2,4)

15
(3,0)

16
(3,1)

17
(3,2)

18
(3,3)

19
(3,4)

20
(4,0)

21
(4,1)

22
(4,2)

23
(4,3)

24
(4,4)

0

1

2

3

4

0 5 10 15 20

x

y

0
(0,0)

1
(0,1)

2
(0,2)

3
(0,3)

4
(0,4)

5
(1,0)

6
(1,1)

7
(1,2)

8
(1,3)

9
(1,4)

10
(2,0)

11
(2,1)

12
(2,2)

13
(2,3)

14
(2,4)

15
(3,0)

16
(3,1)

17
(3,2)

18
(3,3)

19
(3,4)

20
(4,0)

21
(4,1)

22
(4,2)

23
(4,3)

24
(4,4)

• From the left-most cores to the top-most cores; then roll

down for all rows;

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 49/56

MPI matrix-vector products

• 2D Cartesian coordinates;

x

y

0
(0,0)

1
(0,1)

2
(0,2)

3
(0,3)

4
(0,4)

5
(1,0)

6
(1,1)

7
(1,2)

8
(1,3)

9
(1,4)

10
(2,0)

11
(2,1)

12
(2,2)

13
(2,3)

14
(2,4)

15
(3,0)

16
(3,1)

17
(3,2)

18
(3,3)

19
(3,4)

20
(4,0)

21
(4,1)

22
(4,2)

23
(4,3)

24
(4,4)

0

1

2

3

4

0 5 10 15 20

x

y

0
(0,0)

1
(0,1)

2
(0,2)

3
(0,3)

4
(0,4)

5
(1,0)

6
(1,1)

7
(1,2)

8
(1,3)

9
(1,4)

10
(2,0)

11
(2,1)

12
(2,2)

13
(2,3)

14
(2,4)

15
(3,0)

16
(3,1)

17
(3,2)

18
(3,3)

19
(3,4)

20
(4,0)

21
(4,1)

22
(4,2)

23
(4,3)

24
(4,4)

• From the left-most cores to the top-most cores; then roll

down for all rows;

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 50/56

MPI matrix-vector products

1 MPI_Comm_split(MPI_COMM_WORLD,mycoods_y,mycoods_x,\
2 &COMM_ROW);
3 MPI_Comm_rank(COMM_ROW,&my_id_row);
4 MPI_Comm_split(MPI_COMM_WORLD,mycoods_x,mycoods_y,\
5 &COMM_COL);
6 MPI_Comm_rank(COMM_COL,&my_id_col);

• How many COMM_ROW or COMM_COL do we have?

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 51/56

MPI matrix-vector products

1 MPI_Comm_split(MPI_COMM_WORLD,mycoods_y,mycoods_x,\
2 &COMM_ROW);
3 MPI_Comm_rank(COMM_ROW,&my_id_row);
4 MPI_Comm_split(MPI_COMM_WORLD,mycoods_x,mycoods_y,\
5 &COMM_COL);
6 MPI_Comm_rank(COMM_COL,&my_id_col);

• How many COMM_ROW or COMM_COL do we have?

COMM ROW

COMM ROW

COMM ROW

COMM ROW

COMM ROW

COMM COL

COMM COL

COMM COL

COMM COL

COMM COL

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 52/56

MPI matrix-vector products

1 MPI_Bcast(vector,chunk,MPI_DOUBLE,0,COMM_COL);

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 53/56

MPI matrix-vector products

1 MPI_Bcast(vector,chunk,MPI_DOUBLE,0,COMM_COL);

0

M
P
I
B
ca
st

0

M
P
I
B
ca
st

0
M
P
I
B
ca
st
0

M
P
I
B
ca
st

0

M
P
I
B
ca
st

• Should we use COMM_ROW

or COMM_COL?

• Several small subsets of

MPI_WORLS_WORLD;

• In this case, all subsets

are named in the same

way;

• All cores in the same

column have the same

chunk of the vector;

• Data communication

within the same subset;

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 54/56

MPI matrix-vector products

• After local matrix-vector products, each MPI task has its own

contribution to the final vector c;

1 MPI_Reduce(c_local_temp,vector_out,chunk, \
2 MPI_DOUBLE,MPI_SUM,0,COMM_ROW);

1 if(mycoods_x == 0 && my_id != master_id) {
2 my_id_trans = my_id * noblock_1d;
3 MPI_Send(vector_inp,chunk,MPI_DOUBLE, \
4 my_id_trans,0,MPI_COMM_WORLD); }
5 else if(mycoods_y == 0 && my_id != master_id) {
6 my_id_trans = my_id / noblock_1d;
7 MPI_Recv(vector_inp,chunk,MPI_DOUBLE, \
8 my_id_trans,0,MPI_COMM_WORLD,&istatus); }
9

10 MPI_Bcast(vector_inp,chunk,MPI_DOUBLE, \
11 0,COMM_COL);

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 55/56

Exercises 4 & 5

• Exercise 4: In the code mpi_matvec_v2.c (.f90),

MPI_Reduce was used, so MPI task with rank 0 gathered the

final answer. Can we replace MPI_Reduce with

MPI_Allreduce?

• Exercise 5: In the same code, the post data communication

was done in the main program and was separated from the

function (routine) of matvec. Make the other version (say,

mpi_matvec_v3) in such a way that the post data

communication is carried in the function of matvec;

Information Technology Services
5th Annual LONI HPC Parallel Programming Workshop, 2016

p. 56/56

Further Reading

Using MPI, Portable Parallel Programming with the

Message-Passing Interface, W. Gropp, E. Lusk, and

A. Skjellum (The MIT Press, 2014).

Parallel Programming in C with MPI and

OpenMP, M. J. Quinn (McGraw Hill, 2004).

Questions?
sys-help@loni.org

	Overview
	*-1mmOverview
	*-1mmOverview
	*-1mmOverview
	*-1mmOverview
	*-1mmOverview
	*-1mmOverview

	Overview
	Parallel computing
	 Parallel programming
	 Parallel programming
	 Parallel programming
	 Parallel programming
	 Potential Pitfalls
	
	 Find Prime Numbers
	 The Sieve of Eratosthenes
	 The Sieve of Eratosthenes
	 The Sieve of Eratosthenes
	 The Sieve of Eratosthenes
	 The Sieve of Eratosthenes
	 The Sieve of Eratosthenes
	 The Sieve of Eratosthenes
	 The Sieve of Eratosthenes
	 Exercises 1 & 2
	
	 MPI Input/Output
	 MPI Input/Output
	 MPI Input/Output
	 MPI Input/Output
	 MPI Input/Output
	 MPI Input/Output
	 MPI Input/Output
	
	 MPI matrix-vector products
	 MPI matrix-vector products
	 MPI matrix-vector products
	 MPI matrix-vector products
	 MPI matrix-vector products
	 MPI matrix-vector products
	 MPI matrix-vector products
	 MPI matrix-vector products
	 MPI matrix-vector products
	 MPI matrix-vector products
	 MPI matrix-vector products
	 Benchmark an MPI Application
	 Benchmark an MPI Application
	 Benchmark an MPI Application
	 Benchmark an MPI Application
	 Exercises 3
	 MPI matrix-vector products
	 MPI matrix-vector products
	 MPI matrix-vector products
	 MPI matrix-vector products
	 MPI matrix-vector products
	 MPI matrix-vector products
	 MPI matrix-vector products
	 MPI matrix-vector products
	 MPI matrix-vector products
	 MPI matrix-vector products
	 Exercises 4 & 5
	 Further Reading

