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AGENDA	
•  Fundamentals of Heterogeneous & GPU Computing 
•  What are Compiler Directives? 
•  Accelerating Applications with OpenACC 

•  Identify Available Parallelism 
•  Parallelize loops 

•  Optimize Data Locality 

•  Optimize loops 
•  Interoperability  
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GPU
  Large Scale of 

applications 

Genomics	 Deep		
Learning	

Costal	Storm	
Predic,on	

Many-Core CPU  

(Intel Xeon Phi) 
Multi-Core 

CPU 

OpenMP	 OpenACC	 Phi	
Direc/ves	

High	Level	Programming	(direcitve/pragma)	
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GPU	Compu,ng	History	
•  The first Graphics Processing Unit (GPU) was designed as graphics  

accelerators, supporting only specific fixed-function pipelines. 
•  Starting in the late 1990s, the hardware became increasingly  

programmable, NVIDIA's first GPU in 1999. 
•  The General Purpose GPU (GPGPU): its excellent floating point 

performance.  
•  2006 world's 1st solution for general computing on GPUs. CUDA 

was designed and launched by NVIDIA 
•  CUDA (Compute Unified Device Architecture) is a parallel computing  

platform and programming model created by NVIDIA and implemented  
on the GPUs that they produce. 
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GPU CPU 

Latency Processor  Throughput processor 
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Koenigsegg one 
•  270 mph 
•  Baton Rouge to New Orleans in 

0.29 hr (18 mins) 
•  Seats: 2 

School bus 
•  40 mph 
•  BR to NO  in 2 hr 
•  Seats: 72 

Latency	vs.	Throughput	
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Koenigsegg one 
•  latency: 0.28 hr (18 mins) 
•  Throughput: 2/0.28 = 7.14 people/hr 
 

School bus 
•  Latency: 2 hr 
•  Throughput: 72/2 = 36 

people/hr 

Latency	vs.	Throughput	
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Comparison	of	Architectures	
CPU 
■ 

■ 

Optimized for low-latency 
access to cached data sets 
Control logic for out-of- 
order and speculative 
execution 

GPU 
■ 

■ 

■ 

Optimized for data-parallel, 
throughput computation 
Architecture tolerant of 
memory latency 
More transistors dedicated 
to computation 
Hide latency from other 
threads via fast context 
switching 

DRAM 

DRAM 

 
Control 

ALU ALU 

ALU ALU 

 
Cache 

■ 
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WHAT	IS	HETEROGENEOUS	COMPUTING?	
Application Execution 

+ 

GPU CPU 

High Data Parallelism High Serial 
Performance     
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Applications 

Libraries 

Easy to use 
Most Performance 

Programming 
Languages 

Most Performance 
Most Flexibility 

Easy to use 
Portable code 

Compiler 
Directives 

3	Approaches	to		
Heterogeneous	Programming	
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NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP 

Vector Signal 
Image Processing 

GPU Accelerated 
Linear Algebra 

Matrix Algebra on 
GPU and Multicore NVIDIA cuFFT 

C++ STL Features  
for CUDA 

Sparse Linear  
Algebra IMSL Library A 

Building-block  
Algorithms for 
CUD 

Examples of GPU-accelerated Libraries 

ArrayFire Matrix  
Computations 
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GPU	Programming	Languages	

OpenACC, CUDA Fortran Fortran 

OpenACC, CUDA C C 

Thrust, CUDA C++ C++ 

PyCUDA, Copperhead Python 

GPU.NET C# 

MATLAB, Mathematica, LabVIEW 
Numerical 
analytics 
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SAXPY	

void	saxpy(int	N,	float	a,	float	*x,	float	*y){	
								for	(int	i	=	0;	i	<	N;	++i)	

y[i]	=	a*x[i]	+	y[i];	
}	
x,	y:	vector	with	N	elelments	
a:	scalar	
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void	saxpy_CPU(int	n,	float	a,	float	*x,	float	*y)	{				
											for	(int	i	=	0;	i	<	n;	++i)		{			

	y[i]	=	a	*	x[i]	+	y[i];	
}	

}	
int	main(int	argc,	char	**argv){	
long	n=	1<<20;			
float	*x	=	(float*)malloc(n	*	sizeof(float));	
	float	*y	=	(float*)malloc(n	*	sizeof(float));		
//	Ini,alize	vector	x,y	
for	(int	i	=	0;	i	<	n;	++i)	{		

		x[i]	=	1.0f;		
		y[i]	=	0.0f;	
}	

//	Perform	SAXPY	
saxpy_CPU(n,	a,	x,	y);	
}	
…	

Saxpy_CPU 
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extern	void		
cublasSaxpy(int,float,float*,int,float*,in
t);	
 
int	main(){	
…	
//	Ini,alize	vectors	x,	y	
for	(int	i	=	0;	i	<	n;	++i)	{	

x[i]	=	1.0f;		
y[i]	=	0.0f;	

}	
//	Perform	SAXPY	
#pragma	acc		
host_data	use_device(x,y)		
cublasSaxpy(n,	2.0,	x,	1,	y,	1);	

}	

Saxpy_cuBLAS Saxpy_OpenACC 

…	

hip://docs.nvidia.com/cuda	
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void	saxpy_ACC(int	n,	float	a,	float	*x,	float	*y)	
	{	

#pragma	acc	parallel	loop		
for	(int	i	=	0;	i	<	n;	++I	{		
	y[i]	=	a	*	x[i]	+	y[i];	

			}		
} 
int	main(){	
…	
//	Ini,alize	vectors	x,	y	
for	(int	i	=	0;	i	<	n;	++i)	{	

x[i]	=	1.0f;		
y[i]	=	0.0f;	

}	
//	Perform	SAXPY		
	saxpy_ACC(n,	a,	x,	y);	
}	
	



Saxpy_CUDA	
//	define	CUDA	kernel	func,on	
__global__	void	saxpy_kernel(	float	a,	float*	x,	float*	y,	int	n	){		
								int	i;		

	i	=	blockIdx.x*blockDim.x	+	threadIdx.x;		
									if(	i	<=	n	)	y[i]	=	a*x[i]	+	y[i];	
}	
Void	main(	float	a,	float*	x,	float*	y,	int	n	){			

	float	*xd,	*yd;	
//	manage	device	memory	
cudaMalloc(	(void**)&xd,	n*sizeof(float)	);	
cudaMalloc(	(void**)&yd,	n*sizeof(float)	);	
cudaMemcpy(	xd,	x,	n*sizeof(float),	cudaMemcpyHostToDevice	);		
	cudaMemcpy(	yd,	y,	n*sizeof(float),	cudaMemcpyHostToDevice	);	
//	calls	the	kernel	func,on	
saxpy_kernel<<<	(n+31)/32,	32	>>>(	a,	xd,	yd,	n	);			
cudaMemcpy(	x,	xd,	n*sizeof(float),	cudaMemcpyDeviceToHost	);	
//	free	device	memory	aner	use		
	cudaFree(	xd	);	
cudaFree(	yd	);	

}	
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Applications 

Libraries 

Easy to use 
Most Performance 

Programming 
Languages 

Most Performance 
Most Flexibility 

Easy to use 
Portable code 

Compiler 
Directives 

3	Approaches	to		
Heterogeneous	Programming	
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AGENDA	
•  Fundamentals of Heterogeneous & GPU Computing 
•  What are Compiler Directives? 
•  Accelerating Applications with OpenACC 

•  Identify Available Parallelism 
•  Parallelize loops 

•  Optimize Data Locality 

•  Optimize loops 
•  Interoperability  

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	



What Are Compiler Directives? 

int main() { 
 

do_serial_stuff() 
 
 

for(int i=0; i < BIGN; i++) 
{ 
…compute  intensive  work 
} 

   } 
do_more_serial_stuff(); 

 
} 

#pragma acc parallel loop { 

ßData and Execution returns to the CPU 

ßInserts compiler hints to compute on GPU 
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What	are	OpenACC	Direc,ves?	

Program myscience 
... serial code ... 

!$acc kernels 

do k = 1,n1 
do i = 1,n2 

code ... 

... 

... parallel 

enddo 
enddo 

!$acc end kernels 

End Program myscience 

CPU  GPU 

OpenACC 
Compiler 
Directives 

Portable compiler hints 

Compiler parallelizes code 

Designed for multicore CPUs & 
many core GPUs 
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OpenACC Execution Model 
Application Code 

GPU CPU 
Compute-Intensive Functions 

Generate Parallel Code for GPU 

Rest of Sequential 
CPU Code 

z	

2
2	

$acc parallel 

$acc end parallel 
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Rest of Sequential 
CPU Code 



History	of	OpenACC	
•  OpenACC is a specification/standard for high-level, 

compiler directives to express parallelism on 
accelerators.  
•  Aims to be portable to a wide range of accelerators 
•  One specification for multiple vendors, multiple 

devices  
•  Original members: CAPS, Cray, NVIDIA and PGI 

•  First released 1.0 Nov 2011 
•  2.0 was released Jue 2013 
•  2.5 was released Oct 2015 

 
http://www.openacc.org/specification  
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Why	OPENACC?	

Simple: Directives are the easy path to accelerate 
applications compute intensive 

Open: OpenACC is an open GPU directives standard, making 
GPU programming straightforward and portable across 
parallel and multi-core processors 

Portable: GPU Directives represent parallelism at a high 
level, allowing portability to a wide range of architectures 
with the same code 
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Which	Compilers	Support	OpenACC	

 OpenACC Standard 

•  PGI compilers for C, C++ and Fortran  
•  Cray CCE compilers for Cray systems  
•  CAPS compilers  
•  NVIDIA 
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Using	PGI	compilers	on	Mike		
Login in to SuperMike:
$ ssh usrid@mike.hpc.lsu.edu 
 
Get an interactive compute node:
$ qsub -I -l nodes=1:ppn=16 –l walltime=4:00:00      
       –q shelob -A hpc_train_2017 

Add the PGI compiler v15.10
$ soft add +portland-15.10 
 
$ pgcc –V 
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EXAMPLE:	JACOBI	ITERATION	Iteratively converges to correct value, e.g., temprature, 
by computing new values at each point from the average 
of neighboring points. 
 
 
 
 
 
 
 
 

•  Example: Solve Laplace equation in 2D:  

𝛻2 𝑓(𝑥,  𝑦) = 0	

𝐴𝑘 +1(𝑖, 𝑗)  =
𝐴𝑘 (𝑖 − 1, 𝑗)  + 𝐴𝑘 (𝑖 + 1, 𝑗) +  𝐴𝑘(𝑖, 𝑗  − 1)+  𝐴𝑘 (𝑖, 𝑗  + 1)

4

A(i,j)         A(i+1,j) A(i-1,j) 

A(i,j-1) 

A(i,j+1) 

Example:	Jacobi	Itera,on	
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JACOBI Iteration: C 
Iterate until 
converged 

Iterate across 
matrix elements 

Calculate new value 
from neighbors 

Compute max error 
for convergence 

Swap input/output 
arrays 

while ( error > tol && iter < iter_max ){
error = 0.0;

for( int j = 1; j < n-1; j++) {
 for( int i = 1; i < m-1; i++ ) {

    Anew[j][i] = 0.25 * ( A[j][i+1] + A[j]  
          [i-1] + A[j-1][i] + A[j+1][i]);

    error = fmax( error, fabs(Anew[j][i]   
            A[j][i]));
  }
}
for( int j = 1; j < n-1; j++) {
  for( int i = 1; i < m-1; i++ ) {
    A[j][i] = Anew[j][i];
  }
}
	iter++; 
}  // end while loop
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AGENDA	
•  Fundamentals of Heterogeneous & GPU Computing 
•  What are Compiler Directives? 
•  Accelerating Applications with OpenACC 

•  Identify Available Parallelism 
•  Parallelize loops 

•  Optimize Data Locality 

•  Optimize loops 

•  Interoperability  
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Identify Available Parallelism	
•  Identify section of a code consuming the significant 

percentage of time (hot spots) 
•  Routines, loops 

•  Profilers: 
•  gpof (GNU) 
•  pgprof (PGI) 
•  Vampir  
•  NVIDIA visual profiler 
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Code Profiling (pgprof)	
•  Compile code with profiling info 
•  $ pgcc -Mprof=ccff laplace.c 

•  Generate pgprof.out 
•  $ pgcollect ./a.out   
    --> pgprof.out 

•  Visualize profile info 
•  $ pgprof –exe ./a.out 
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AGENDA	
•  Fundamentals of Heterogeneous & GPU Computing 
•  What are Compiler Directives? 
•  Accelerating Applications with OpenACC 

•  Identify Available Parallelism 
•  Parallelize loops 

•  Optimize Data Locality 

•  Optimize loops 

•  Interoperability  
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General	Direc,ve	Syntax	and	Scope	
•  C 

•  #pragma	acc	directive	[clause	[,]	clause]...]	
{	
Often	followed	by	a	structured	code	block	
}	

•  Fortran 
•  !$acc	directive	[clause	[,]	clause]...]	

Often	paired	with	a	matching	end	directive	
surrounding	a	structured	code	block	

•  !$acc	end	directive	
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	Kernels Direc,ve	
The kernels construct expresses that a region may 
contain parallelism and the compiler determines what 
can safely be parallelized. 
#pragma acc kernels 

{ 
for(int i=0; i<N; i++) 
{ 

x[i] 
y[i] 

= 1.0; 
= 2.0; 

} 

for(int i=0;i++{ i<N; 
{ 
y[i] = a*x[i] +y[i]; 
 

} 
} 

kernel 1 

kernel 2 

The compiler 
identifies 2 parallel 

loops and generates 2 
kernels. 

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

A	kernel	is	a	func,on	executed		on	the	GPU	as	
an	array	of		threads	in	parallel	



Parallize with Kernels (C) 
while ( error > tol && iter < iter_max ) {
 error = 0.0;
#pragma acc kernels {
 for( int j = 1; j < n-1; j++) {
    for( int i = 1; i < m-1; i++ ) {
      Anew[j][i] = 0.25 * ( A[j][i+1] + A[j][i-1] + A[j-1] 

[i] + A[j+1][i]);
      error = fmax( error, fabs(Anew[j][i] - A[j][i]));
    }
 }
 for( int j = 1; j < n-1; j++) {
       for( int i = 1; i < m-1; i++ ) {
            A[j][i] = Anew[j][i];
       }
  } }
  iter++; }

Look for parallelism 
within this region. 

$pgcc –acc –fast –ta=nvidia,time –Minfo=all 
laplace_kernels1.c   

Kernels end here 
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Parallize with Kernels (Fortran) 
 do while ( error .gt. tol .and. iter .lt. iter_max ) 
    error=0.0 
!$acc kernels 
    do j=1,m-2 
      do i=1,n-2 
        Anew(i,j) = 0.25_fp_kind * ( A(i+1,j  ) + A(i-1,j  ) + & 
                                     A(i  ,j-1) + A(i  ,j+1) ) 
        error = max( error, abs(Anew(i,j)-A(i,j)) ) 
      end do 
    end do 
     
    do j=1,m-2 
      do i=1,n-2 
        A(i,j) = Anew(i,j) 
      end do 
    end do 
!$acc end kernels 
 

Look for parallelism 
within this region. 

$pgfortran –acc –fast –ta=nvidia,time  
–Minfo=all laplace_kernels1.f90   

Kernels end here 
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How	to	compile	with	OpenACC	
 
Compile using PGI compiler
$ pgcc –acc –fast –ta=nvidia –Minfo=accel 
laplace_kernels1.c  
 
$ pgf90 –acc –fast –ta=nvidia –Minfo=accel 
laplace_kernels1.f90 
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47, Generating copyout(Anew[1:4094][1:4094]) 
         Generating copyin(A[:4096][:4096]) 
         Generating copyout(A[1:4094][1:4094]) 
     48, Loop is parallelizable 
     49, Loop is parallelizable 
         Accelerator kernel generated 
         Generating Tesla code 
         48, #pragma acc loop gang /* blockIdx.y */ 
         49, #pragma acc loop gang, vector(128) /* 
blockIdx.x threadIdx.x */ 
         52, Max reduction generated for error 
     56, Loop is parallelizable 
     57, Loop is parallelizable 
         Accelerator kernel generated 
         Generating Tesla code 
         56, #pragma acc loop gang /* blockIdx.y */ 
         57, #pragma acc loop gang, vector(128) /* 
blockIdx.x threadIdx.x */ 
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Open a separate terminal 
$ ssh –X mikexxx or shelobxxx  
 
$ top: CPU utilization 
 
$ nvidia-smi: GPU  
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Check	CPU	&	GPU	U,liza,on	



Parallel Loop Directive 
parallel - Programmer identifies a block of code containing 
parallelism. Compiler generates a kernel. 
loop - Programmer identifies a loop that can be parallelized within 
the kernel. 

NOTE: parallel & loop are often placed together 

#pragma acc parallel loop 

for(int i=0; i<N; i++) 

{ 

   y[i] = a*x[i]+y[i]; 

{ 

Parallel 
kernel 

Kernel: 
A function that 
runs in parallel 

on the GPU 
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Loop	Clauses:	Private	&	Reduc,on	

private •  A copy of the variable is made for each loop 
iteration. It is private by default 

reduction •  A private copy of the affected variable is generated for 
each loop iteration 

•  A reduction is then performed on the variables.  
•  Supports +, *, max, min, and various logical 

operations 
 

2
9 
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Code using Parallel Loop Directive (C) 
while ( error > tol && iter < iter_max ) {
 error = 0.0;
#pragma acc parallel loop reduction(max:err) 
 for( int j = 1; j < n-1; j++) {
    for( int i = 1; i < m-1; i++ ) {
      Anew[j][i] = 0.25 * ( A[j][i+1] + A[j][i-1] + A[j-1]

[i] + A[j+1][i]);
      error = fmax( error, fabs(Anew[j][i] - A[j][i]));
    }
 }
#pragma acc parallel loop 
 for( int j = 1; j < n-1; j++) {
       for( int i = 1; i < m-1; i++ ) {
            A[j][i] = Anew[j][i];
       }
  }
  iter++; 
}

Parallelize loop on 
accelerator 

Parallelize loop on 
accelerator 

* A reduction means that all of the N*M values 
for err will be reduced to just one, the max. 
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Code using Parallel Loop Directive (Fortran) 
 do while ( error .gt. tol .and. iter .lt. iter_max ) 
    error=0.0 
!$acc parallel loop reduction(max:err) 
    do j=1,m-2 
      do i=1,n-2 
        Anew(i,j) = 0.25 *( A(i+1,j)+A(i-1,j) +  

 A(i,j-1) + A(i,j+1) ) 
        error = max( error, abs(Anew(i,j)-A(i,j)) ) 
      end do 
    end do 
!$acc end parallel  
!$acc parallel loop 
    do j=1,m-2 
      do i=1,n-2 
        A(i,j) = Anew(i,j) 
      end do 
    end do 
!$acc end parallel  

Parallelize loop on 
accelerator 

Parallelize loop on 
accelerator 

* A reduction means that all of the N*M values 
for err will be reduced to just one, the max. 

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	



Kernels vs. Parallel Loops  
Parallel Loop 

•  Requires analysis by 
programmer to ensure 
safe parallelism 

•  Will parallelize what a 
compiler may miss 

•  Straightforward path 
from OpenMP 

Kernels 
•  Compiler performs parallel 

analysis and parallelizes 
what it believes safe 

•  Can cover larger area of 
code with single directive 

•  Gives compiler additional 
leeway to optimize. 
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OpenACC for Multicore CPUs 
•  Originally targeted to NVIDIA and AMD (GPUs) 

•  Latest PGI compiler (>=pgi15.10) generates parallel code on 
CPUs using OpenMP 

•  With the same set of OpenACC pragmas  
•  GPUs: -ta=nvidia   

•  CPUs: -ta=multicore using all the CPU cores 

•  Or export ACC_NUM_CORES = [ 1 .. 16 ]  

•  $ pgcc –ta=multicore,time –Minfo=all 
laplace_kernels2.c  



OpenACC for Multicore CPUs 

48, Loop is parallelizable 
         Generating Multicore code 
         48, #pragma acc loop gang 
     49, Loop is parallelizable 
     56, Loop is parallelizable 
         Generating Multicore code 
         56, #pragma acc loop gang 
     57, Loop is parallelizable 
         Memory copy idiom, loop replaced by call to 
__c_mcopy8 
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Performance Comparison  

Disappoin,ng	performance	
using	OpenACC	with		
kernels/Parallel	loop		
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What Went Wrong? 

$ export PGI_ACC_TIME=1  
$ pgcc –ta=nvidia –Minfo=accel 
  laplace_parallel2.c –o laplace_parallel2 
	
$ pgcc –ta=nvidia,time –Minfo=accel 
  laplace_parallel2.c –o laplace_parallel2 
 
$ ./laplace_parallel2 
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Data	Movement	main  NVIDIA  devicenum=0 
    time(us): 88,667,910 
47: compute region reached 1000 times 
        47: data copyin transfers: 1000 
             device time(us): total=8,667 max=37 min=8 avg=8 
        47: kernel launched 1000 times 
            grid: [4094]  block: [128] 
             device time(us): total=2,320,918 max=2,334 min=2,312 avg=2,320 
            elapsed time(us): total=2,362,785 max=2,471 min=2,353 avg=2,362 
        47: reduction kernel launched 1000 times 
            grid: [1]  block: [256] 
             device time(us): total=14,001 max=15 min=14 avg=14 
            elapsed time(us): total=32,924 max=72 min=31 avg=32 
        47: data copyout transfers: 1000 
             device time(us): total=16,973 max=49 min=14 avg=16 
    47: data region reached 1000 times 
        47: data copyin transfers: 8000 
             device time(us): total=22,404,937 max=2,886 min=2,781 avg=2,800 
    56: compute region reached 1000 times 
        56: kernel launched 1000 times 
            grid: [4094]  block: [128] 
             device time(us): total=1,802,925 max=1,822 min=1,783 avg=1,802 
            elapsed time(us): total=1,847,383 max=1,884 min=1,827 avg=1,847 
    56: data region reached 2000 times 
        56: data copyin transfers: 8000 
             device time(us): total=22,000,619 max=4,096 min=2,739 avg=2,750 
        56: data copyout transfers: 8000 
             device time(us): total=20,118,762 max=2,703 min=2,498 avg=2,514 
    63: data region reached 1000 times 
        63: data copyout transfers: 8000 
             device time(us): total=20,121,450 max=2,664 min=2,498 avg=2,515 
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	 Total	,m
e:	88,66

7,910	

Data	tra
nsfer	,m

e:	84,67
1,301	

Compute	,m
e:	3,996

,609	



Performance	Profiling		
by	NVVP	from	Nvidia	

•  soft add +cuda-7.5.18 

$ nvvp ./laplace_parallel2 
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AGENDA	

•  Fundamentals of Heterogeneous & GPU Computing 
•  What are Compiler Directives? 
•  Accelerating Applications with OpenACC 

•  Identify Available Parallelism 
•  Parallelize loops 

•  Optimize Data Locality 

•  Optimize loops 
•  Interoperability 

•    
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Data	Flow	

1. 		Copy	input	data	from	CPU	memory	to		
GPU	memory	

PCIe 
Bus 

5
5	

Data	Flow	
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1.  Copy	input	data	from	CPU	memory	to		
GPU	memory	

2.  Execute	GPU	Kernel	

PCIe 
Bus 

5
6	

Data	Flow	
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1.  Copy	input	data	from	CPU	memory	to		
GPU	memory	

2.  Execute	GPU	Kernel	
3.  Copy	results	from	GPU	memory	to		

CPU	memory	

PCIe 
Bus 

Data	Flow	
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Two separate memory spaces between host and accelerator 
■ 

■ 

Data transfer by DMA transfers 
■  Hidden from the programmer in OpenACC, so beware: 

■  Latency 
Bandwidth 

■  Limited device memory size 
 

OpenACC Memory Model 
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Code using Parallel Loop Pragam(C) 
while ( error > tol && iter < iter_max ) {
 error = 0.0;
#pragma acc parallel loop reduction(max:err) 
 for( int j = 1; j < n-1; j++) {
    for( int i = 1; i < m-1; i++ ) {
      Anew[j][i] = 0.25 * ( A[j][i+1] + A[j][i-1] + A[j-1]

[i] + A[j+1][i]);
      error = fmax( error, fabs(Anew[j][i] - A[j][i]));
    }
 }
#pragma acc parallel loop 
 for( int j = 1; j < n-1; j++) {
       for( int i = 1; i < m-1; i++ ) {
            A[j][i] = Anew[j][i];
       }
  }
  iter++; 
}

Parallelize loop on 
accelerator 

Parallelize loop on 
accelerator 
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How	to	Improve	Data	Movement	
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•  Use data/array on GPU as long as possible 
 
•  Move data between CUP and GPU as less-frequently 

as possible 

•  Don’t copy data back to CPU if not needed on CPU 



Define	Data	Regions	
The data construct defines a region of code in which GPU 
arrays remain on the GPU and are shared among all kernels in 
that region. 

#pragma acc data 
{  
 
 
#pragma acc parallel 
loop 
... 
} 

Data 
Region 

Arrays used within 
the data region 

will remain on the 
GPU until the end 
of the data region. 
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•  Allocates	memory	on	GPU	and	copies	data	from	
host	to	GPU	when	entering	region	and	copies	
data	to	the	host	when	exi,ng	region.	

•  Allocates	memory	on	GPU	and	copies	data	from	
host	to	GPU	when	entering	region.	

•  Allocates	memory	on	GPU	and	copies	data	to	
the	host	when	exi,ng	region.	

•  Allocates	memory	on	GPU	but	does	not	copy.	
•  Data	is	already	present	on	GPU	from	another	

containing	data	region.	

Data	Clauses	
copy ( list ) 

copyin ( list ) 

copyout ( list ) 

create ( list ) 

present ( list ) 

present_or_copy[in|out], present_or_create, deviceptr. 
Will be made as default in the future 
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Array	Shaping	
Compiler sometimes cannot determine size of arrays, specify 
explicitly using data clauses and array “shape” 

C/C++ 
#pragma acc data copyin(a[0:size]), 
copyout(b[s/4:3*s/4]) 

Fortran 
!$acc data copyin(a(1:end)), 
copyout(b(s/4:3*s/4)) 

 

Note: data clauses can be used on data, parallel, or kernels 
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Op,mizing	Data	Locality	(C)	
#pragma acc data copy(A) create (Anew) 
while ( error > tol && iter < iter_max ) 
{ 
 error = 0.0; 
#pragma acc kernels { 
 for( int j = 1; j < n-1; j++) { 
    for( int i = 1; i < m-1; i++ ) { 
      Anew[j][i] = 0.25 * ( A[j][i+1] + A[j][i-1] + A[j-1][i] + 

      A[j+1][i]); 
      error = fmax( error, fabs(Anew[j][i] - A[j][i])); 
    } 
 } 
for( int j = 1; j < n-1; j++) { 
     for( int i = 1; i < m-1; i++ ) { 
            A[j][i] = Anew[j][i]; 
     } 
  } 
  iter++;  
} 
} 

Copy A to/from the 
accelerator only when 

needed.  

Create Anew as a device 
temporary. 
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Op,mizing	Data	Locality	(Fortran)	
!$acc data copy(A) create(Anew) 
  do while ( error .gt. tol .and. iter .lt. iter_max ) 
    error=0.0_fp_kind 
 
!$acc kernels 
    do j=1,m-2 
      do i=1,n-2 
        Anew(i,j) = 0.25_fp_kind * ( A(i+1,j  ) + A(i-1,j  ) + & 
                                     A(i  ,j-1) + A(i  ,j+1) ) 
        error = max( error, abs(Anew(i,j)-A(i,j)) ) 
      end do 
    end do 
 
do j=1,m-2 
      do i=1,n-2 
        A(i,j) = Anew(i,j) 
      end do 
    end do 
!$acc end kernels 
  
  if(mod(iter,100).eq.0 ) write(*,’(i5,f10.6)’), iter, error 
   iter = iter + 1 
  end do 
!$acc end data 
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Performance		
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main  NVIDIA  devicenum=0 
    time(us): 2,413,950 
    43: data region reached 1 time 
        43: data copyin transfers: 8 
             device time(us): total=22,409 max=2,812 min=2,794 avg=2,801 
    48: compute region reached 1000 times 
        48: data copyin transfers: 1000 
             device time(us): total=21,166 max=54 min=11 avg=21 
        48: kernel launched 1000 times 
            grid: [4094]  block: [128] 
             device time(us): total=2,320,508 max=2,336 min=2,310 avg=2,320 
            elapsed time(us): total=2,365,313 max=2,396 min=2,355 avg=2,365 
        48: reduction kernel launched 1000 times 
            grid: [1]  block: [256] 
             device time(us): total=14,000 max=14 min=14 avg=14 
            elapsed time(us): total=33,893 max=67 min=32 avg=33 
        48: data copyout transfers: 1000 
             device time(us): total=15,772 max=45 min=13 avg=15 
    68: data region reached 1 time 
        68: data copyout transfers: 9 
             device time(us): total=20,095 max=2,509 min=30 avg=2,232 



Prior	adding		
data	construct	

main  NVIDIA  devicenum=0 
    time(us): 88,667,910a 
47: compute region reached 1000 times 
        47: data copyin transfers: 1000 
             device time(us): total=8,667 max=37 min=8 avg=8 
        47: kernel launched 1000 times 
            grid: [4094]  block: [128] 
             device time(us): total=2,320,918 max=2,334 min=2,312 avg=2,320 
            elapsed time(us): total=2,362,785 max=2,471 min=2,353 avg=2,362 
        47: reduction kernel launched 1000 times 
            grid: [1]  block: [256] 
             device time(us): total=14,001 max=15 min=14 avg=14 
            elapsed time(us): total=32,924 max=72 min=31 avg=32 
        47: data copyout transfers: 1000 
             device time(us): total=16,973 max=49 min=14 avg=16 
    47: data region reached 1000 times 
        47: data copyin transfers: 8000 
             device time(us): total=22,404,937 max=2,886 min=2,781 avg=2,800 
    56: compute region reached 1000 times 
        56: kernel launched 1000 times 
            grid: [4094]  block: [128] 
             device time(us): total=1,802,925 max=1,822 min=1,783 avg=1,802 
            elapsed time(us): total=1,847,383 max=1,884 min=1,827 avg=1,847 
    56: data region reached 2000 times 
        56: data copyin transfers: 8000 
             device time(us): total=22,000,619 max=4,096 min=2,739 avg=2,750 
        56: data copyout transfers: 8000 
             device time(us): total=20,118,762 max=2,703 min=2,498 avg=2,514 
    63: data region reached 1000 times 
        63: data copyout transfers: 8000 
             device time(us): total=20,121,450 max=2,664 min=2,498 avg=2,515 

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	



6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	



Performance 
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AGENDA	
•  Fundamentals of Heterogeneous & GPU Computing 
•  What are Compiler Directives? 
•  Accelerating Applications with OpenACC 

•  Identify Available Parallelism 
•  Parallelize loops 

•  Optimize Data Locality 

•  Optimize loops 
•  Interoperability 
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•  Vector threads work in 
lockstep (SIMD/SIMT 
parallelism) 

•  Workers compute a vector 

•  Gangs have 1 or more workers 
and share resources (such as 
cache, the streaming 
multiprocessor, etc.) 

•  Multiple gangs work 
independently of each other 

OpenACC: 3 Levels of Parallelism 

Workers 

Gang 

Vector 

Workers 

Gang 

Vector 
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CUDA	Kernels:	Parallel	Threads	

A	kernel	is	a	func,on	executed		
on	the	GPU	as	an	array	of		
threads	in	parallel	

All	threads	execute	the	same		
code,	can	take	different	paths	

Each	thread	has	an	ID	Select		
input/output	data		
Control	decisions	

float x =  
input[threadIdx.x];  
float y = func(x); 
output[threadIdx.x] =  
y; 
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CUDA	Kernels:	Subdivide	into	Blocks	

Threads are grouped into blocks 
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CUDA	Kernels:	Subdivide	into	Blocks	

Threads are grouped into blocks  
Blocks are grouped into a grid 
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Threads are grouped into blocks  
Blocks are grouped into a grid 
A kernel is executed as a grid of blocks of threads 

CUDA	Kernels:	Subdivide	into	Blocks	
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MAPPING OPENACC TO  
CUDA 
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OpenACC	Execution	Model	on	CUDA	
•  The	OpenACC	execu,on	model	has	

three	levels:		gang,	worker,	and	vector	

•  For	GPUs,	the	mapping	is	implementa,on	
dependent.		Some	possibili,es:	

•  gang==block,	worker==warp,	and	vector==threads	of	a	warp	

•  Depends	on	what	the	compiler	thinks	is	the	best	
mapping	for	a	problem	

•  code portability is reduced 
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Gang,	Worker,	Vector	Clauses	
•  gang, worker, and vector can be added to a loop clause 
•  A parallel region can only specify one of each gang, worker, 

vector 
•  Control the size using the following clauses on the parallel 

region 
•  num_gangs(n), num_workers(n), vector_length(n) 

#pragma acc kernels loop gang 
for (int i = 0; i < n; ++i) 

#pragma acc loop 
vector(128) 
for (int j = 0; j < n; ++j) 
... 

#pragma acc parallel vector_length(128) 
#pragma acc loop gang 
for (int i = 0; i < n; ++i) 

#pragma acc loop vector  

for (int j = 0; j < n;  

++j) 
... 
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Collapse	Clause	
collapse(n): Transform the following n tightly nested 
loops into one, flattened loop. 
 

•  Useful when individual loops lack sufficient parallelism 
or more than 3 loops are nested (gang/worker/vector) 

#pragma acc parallel 
#pragma acc loop 
collapse(2) 
for(int i=0;i<N; i++) 

for(int j=0; j<N; j++) 
... 

!$acc parallel 
!$acc loop collapse(2) 
do j=1,N-1 
  do i=1,N-1 

... 

Loops must be tightly nested 
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The	“restrict”	keyword	in	C	
Ø  Avoid pointer aliasing  

–  Applied to a pointer, e.g. float *restrict ptr; 
–  Meaning: “for the lifetime of ptr, only it or a value directly 

derived from it  (such as ptr + 1) will be used to access the 
object to which it points”* 

–  In simple, the ptr will only point to the memory space of itself 
Ø  OpenACC compilers often require restrict to determine 

independence. 
–  Otherwise the compiler can’t parallelize loops that access ptr 
–  Note: if programmer violates the declaration, behavior is 

undefined. 
 
 

*http://en.wikipedia.org/wiki/Restrict 



Rou,ne	Construct	
Specifies that the compiler should generate a device copy 
of the function/subroutine and what type of parallelism the 
routine contains. 
 
Clauses: 

gang/worker/vector/seq (sequential) 

Specifies the level of parallelism contained in the 
routine. 
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#pragma acc routine vector 
void foo(float* v, int i, int n) { 
  #pragma acc loop vector 
  for ( int j=0; j<n; ++j) { 
    v[i*n+j] = 1.0f/(i*j); 
  } 
} 
 
#pragma acc parallel loop 
for ( int i=0; i<n; ++i) { 
  foo(v,i); 
  //call on the device 
} 
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Update	Construct	
•  Fortran 

•  #pragma acc update host/device [clause ...] 
•  C 

•  !$acc update host/device [clause ...] 
•  Used to update existing data after it has changed in its 

corresponding  copy (e.g. update device copy after host 
copy changes) 

•  Move data from GPU to host, or host to GPU.  
•  Data movement can be  conditional, and 

asynchronous. 
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Asynchronous	Execution	
•  Ac,vated	through	async[(int)] clause	on	these	direc,ves: 
■  parallel 

■  kernels 

■  update 

•  Optional integer argument may be used to explicitly refer to region 
in a wait directive 

•  Two activities with same value are executed in the order the 
host process encounters them 

•  Two activities with different values may be executed in any order 

Without async:  host waits for device to finish execution 

With async: host continues with code following directive 



The	“wait”	Directive	
Executable directive 
C: 
#pragma acc wait [(int)] 

Fortran: 
!$acc wait [(int)] 

Host thread waits for completion of asynchronous activities 
Optional argument: 
wait for asynchronous activity with argument in async clause 



#pragma acc parallel loop async(1)  
// kernel A  

#pragma acc parallel loop async(2) 

 // kernel B  

#pragma acc wait(1,2) async(3)  

#pragma acc parallel loop async(3)  

// wait(1,2) // or wait directive  

// kernel C  

#pragma acc parallel loop async(4) 
wait(3)  

// kernel D  

#pragma acc parallel loop async(5) \ 
wait(3)  

// kernel E  
#pragma acc wait(1)  

//kernel F on host 
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AGENDA	
•  Fundamentals of Heterogeneous & GPU Computing 
•  What are Compiler Directives? 
•  Accelerating Applications with OpenACC 

•  Identify Available Parallelism 
•  Parallelize loops 

•  Optimize Data Locality 

•  Optimize loops 
•  Interoperability 
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Applications 

Libraries 

Easy to use 
Most Performance 

Programming 
Languages 

Most Performance 
Most Flexibility 

Easy to use 
Portable code 

Compiler 
Directives 

3	Approaches	to		
Heterogeneous	Programming	
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Libraries:	Easy,	High-Quality	Accelera,on	

Ease of use: Using libraries enables GPU acceleration 
without in-depth knowledge of GPU 
programming 

“Drop-in”: Many GPU-accelerated libraries follow standard 
APIs, thus enabling acceleration with minimal 
code changes 

Quality: Libraries offer high-quality implementations of 
functions encountered in a broad range of 
applications 

Performance: NVIDIA libraries are tuned by experts 
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“host_data” Construct 
C/C++ 
 #pragma acc kernels host_data use_device(list) 
 
Fortran 

!$acc kernels host_data use_device(list) 
 
•  Make the address of device data available on host 

•  Specified variable addresses refer to device memory 

•  Variables must be present on device 

  

deviceptr data clause: inform compiler that the data already 
resides on the GPU 
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SAXPY	

•  	A	func,on	in	the	standard	Basic	Linear	Algebra	Subrou,nes	
(BLAS)	library	

void	saxpy(int	n,	float	a,	float	*x,	float	*restrict	y)	{	
								for	(int	i	=	0;	i	<	n;	++i)	
															y[i]	=	a*x[i]	+	y[i];	
}	
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cublasSaxpy	from	cuBlAS	library	
void	cublasSaxpy(	int 	n,	

const	float	*alpha,		
const	float	 *x,	
int 	incx,	
float 	*y,	
int 	incy)	

 
•  A	func,on	in	the	standard	Basic	Linear	Algebra	Subrou,nes		

(BLAS)	library,	which	is	a	GPU-accelerated	library	ready	to	be	
used	on	GPUs.	

•  cuBLAS:	GPU-accelerated	drop-in	library	ready	to	be	used	
on	GPUs.				
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void	saxpy_acc(int	n,	float	a,	float	*x,	float	*y)	{	
#pragma	acc	parallel	loop		
for	(int	i	=	0;	i	<	n;	++i)
{		y[i]	=	a	*	x[i]	+	y[i];	
}	a	

}	
 
int	main(){	
…	
//	Ini,alize	vectors	x,	y	
#pragma	acc	data	create(x[0:n])	copyout(y[0:n])	

#pragma	acc	parallel	loop		
for	(int	i	=	0;	i	<	n;	++i)	{	
x[i]	=	1.0f;	y[i]	=	0.0f;	

extern	void		
cublasSaxpy(int,float,float*,int,float*,int);	
 
int	main(){	
…	
//	Ini,alize	vectors	x,	y	
#pragma	acc	data	create(x[0:n])	copyout(y[0:n])	

#pragma	acc	parallel	loop		
for	(int	i	=	0;	i	<	n;	++i)	{	
x[i]	=	1.0f;	y[i]	=	0.0f;	

}	
//	Perform	SAXPY	
#pragma	acc	host_data	use_device(x,y)		
cublasSaxpy(n,	2.0,	x,	1,	y,	1);	

Saxpy_cuBLAS Saxpy_acc 

}	
//	Perform	SAXPY		
saxpy_acc(n,	a,	x,	y);	
}	
…	

…	

hip://docs.nvidia.com/cuda	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	



void	saxpy_acc(int	n,	float	a,	float	*x,	float	*y)	{	
#pragma	acc	parallel	loop		
for	(int	i	=	0;	i	<	n;	++i)
{		y[i]	=	a	*	x[i]	+	y[i];	
}	a	

}	
 
int	main(){	
…	
//	Ini,alize	vectors	x,	y	
#pragma	acc	data	create(x[0:n])	copyout(y[0:n])	

#pragma	acc	parallel	loop		
for	(int	i	=	0;	i	<	n;	++i)	{	
x[i]	=	1.0f;	y[i]	=	0.0f;	

extern	void		
cublasSaxpy(int,float,float*,int,float*,int);	
 
int	main(){	
…	
//	Ini,alize	vectors	x,	y	
#pragma	acc	data	create(x[0:n])	copyout(y[0:n])	

#pragma	acc	parallel	loop		
for	(int	i	=	0;	i	<	n;	++i)	{	
x[i]	=	1.0f;	y[i]	=	0.0f;	

}	
//	Perform	SAXPY	
#pragma	acc	deviceptr	(x,y)		
cublasSaxpy(n,	2.0,	x,	1,	y,	1);	

Saxpy_cuBLAS 

}	
//	Perform	SAXPY		
saxpy_acc(n,	a,	x,	y);	
}	
…	

…	

hip://docs.nvidia.com/cuda	
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Optimize 
Data Locality 

Optimize Loop 
Performance 

Parallelize 
Loops with 
OpenACC 

Code 
Profiling 
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More	Than	One	GPUs?	
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•  Internal control variables (ICVs): 
•  acc-device-type-var  

→ Controls which type of accelerator is used 

•  acc-device-num-var  
→ Controls which accelerator device is used 

•  Setting ICVs by API calls 
•  acc_set_device_type() 
•  acc_set_device_num() 

•  Querying of ICVs 
•  acc_get_device_type()  
•  acc_get_device_num() 

Device	Management	
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acc_get_num_devices 

•  Returns the number of accelerator devices attached to  host and 
the argument specifies type of devices to count 

 

C: 
– int  acc_get_num_devices(acc_device_t) 

 
Fortran: 
– Integer function acc_get_num_devices(devicetype) 

OpenACC	APIs	
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acc_set_device_num 
•  Sets ICV ACC_DEVICE_NUM 
•  Specifies which device of given type to use for next region Can not be called  

in a parallel, kernels or data region 

C: 
–  Void acc_set_device_num(int,acc_device_t) 

Fortran: 
–  Subroutine  
acc_set_device_num(devicenum,devicetype) 

OpenACC	APIs	
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•  acc_get_device_num 
–  Return value of ICV ACC_DEVICE_NUM 
–  Return which device of given type to use for next region 
–  Can not be called in a parallel, kernels or data region 

•  C: 
–  Void acc_get_device_num(acc_device_t) 

•  Fortran: 
–  Subroutine acc_get_device_num(devicetype) 

OpenACC	APIs	
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#pragma acc routine seq 
void saxpy(int n, float a, float *x, float *restrict y) { 
   #pragma acc loop //kernels 
    for (int i = 0; i < n; ++i) 
        y[i] = a*x[i] + y[i]/2.3/1.2; 
} 
int main(int argc, char **argv) 
{ 
    int n = 1<<40;  
    float *x = (float*)malloc(n*sizeof(float)); 
    float *y = (float*)malloc(n*sizeof(float)); 
    for (int i = 0; i < n; ++i) { 
        x[i] = 2.0f; 
        y[i] = 1.0f; 
    } 
int gpu_ct=acc_get_num_devices(acc_device_nvidia); 
int tid=0; 
#pragma omp parallel private(tid) num_threads(gpu_ct) 
{ 
        int i=omp_get_thread_num(); 
        acc_set_device_num(i,acc_device_nvidia); 
        #pragma acc data copyin(n) copyin(x[0:n]) copyout(y[0:n])        
        { 
        #pragma acc kernels      
                for (int j=0; j<n*n; j++) 
                { 
                 saxpy(n, 3.0f, x, y); 
                } 
        } 
} 



Direc,ve-based	programming	with	mul,ple	GPU	cards	
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[wfeinste@shelob030 openacc17]$ pgcc -acc -mp -fast saxpy_2gpu.c  
[wfeinste@shelob030 openacc17]$ nvidia-smi 
Mon May 29 02:20:46 2017        
+------------------------------------------------------+                        
| NVIDIA-SMI 352.93     Driver Version: 352.93         |                        
|-------------------------------+----------------------+----------------------+ 
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC | 
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. | 
|===============================+======================+======================| 
|   0  Tesla K20Xm         On   | 0000:20:00.0     Off |                    0 | 
| N/A   18C    P0    62W / 235W |     87MiB /  5759MiB |     99%      Default | 
+-------------------------------+----------------------+----------------------+ 
|   1  Tesla K20Xm         On   | 0000:8B:00.0     Off |                    0 | 
| N/A   19C    P0    63W / 235W |     87MiB /  5759MiB |     99%      Default | 
+-------------------------------+----------------------+----------------------+ 
                                                                                
+-----------------------------------------------------------------------------+ 
| Processes:                                                       GPU Memory | 
|  GPU       PID  Type  Process name                               Usage      | 
|=============================================================================| 
|    0     18225    C   ./a.out                                         71MiB | 
|    1     18225    C   ./a.out                                         71MiB | 



•  OpenACC	only	supports	one	GPU	
•  Hybrid	model:	

– OpenACC	+	OpenMP	to	support	mul,-GPU		
parallel	programming	

– Data	management	

Direc,ve-based	programming	on		mul,-GPUs	
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Ge{ng	Started	for	Labs	
•  Connect	to	mike	cluster:	

•  ssh	username@mike.hpc.lsu.edu	

•  Login	in	to	the	interac,ve	node	
					qsub	–I	–A	xxx		–l	wall,me=2:00:00		–l	nodes=1:ppn=16			
				-q	shelob	

•  Open	another	terminal		
					ssh	–X	shelobxxx	/mikexxx	
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•  Code profiling to identify the target for parallelization  
 pgprof: PGI visual profiler 

•  pgcc –Minfo=ccff mycode.c –o mycode  
•  pgcollect mycode 
•  pgprof –exe mycode 

•  Add OpenACC pragmas/directives 
–  pgcc –acc –ta=nvidia,time –Minfo=accel app.c –o app 

–  pgf90 –acc –ta=nvidia,time –Minfo=accel app.f90 –o app 
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		General	Steps	for	Labs	



Exercise	1	

1.  For mm_acc_v0.c, speedup the matrix multiplication code segment  
using OpenACC directives/pragmas 

2.  For mm_acc_v1.c: 
•  Change A, B and C to dynamic arrays, i.e., the size of the matrix can be  

specified at runtime; 
•  Complete the function matmul_acc using the OpenACC directives; 
•  Compare performance with serial and OpenMP results 
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Exercise	2	
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Speedup the code segment using OpenACC 
directives/pragmas 


