

Parallel Computing with OpenACC

Wei Feinstein HPC User Services

Parallel Programming Workshop 2017 Louisiana State University

6th HPC Parallel Programming Workshop

AGENDA

- Fundamentals of Heterogeneous & GPU Computing
- What are Compiler Directives?
- Accelerating Applications with OpenACC
 - Identify Available Parallelism
 - Parallelize loops
 - Optimize Data Locality
 - Optimize loops
- Interoperability

GPU Computing History

- The first Graphics Processing Unit (GPU) was designed as graphics accelerators, supporting only specific fixed-function pipelines.
- Starting in the late 1990s, the hardware became increasingly programmable, NVIDIA's first GPU in 1999.
- The General Purpose GPU (GPGPU): its excellent floating point performance.
- 2006 world's 1st solution for general computing on GPUs. CUDA was designed and launched by NVIDIA
- CUDA (Compute Unified Device Architecture) is a parallel computing platform and programming model created by NVIDIA and implemented on the GPUs that they produce.

CPU

GPU

Latency Processor

Throughput processor

Latency vs. Throughput

- 270 mph
- Baton Rouge to New Orleans in 0.29 hr (18 mins)
- Seats: 2

School bus

- 40 mph
- BR to NO in 2 hr
- Seats: 72

Latency vs. Throughput

Koenigsegg one

- latency: 0.28 hr (18 mins)
- Throughput: 2/0.28 = 7.14 people/hr

School bus

- Latency: 2 hr
- Throughput: 72/2 = 36 people/hr

Comparison of Architectures

CPU

- Optimized for low-latency access to cached data sets
- Control logic for out-oforder and speculative execution

GPU

- Optimized for data-parallel, throughput computation
- Architecture tolerant of memory latency
- More transistors dedicated to computation
- Hide latency from other threads via fast context switching

WHAT IS HETEROGENEOUS COMPUTING?

Application Execution

6th HPC Parallel Programming Workshop

3 Approaches to Heterogeneous Programming

Examples of GPU-accelerated Libraries

6th HPC Parallel Programming Workshop

GPU Programming Languages

SAXPY

void saxpy(int N, float a, float *x, float *y){
 for (int i = 0; i < N; ++i)
 y[i] = a*x[i] + y[i];
}</pre>

x, y: vector with N elelments a: scalar

Saxpy_CPU

```
void saxpy_CPU(int n, float a, float *x, float *y) {
     for (int i = 0; i < n; ++i) \{
           y[i] = a * x[i] + y[i];
int main(int argc, char **argv){
long n= 1<<20;
float *x = (float*)malloc(n * sizeof(float));
float *y = (float*)malloc(n * sizeof(float));
// Initialize vector x,y
for (int i = 0; i < n; ++i) {
      x[i] = 1.0f;
      y[i] = 0.0f;
// Perform SAXPY
 saxpy_CPU(n, a, x, y);
 •••
```


Saxpy_cuBLAS

Saxpy_OpenACC

```
extern void
cublasSaxpy(int,float,float*,int,float*,in
t);
int main(){
// Initialize vectors x, y
for (int i = 0; i < n; ++i) {
      x[i] = 1.0f;
      y[i] = 0.0f;
// Perform SAXPY
 #pragma acc
 host data use device(x,y)
   cublasSaxpy(n, 2.0, x, 1, y, 1);
```

```
void saxpy_ACC(int n, float a, float *x, float *y)
     for (int i = 0; i < n; ++I {
       y[i] = a * x[i] + y[i];
int main(){
// Initialize vectors x, y
for (int i = 0; i < n; ++i) {
      x[i] = 1.0f;
      y[i] = 0.0f;
// Perform SAXPY
saxpy_ACC(n, a, x, y);
```

http://docs.nvidia.com/cuda

Saxpy_CUDA

```
// define CUDA kernel function
  global __void saxpy_kernel( float a, float* x, float* y, int n ){
    int i;
    i = blockIdx.x*blockDim.x + threadIdx.x;
    if(i \le n) y[i] = a^*x[i] + y[i];
Void main( float a, float* x, float* y, int n ){
     float *xd, *vd;
     // manage device memory
     cudaMalloc( (void**)&xd, n*sizeof(float) );
     cudaMalloc( (void**)&yd, n*sizeof(float) );
     cudaMemcpy( xd, x, n*sizeof(float), cudaMemcpyHostToDevice );
     cudaMemcpy( yd, y, n*sizeof(float), cudaMemcpyHostToDevice );
     // calls the kernel function
     saxpy kernel<<< (n+31)/32, 32 >>>( a, xd, yd, n );
     cudaMemcpy( x, xd, n*sizeof(float), cudaMemcpyDeviceToHost );
     // free device memory after use
     cudaFree( xd );
     cudaFree( yd );
```


GPU Tools Code performance increases with the deployment of GPU tools.

3 Approaches to Heterogeneous Programming

AGENDA

- Fundamentals of Heterogeneous & GPU Computing
- What are Compiler Directives?
- Accelerating Applications with OpenACC
 - Identify Available Parallelism
 - Parallelize loops
 - Optimize Data Locality
 - Optimize loops
- Interoperability

What Are Compiler Directives?

<pre>int main() {</pre>	
<pre>do_serial_stuff()</pre>	
<pre>#pragma acc parallel loop { for(int i=0; i < BIGN; i++)</pre>	\leftarrow Inserts compiler hints to compute on GPU
{ compute intensive work	
<pre>} do_more_serial_stuff();</pre>	←Data and Execution returns to the CPU
}	

What are OpenACC Directives?

Designed for multicore CPUs & many core GPUs

Portable compiler hints

Compiler parallelizes code

OpenACC Compiler Directives

OpenACC Execution Model

History of OpenACC

- OpenACC is a specification/standard for high-level, compiler directives to express parallelism on accelerators.
 - Aims to be portable to a wide range of accelerators
 - One specification for multiple vendors, multiple devices
 - Original members: CAPS, Cray, NVIDIA and PGI
- First released 1.0 Nov 2011
- 2.0 was released Jue 2013
- 2.5 was released Oct 2015

http://www.openacc.org/specification

Why OPENACC?

Simple: Directives are the easy path to accelerate applications compute intensive

Open: OpenACC is an open GPU directives standard, making GPU programming straightforward and portable across parallel and multi-core processors

Portable: GPU Directives represent parallelism at a high level, allowing portability to a wide range of architectures with the same code

Which Compilers Support OpenACC

- PGI compilers for C, C++ and Fortran
- Cray CCE compilers for Cray systems
- CAPS compilers
- NVIDIA

OpenACC Standard

6th HPC Parallel Programming Workshop

Using PGI compilers on Mike

Login in to SuperMike: \$ ssh usrid@mike.hpc.lsu.edu

Get an interactive compute node: \$ qsub -I -l nodes=1:ppn=16 -l walltime=4:00:00 -q shelob -A hpc train 2017

Add the PGI compiler v15.10 \$ soft add +portland-15.10

\$ pgcc -V

Example: Jacobi Iteration

Iteratively converges to correct value, e.g., temprature, by computing new values at each point from the average of neighboring points.

• Example: Solve Laplace equation in 2D:

$$\nabla^2 f(x, y) = 0$$

}

JACOBI Iteration: C

while (error > tol && iter < iter_max){
error = 0.0;</pre>

```
for( int j = 1; j < n-1; j++) {
  for( int i = 1; i < m-1; i++ ) {</pre>
```

```
Anew[j][i] = 0.25 * (A[j][i+1] + A[j])
[i-1] + A[j-1][i] + A[j+1][i]);
```

```
for( int j = 1; j < n-1; j++) {
  for( int i = 1; i < m-1; i++ ) {
    A[j][i] = Anew[j][i];
  }
}
iter++;
} // end while loop</pre>
```


Iterate across matrix elements

Calculate new value from neighbors

Compute max error for convergence

 \checkmark

Swap input/output arrays

6th HPC Parallel Programming Workshop

AGENDA

- Fundamentals of Heterogeneous & GPU Computing
- What are Compiler Directives?
- Accelerating Applications with OpenACC
 - Identify Available Parallelism
 - Parallelize loops
 - Optimize Data Locality
 - Optimize loops
 - Interoperability

Identify Available Parallelism

- Identify section of a code consuming the significant percentage of time (hot spots)
 - Routines, loops
- Profilers:
 - gpof (GNU)
 - pgprof (PGI)
 - Vampir
 - NVIDIA visual profiler

Code Profiling (pgprof)

- Compile code with profiling info
- \$ pgcc -Mprof=ccff laplace.c
- Generate pgprof.out
- \$ pgcollect ./a.out --> pgprof.out
- Visualize profile info
- \$ pgprof -exe ./a.out

Click on an 'Info' button (round, and labeled 'i') to see what the compiler discovered about the selected line or routine

Parallelism \downarrow Histogram \downarrow (i) Compiler Feedback \downarrow System Configuration \downarrow Accelerator Performance

6th HPC Parallel Programming Workshop

AGENDA

- Fundamentals of Heterogeneous & GPU Computing
- What are Compiler Directives?
- Accelerating Applications with OpenACC
 - Identify Available Parallelism
 - Parallelize loops
 - Optimize Data Locality
 - Optimize loops
 - Interoperability

General Directive Syntax and Scope

- C
 - #pragma acc directive [clause [,] clause]...]
 {
 Often followed by a structured code block
 }
- Fortran
 - !\$acc directive [clause [,] clause]...]
 Often paired with a matching end directive surrounding a structured code block
 - !\$acc end directive

Kernels Directive

The kernels construct expresses that a region may contain parallelism and the compiler determines what can safely be parallelized.

#pragma acc kernels

A kernel is a function executed on the GPU as an array of threads in parallel

Parallize with Kernels (C)

\$pgcc -acc -fast -ta=nvidia,time -Minfo=all laplace_kernels1.c

6th HPC Parallel Programming Workshop

Parallize with Kernels (Fortran)

```
do while (error .gt. tol .and. iter .lt. iter max )
   error=0.0
                                                Look for parallelism
!$acc kernels
                                                 within this region.
   do j=1,m−2
      do i=1, n-2
        Anew(i,j) = 0.25 fp kind * (A(i+1,j)) + A(i-1,j) + &
                                      A(i, j-1) + A(i, j+1))
        error = max( error, abs(Anew(i,j)-A(i,j)) )
      end do
   end do
   do j=1,m-2
      do i=1, n-2
       A(i,j) = Anew(i,j)
      end do
   end do
                                              Kernels end here
!$acc end kernels
```

\$pgfortran -acc -fast -ta=nvidia,time -Minfo=all laplace_kernels1.f90

How to compile with OpenACC

Compile using PGI compiler \$ pgcc -acc -fast -ta=nvidia -Minfo=accel laplace kernels1.c

\$ pgf90 -acc -fast -ta=nvidia -Minfo=accel
laplace_kernels1.f90

Compiler-Generated Info

- 47, Generating copyout(Anew[1:4094][1:4094])
 Generating copyin(A[:4096][:4096])
 Generating copyout(A[1:4094][1:4094])
 - 48, Loop is parallelizable
 - 49, Loop is parallelizable

Accelerator kernel generated

Generating Tesla code

48, #pragma acc loop gang /* blockIdx.y */

49, #pragma acc loop gang, vector(128) /*

blockIdx.x threadIdx.x */

52, Max reduction generated for error

- 56, Loop is parallelizable
- 57, Loop is parallelizable
 Accelerator kernel generated
 Generating Tesla code
 56, #pragma acc loop gang /* blockIdx.y */
 57, #pragma acc loop gang, vector(128) /*
 blockIdx.x threadIdx.x */

Check CPU & GPU Utilization

Open a separate terminal \$ ssh -X mikexxx or shelobxxx

\$ top: CPU utilization

\$ nvidia-smi: GPU

Parallel Loop Directive

parallel- Programmer identifies a block of code containing parallelism. Compiler generates a *kernel*.

loop - Programmer identifies a loop that can be parallelized within the kernel.

NOTE: parallel & loop are often placed together

```
#pragma acc parallel loop
for(int i=0; i<N; i++)
{
    y[i] = a*x[i]+y[i];
}</pre>
```

Kernel: A function that runs in parallel on the GPU

Loop Clauses: Private & Reduction

A copy of the variable is made for each loop iteration. It is private by default A private copy of the affected variable is generated for each loop iteration A reduction is then performed on the variables. Supports +, *, max, min, and various logical operations

Code using Parallel Loop Directive (C)

```
while ( error > tol && iter < iter max ) {</pre>
 error = 0.0;
                                                      Parallelize loop on
#pragma acc parallel loop reduction(max:err)
                                                         accelerator
 for( int j = 1; j < n-1; j++) {
    for( int i = 1; i < m-1; i++ ) {
       Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] + A[j-1])
                       [i] + A[j+1][i]);
       error = fmax( error, fabs(Anew[j][i] - A[j][i]));
                                                     Parallelize loop on
#pragma acc parallel loop
                                                        accelerator
 for( int j = 1; j < n-1; j++) {
        for( int i = 1; i < m-1; i++ ) {</pre>
             A[j][i] = Anew[j][i];
                              * A reduction means that all of the N*M values
  iter++;
                               for err will be reduced to just one, the max.
```


Code using Parallel Loop Directive (Fortran)

```
do while (error .gt. tol .and. iter .lt. iter max
    error=0.0
                                                    Parallelize loop on
!$acc parallel loop reduction(max:err)
                                                       accelerator
    do j=1, m-2
      do i=1, n−2
        Anew(i,j) = 0.25 * (A(i+1,j)+A(i-1,j) +
      A(i,j-1) + A(i,j+1))
        error = max( error, abs(Anew(i,j)-A(i,j)))
      end do
    end do
                                                   Parallelize loop on
!$acc end parallel
                                                      accelerator
!$acc parallel loop
    do j=1, m-2
      do i=1, n-2
        A(i,j) = Anew(i,j)
      end do
    end do
!$acc end parallel
```


Kemels vs. Parallel Loops

Kernels

- Compiler performs parallel analysis and parallelizes what it believes safe
- Can cover larger area of code with single directive
- Gives compiler additional leeway to optimize.

Parallel Loop

- Requires analysis by programmer to ensure safe parallelism
- Will parallelize what a compiler may miss
- Straightforward path from OpenMP

OpenACC for Multicore CPUs

- Originally targeted to NVIDIA and AMD (GPUs)
- Latest PGI compiler (>=pgi15.10) generates parallel code on CPUs using OpenMP
- With the same set of OpenACC pragmas
 - GPUs: -ta=nvidia
 - CPUs: -ta=multicore using all the CPU cores
 - Or export ACC_NUM_CORES = [1 .. 16]
 - \$ pgcc -ta=multicore,time -Minfo=all laplace_kernels2.c

OpenACC for Multicore CPUs

48, Loop is parallelizable Generating Multicore code 48, #pragma acc loop gang 49, Loop is parallelizable 56, Loop is parallelizable Generating Multicore code 56, #pragma acc loop gang 57, Loop is parallelizable Memory copy idiom, loop replaced by call to c mcopy8

Performance Comparison

6th HPC Parallel Programming Workshop

What Went Wrong?

- \$ export PGI ACC TIME=1
- \$ pgcc -ta=nvidia -Minfo=accel
 laplace_parallel2.c -o laplace_parallel2
- \$ pgcc -ta=nvidia,time -Minfo=accel
 laplace_parallel2.c -o laplace_parallel2
- \$./laplace_parallel2

6th HPC Parallel Programming Workshop

Performance Profiling by NVVP from Nvidia

- soft add +cuda-7.5.18
- \$ nvvp ./laplace_parallel2

	X NVIDIA Visual Profiler									
File View Window <u>R</u> un Help										
	Q Q Q F K 🔣 📮 📮									
🔍 *NewSession1 🔍 *NewSes	ssion2 ន									
p	s 25 s	50 s	75 s	100 s	125 s					
Process "a.out" (20510)						<u> </u>				
Thread 3645912832										
L Driver API										
Profiling Overhead										
E [0] Tesla K20Xm										
Context 1 (CUDA)						≡				
- T MemCpy (HtoD)										
- Y MemCpy (DtoH)										
Compute										
- ¥ 60.9% main_49_gpu										
- ▼ 32.8% main_57_gpu										
- ₩ 6.3% main_52_gpu										
Streams			III							
🗔 Analysis 🛱 🗔 Details 🗎 Con	nsole 🗔 Settings		\. .	. 🗖 🗖 Proj	perties 🛛					
🗉 💼 🔶 🐚 Reset All 🛝 🕅	Results									
	💧 Low Compute / Memcpy Effici	Select	Select or highlight a single interval to se							
To enable kernel analysis stage:	The amount of time performing compute is low relative to the amount of time required for properties									
timeline	тетсру.									
Application	Low Memcpy/Compute Overla	ap [0 ns / 4.492 s = 0%]								
Data Movemoncurrency	The percentage of time when memc	py is being performed in	parallel with compute is	s low.						
	Low Kernel Concurrency [0 ns / 4.492 s = 0%]									
Compute Utilization	The percentage of time when two ke	=								
Kannal Danfannanaa	A Low Memcpy Throughput [88		pys accounting for 0%	of all me						
Kernel Performance	The memory copies are not fully usin	g the available host to de	evice bandwidth.							
	A Low Memcpy Overlap [0 ns / 2									
	The percentage of time when two m	emory copies are being r	performed in parallel is l	ow.						
			•							

6th HPC Parallel Programming Workshop

		X NVIDIA Visual Profiler					
File View Window <u>R</u> un Help							
	Ə. Ə. F 🥆 🔣 📮 📮						
🕻 *NewSession1 🕱						=	° 🗆
	2.1 s	2.15 s	2.2 s	2.25 s	2	2.3 s	
Process "laplace_kernels1" (^
Thread 2645583616							
L Driver API							
Profiling Overhead							
🖻 [0] Tesla K20Xm							
Context 1 (CUDA)							
🗕 🍸 MemCpy (HtoD)							=
🗕 🍸 MemCpy (DtoH)							
🖻 Compute							
└ 🍸 66.3% main_49_gpu							
└ 🍸 28.2% main_57_gpu							
└ 🍸 5.4% main_52_gpu							
Streams							
- Stream 13							
🔚 Analysis 🛱 🗔 Details 📮 Console	e 🗔 Settings			۵.		■ P 🖾 🗖	" 🗆
🗄 📄 🔶 🐚 Reset All 🛺 Anal	Results						
To enable kernel analysis stages sel- a host-launched kernel instance in t timeline	Low Compute / Memcpy E The amount of time performing memcpy.	fficiency [5.214 s / 62.3 compute is low relative t	308 s = 0.084] so the amount of time re	equired for	More	Select or hig a single inter see properti	ihlight rval to es
Application	A Low Memcpy/Compute Over 10 and 1	/erlap [0 ns / 5.214 s =	0%]		_		
Data Movencurrency	The percentage of time when m	emcpy is being performe	ed in parallel with compu	te is low.	More		
	A Low Kernel Concurrency						
Compute Utilization	The percentage of time when the	vo kernels are being exe	cuted in parallel is low.		More		
Korpol Porformance	💧 Low Memcpy Throughput	[79.373 MB/s avg, for m	nemcpys accounting for	0% of all memcp	y time]		
Kernel Performance	The memory copies are not fully	using the available host	to device bandwidth.				
		_			More		
	<						

6th HPC Parallel Programming Workshop

AGENDA

- Fundamentals of Heterogeneous & GPU Computing
- What are Compiler Directives?
- Accelerating Applications with OpenACC
 - Identify Available Parallelism
 - Parallelize loops
 - Optimize Data Locality
 - Optimize loops
- Interoperability

Data Flow

Data Flow

- 1. Copy input data from CPU memory to GPU memory
- 2. Execute GPU Kernel

1.

2.

3.

Data Flow

OpenACC Memory Model

Two separate memory spaces between host and accelerator

- Data transfer by DMAtransfers
- Hidden from the programmer in OpenACC, so beware:
 - Latency
 - Bandwidth
 - Limited device memory size

Code using Parallel Loop Pragam(C)

```
while ( error > tol && iter < iter max ) {</pre>
 error = 0.0;
                                                     Parallelize loop on
#pragma acc parallel loop reduction(max:err)
                                                       accelerator
 for( int j = 1; j < n-1; j++) {
    for( int i = 1; i < m-1; i++ ) {
       Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] + A[j-1])
                      [i] + A[j+1][i]);
       error = fmax( error, fabs(Anew[j][i] - A[j][i]));
    }
                                                    Parallelize loop on
#pragma acc parallel loop
                                                      accelerator
 for( int j = 1; j < n-1; j++) {
       for( int i = 1; i < m-1; i++ ) {</pre>
             A[j][i] = Anew[j][i];
        }
  iter++;
```


How to Improve Data Movement

- Use data/array on GPU as long as possible
- Move data between CUP and GPU as less-frequently as possible
- Don't copy data back to CPU if not needed on CPU

Define Data Regions

The data construct defines a region of code in which GPU arrays remain on the GPU and are shared among all kernels in that region.

Data Clauses

copy (list)	•	Allocates memory on GPU and copies data from host to GPU when entering region and copies data to the host when exiting region.
copyin (list)	•	Allocates memory on GPU and copies data from host to GPU when entering region.
copyout (list)	•	Allocates memory on GPU and copies data to the host when exiting region.
create (list)	•	Allocates memory on GPU but does not copy.
present (list)	•	Data is already present on GPU from another containing data region.

present_or_copy[in|out], present_or_create, deviceptr.
Will be made as default in the future

Array Shaping

Compiler sometimes cannot determine size of arrays, specify explicitly using data clauses and array "shape"

<u>C/C++</u>

```
#pragma acc data copyin(a[0:size]),
copyout(b[s/4:3*s/4])
```

<u>Fortran</u>

```
!$acc data copyin(a(1:end)),
copyout(b(s/4:3*s/4))
```

Note: data clauses can be used on data, parallel, or kernels

Optimizing Data Locality (C)

```
#pragma acc data copy(A) create (Anew)
                                                   Copy A to/from the
while ( error > tol && iter < iter max )
                                                  accelerator only when
                                                       needed.
error = 0.0;
#pragma acc kernels {
                                                 Create Anew as a device
for ( int j = 1; j < n-1; j++)
                                                         temporary.
    for( int i = 1; i < m-1; i++ ) {
      Anew[j][i] = 0.25 * ( A[j][i+1] + A[j][i-1] + A[j-1][i] +
                    A[j+1][i]);
      error = fmax( error, fabs(Anew[j][i] - A[j][i]));
for( int j = 1; j < n-1; j++) {
     for( int i = 1; i < m-1; i++ ) {
            A[j][i] = Anew[j][i];
  iter++;
```


Optimizing Data Locality (Fortran)

```
!$acc data copy(A) create(Anew)
  do while ( error .gt. tol .and. iter .lt. iter max )
    error=0.0 fp kind
!$acc kernels
    do j=1,m−2
      do i=1, n-2
        Anew(i,j) = 0.25 fp kind * (A(i+1,j) + A(i-1,j) + \&
                                     A(i, j-1) + A(i, j+1))
        error = max ( error, abs(Anew(i,j)-A(i,j)) )
      end do
    end do
do j=1,m-2
     do i=1,n-2
       A(i,j) = Anew(i,j)
      end do
    end do
!$acc end kernels
  if(mod(iter,100).eq.0) write(*,'(i5,f10.6)'), iter, error
  iter = iter + 1
  end do
!$acc end data
```


Performance

```
main NVIDIA devicenum=0
    time(us): 2,413,950
    43: data region reached 1 time
        43: data copyin transfers: 8
             device time(us): total=22,409 max=2,812 min=2,794 avg=2,801
    48: compute region reached 1000 times
        48: data copyin transfers: 1000
             device time(us): total=21,166 max=54 min=11 avg=21
        48: kernel launched 1000 times
            grid: [4094] block: [128]
             device time(us): total=2,320,508 max=2,336 min=2,310 avg=2,320
            elapsed time(us): total=2,365,313 max=2,396 min=2,355 avg=2,365
        48: reduction kernel launched 1000 times
            grid: [1] block: [256]
             device time(us): total=14,000 max=14 min=14 avg=14
            elapsed time(us): total=33,893 max=67 min=32 avg=33
        48: data copyout transfers: 1000
             device time(us): total=15,772 max=45 min=13 avg=15
    68: data region reached 1 time
        68: data copyout transfers: 9
             device time(us): total=20,095 max=2,509 min=30 avg=2,232
```


Prior adding main NVIDIA doviconum=0 time(us): 88,667,910a data construct 47: compute region reached 1000 times 47: data copyin transfers: 1000 device time(us): total=8,667 max=37 min=8 avg=8 47: kernel launched 1000 times grid: [4094] block: [128] device time(us): total=2,320,918 max=2,334 min=2,312 avg=2,320 elapsed time(us): total=2,362,785 max=2,471 min=2,353 avg=2,362 47: reduction kernel launched 1000 times grid: [1] block: [256] device time(us): total=14,001 max=15 min=14 avg=14 elapsed time(us): total=32,924 max=72 min=31 avg=32 47: data copyout transfers: 1000 device time(us): total=16,973 max=49 min=14 avg=16 47: data region reached 1000 times 47: data copyin transfers: 8000 device time(us): total=22,404,937 max=2,886 min=2,781 avg=2,800 56: compute region reached 1000 times 56: kernel launched 1000 times grid: [4094] block: [128] device time(us): total=1,802,925 max=1,822 min=1,783 avg=1,802 elapsed time(us): total=1,847,383 max=1,884 min=1,827 avg=1,847 56: data region reached 2000 times 56: data copyin transfers: 8000 device time(us): total=22,000,619 max=4,096 min=2,739 avg=2,750 56: data copyout transfers: 8000 device time(us): total=20,118,762 max=2,703 min=2,498 avg=2,514 63: data region reached 1000 times 63: data copyout transfers: 8000 device time(us): total=20,121,450 max=2,664 min=2,498 avg=2,515

6th HPC Parallel Programming Workshop

	🗙 NVIDIA Visual Profiler									
File View Window <u>R</u> un Help										
$rac{1}{2}$ $rac{$										
🕻 *NewSession1										
		0.265 s	0.27 s	i	0.275 s	0.28 s	0.285 s	0.29 s	0	.295 s
Process "laplace_kernels1-da										
E Thread 33647456										
L Driver API	cu	iMe	cuMem	cuMem	cuMem	cuMe	cuMem	cuMe	cuMem	cuM
Profiling Overhead										
🖃 [0] Tesla K20Xm										
Context 1 (CUDA)										
🗅 🍸 MemCpy (HtoD)										
L 🍸 MemCpy (DtoH)										
🖃 Compute	lap	lac	laplac	laplac	laplac	laplac	laplac	laplac	laplac	lapla
└ 🍸 56.2% laplace_47	lap	lac	laplac	laplac	laplac	laplac	laplac	laplac	laplac	lapla
└ 🍸 36.9% laplace_55										
└ 🍸 6.9% laplace_50_g										
Streams										
🗆 Stream 13	lap	lac	laplac	laplac	laplac	laplac	laplac	laplac	laplac	lapla
G	<									>
🔚 Analysis 🛱 🗔 Details 📃 Co	onsole	🔚 Settinç	js					s = =	🔲 Pr 🔀	- 8
🗐 📄 🔶 🖪 Reset All 🖳	Anal	Results							2	
		💧 Low M	lemcpy/Comp	ute Overlar	p [0 ns / 45.552	ms = 0%]		7	Select o	r highlight
To enable kernel analysis stages	sel€	The perce	ntage of time v	when memcp ⁻	y is being perfor	med in parallel wit'	h compute is low.	. <u>More</u>	a single i	nterval to
host-launched kernel instance in timeline	n the	A Low K			/ 4 091 c = 0%]			T	see prop	erties
Application			erner concurr	ency [U na / ·	4.001 5 - 070 j		Lie leur	More		
Appreactor		The percer		/nen two ken	neis are being e	Xecuted in parallel	/ IS IOW.			
Data Movemoncurrency		💧 Low M	emcpy Throu	ghput [5.27	/4 MB/s avg, for	memcpys account	ting for 6.9% of al	I memcpy time]		
Compute Utilization	Ŀ	The memo	ory copies are no	ot fully using	the available ho	st to device panov	width.	More		
Kornel Performance	- C	💧 Low M	lemcpy Overla	ap [0 ns / 22	.166 ms = 0%]					
Kernel Performance		The percentage of time when two memory copies are being performed in parallel is low. <u>More</u>								

6th HPC Parallel Programming Workshop

Performance

6th HPC Parallel Programming Workshop

AGENDA

- Fundamentals of Heterogeneous & GPU Computing
- What are Compiler Directives?
- Accelerating Applications with OpenACC
 - Identify Available Parallelism
 - Parallelize loops
 - Optimize Data Locality
 - Optimize loops
- Interoperability

OpenACC: 3 Levels of Parallelism

- Vector threads work in lockstep (SIMD/SIMT parallelism)
- Workers compute a vector
- Gangs have 1 or more workers and share resources (such as cache, the streaming multiprocessor, etc.)
- Multiple gangs work independently of each other

CUDA Kernels: Parallel Threads

- A kernel is a function executed on the GPU as an array of threads in parallel
- All threads execute the same code, can take different paths
 - Each thread has an ID Select input/output data Control decisions

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks
 Blocks are grouped into a grid

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks
Blocks are grouped into a grid
A kernel is executed as a grid of blocks of threads

MAPPING OPENACC TO CUDA

6th HPC Parallel Programming Workshop

Parallel Computing with OpenACC

OpenACC Execution Model on CUDA

- The OpenACC execution model has three levels: gang, worker, and vector
 - For GPUs, the mapping is implementation dependent. Some possibilities:
 - gang==block, worker==warp, and vector==threads of a warp
 - Depends on what the compiler thinks is the best mapping for a problem
 - code portability is reduced

Gang, Worker, Vector Clauses

- gang, worker, and vector can be added to a loop clause
- A parallel region can only specify one of each gang, worker, vector
- Control the size using the following clauses on the parallel region
 - num_gangs(n), num_workers(n), vector_length(n)

#pragma acc kernels loop gang								
for (int $i = 0; i < n; ++i$)								
#pragma acc loop								
vector(128)								
for (int j = 0; j < n; ++j)								

<pre>#pragma acc parallel vector_length(128)</pre>
#pragma acc loop gang
for (int i = 0; i < n; ++i)
#pragma acc loop vector
for (int $j = 0; j < n;$
++j)

Collapse Clause

collapse(n): Transform the following *n* tightly nested loops into one, flattened loop.

• Useful when individual loops lack sufficient parallelism or more than 3 loops are nested (gang/worker/vector)

!\$acc parallel #pragma acc parallel !\$acc loop collapse(2) #pragma acc loop collapse(2) do j=1,N-1 for(int i=0;i<N; i++)
 for(int j=0; j<N; j++)</pre> do i=1, N-1

Loops must be tightly nested

The "restrict" keyword in C

- Avoid pointer aliasing
 - Applied to a pointer, e.g. float *restrict ptr;
 - Meaning: "for the lifetime of ptr, only it or a value directly derived from it (such as ptr + 1) will be used to access the object to which it points"*
 - In simple, the ptr will only point to the memory space of itself
- OpenACC compilers often require restrict to determine independence.
 - Otherwise the compiler can't parallelize loops that access ptr
 - Note: if programmer violates the declaration, behavior is undefined.

Routine Construct

Specifies that the compiler should generate a device copy of the function/subroutine and what type of parallelism the routine contains.

Clauses:

gang/worker/vector/seq (sequential)

Specifies the level of parallelism contained in the routine.

Routine Construct

```
#pragma acc routine vector
void foo(float* v, int i, int n) {
  #pragma acc loop vector
  for ( int j=0; j<n; ++j) {</pre>
    v[i*n+j] = 1.0f/(i*j);
#pragma acc parallel loop
for ( int i=0; i<n; ++i) {</pre>
  foo(v,i);
  //call on the device
```


Update Construct

- Fortran
 - #pragma acc update host/device [clause ...]
- C
 - !\$acc update host/device [clause ...]
- Used to update existing data after it has changed in its corresponding copy (e.g. update device copy after host copy changes)
- Move data from GPU to host, or host to GPU.
- Data movement can be conditional, and asynchronous.

Asynchronous Execution

- Activated through async[(int)] clause on these directives:
 - parallel
 - kernels
 - update

Without **async**: host waits for device to finish execution

With **async**: host continues with code following directive

- Optional integer argument may be used to explicitly refer to region in a wait directive
- Two activities with same value are executed in the order the host process encounters them
- Two activities with different values may be executed in any order

The "wait" Directive

Executable directive

C:

#pragma acc wait [(int)]

Fortran:

!\$acc wait [(int)]

Host thread waits for completion of asynchronous activities

Optional argument:

wait for asynchronous activity with argument in **async** clause

#pragma acc parallel loop async(1) // kernel A

#pragma acc parallel loop async(2)

// kernel B

```
#pragma acc wait(1,2) async(3)
#pragma acc parallel loop async(3)
// wait(1,2) // or wait directive
// kernel C
```

```
#pragma acc parallel loop async(4)
wait(3)
```

// kernel D

```
#pragma acc parallel loop async(5) \
wait(3)
```

// kernel E

```
#pragma acc wait(1)
```

```
//kernel F on host
```


AGENDA

- Fundamentals of Heterogeneous & GPU Computing
- What are Compiler Directives?
- Accelerating Applications with OpenACC
 - Identify Available Parallelism
 - Parallelize loops
 - Optimize Data Locality
 - Optimize loops
- Interoperability

3 Approaches to Heterogeneous Programming

Libraries: Easy, High-Quality Acceleration

Ease of use:

• "Drop-in":

Quality:

Performance:

Using libraries enables GPU acceleration without in-depth knowledge of GPU programming

Many GPU-accelerated libraries follow standard APIs, thus enabling acceleration with minimal code changes

Libraries offer high-quality implementations of functions encountered in a broad range of applications

NVIDIA libraries are tuned by experts

"host_data" Construct

C/C++

#pragma acc kernels host_data use_device(list)

Fortran

!\$acc kernels host_data use_device(list)

- Make the address of device data available on host
- Specified variable addresses refer to device memory
- Variables must be present on device

deviceptr data clause: inform compiler that the data already resides on the GPU

SAXPY

void saxpy(int n, float a, float *x, float *restrict y) {
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}</pre>

 A function in the standard Basic Linear Algebra Subroutines (BLAS) library

cublasSaxpy from cuBIAS library

void cublasSaxpy(int	n,
	const float	*alpha,
	const float	*х,
	int	incx,
	float	*у,
	int	incy)

- A function in the standard Basic Linear Algebra Subroutines (BLAS) library, which is a GPU-accelerated library ready to be used on GPUs.
- cuBLAS: GPU-accelerated drop-in library ready to be used on GPUs.

Saxpy_acc

Saxpy_cuBLAS

```
void saxpy acc(int n, float a, float *x, float *y) {
  #pragma acc parallel loop
   for (int i = 0; i < n; ++i)
    { y[i] = a * x[i] + y[i];
    }a
int main(){
// Initialize vectors x, y
#pragma acc data create(x[0:n]) copyout(y[0:n])
   #pragma acc parallel loop
    for (int i = 0; i < n; ++i) {
      x[i] = 1.0f; y[i] = 0.0f;
// Perform SAXPY
 saxpy_acc(n, a, x, y);
```

```
extern void
cublasSaxpy(int,float,float*,int,float*,int);
int main(){
...
// Initialize vectors x, y
#pragma acc data create(x[0:n]) copyout(y[0:n])
#pragma acc parallel loop
for (int i = 0; i < n; ++i) {
x[i] = 1.0f; y[i] = 0.0f;
}
// Perform SAXPY
#pragma acc host_data use_device(x,y)
```

```
cublasSaxpy(n, 2.0, x, 1, y, 1);
```

http://docs.nvidia.com/cuda

Saxpy_acc

Saxpy_cuBLAS

```
// Initialize vectors x, y
#pragma acc data create(x[0:n]) copyout(y[0:n])
    #pragma acc parallel loop
    for (int i = 0; i < n; ++i) {
        x[i] = 1.0f; y[i] = 0.0f;
        }
// Perform SAXPY
    saxpy_acc(n, a, x, y);
}</pre>
```

```
extern void
cublasSaxpy(int,float,float*,int,float*,int);
int main(){
...
// Initialize vectors x, y
#pragma acc data create(x[0:n]) copyout(y[0:n])
#pragma acc parallel loop
for (int i = 0; i < n; ++i) {
x[i] = 1.0f; y[i] = 0.0f;
}
// Perform SAXPY
#pragma acc deviceptr (x,y)
```

cublasSaxpy(n, 2.0, x, 1, y, 1);

http://docs.nvidia.com/cuda

More Than One GPUs?

6th HPC Parallel Programming Workshop

Parallel Computing with OpenACC

Device Management

- Internal control variables(ICVs):
 - acc-device-type-var
 - \rightarrow Controls which type of accelerator is used
 - acc-device-num-var
 - \rightarrow Controls which accelerator device is used
- Setting ICVs by API calls
 - acc_set_device_type()
 - acc_set_device_num()
- Querying of ICVs
 - acc_get_device_type()
 - acc_get_device_num()

OpenACC APIs

acc_get_num_devices

 Returns the number of accelerator devices attached to host and the argument specifies type of devices to count

C:

- intacc get num devices (acc device t)

Fortran:

- Integer function acc get num devices (devicetype)

OpenACC APIs

acc_set_device_num

- Sets ICV ACC_DEVICE_NUM
- Specifies which device of given type to use for next region Can not be called in a parallel, kernels or data region

C:

- Void acc_set_device_num(int,acc_device_t)

Fortran:

- Subroutine

acc_set_device_num(devicenum,devicetype)

OpenACC APIs

- acc_get_device_num
 - Return value of ICV ACC_DEVICE_NUM
 - Return which device of given type to use for next region
 - Can not be called in a parallel, kernels or data region
- C:
- Void acc_get_device_num(acc_device_t)
- Fortran:
 - Subroutine acc_get_device_num(devicetype)


```
#pragma acc routine seq
void saxpy(int n, float a, float *x, float *restrict y) {
   #pragma acc loop //kernels
    for (int i = 0; i < n; ++i)
        y[i] = a*x[i] + y[i]/2.3/1.2;
int main(int argc, char **argv)
    int n = 1 << 40;
    float *x = (float*)malloc(n*sizeof(float));
    float *y = (float*)malloc(n*sizeof(float));
    for (int i = 0; i < n; ++i) {
        x[i] = 2.0f;
        y[i] = 1.0f;
int gpu ct=acc get num devices (acc device nvidia);
int tid=0;
#pragma omp parallel private(tid) num threads(gpu ct)
        int i=omp get thread num();
        acc set device num(i,acc device nvidia);
        #pragma acc data copyin(n) copyin(x[0:n]) copyout(y[0:n])
        #pragma acc kernels
                for (int j=0; j<n*n; j++)</pre>
                 saxpy(n, 3.0f, x, y);
```

6th HPC Parallel Programming Workshop

Parallel Computing with OpenACC

Directive-based programming with multiple GPU cards

wfeinste@shelob030 openacc17]\$ pgcc -acc -mp -fast saxpy_2gpu.c wfeinste@shelob030 openacc17]\$ nvidia-smi Ion May 29 02:20:46 2017										
NVIDIA-SMI 352.93 Driver Version: 352.93										
GPU Fan	Name Temp	Perf	Persi Pwr:U	.st Isa	ence-M ge/Cap	+ Bus-] +	Id Memo	Disp.A ry-Usage	Volatile GPU-Util	Uncorr. ECC Compute M.
0 N/A	Tesla 18C	K20Xm P0	62V	I /	On 235W	:0000 0000 8	:20:00.0 37MiB /	Off 5759MiB	 99%	 0 Default
1 N/A	Tesla 19C	K20Xm P0	630	1 /	On 235W	: 0000 3	:8B:00.0 37MiB /	Off 5759MiB	 99%	0 Default
, +						' 			'	·
Proce GPU	esses:	PID !	Гуре	Pr	ocess	name				GPU Memory Usage
0 1	18 18	3225 3225 	C C	./	a.out a.out					71MiB 71MiB

6th HPC Parallel Programming Workshop

Parallel Computing with OpenACC

Directive-based programming on multi-GPUs

- OpenACC only supports one GPU
- Hybrid model:
 - OpenACC + OpenMP to support multi-GPU parallel programming
 - Data management

Getting Started for Labs

- Connect to mike cluster:
 - <u>ssh username@mike.hpc.lsu.edu</u>
- Login in to the interactive node qsub –I –A xxx –I walltime=2:00:00 –I nodes=1:ppn=16 -q shelob
- Open another terminal ssh –X shelobxxx /mikexxx

General Steps for Labs

- Code profiling to identify the target for parallelization pgprof: PGI visual profiler
 - pgcc -Minfo=ccff mycode.c -o mycode
 - pgcollect mycode
 - pgprof -exe mycode
- Add OpenACC pragmas/directives
 - pgcc -acc -ta=nvidia,time -Minfo=accel app.c -o app
 - pgf90 -acc -ta=nvidia,time -Minfo=accel app.f90 -o app

Exercise 1

For the matrix multiplication code $A \cdot B = C$ where: $a_{i,j} = i + j$ $b_{i,j} = i \cdot j$ $c_{i,j} = \sum_{i} a_{i,k} \cdot b_{k,j}$

- 1. For mm_acc_v0.c, speedup the matrix multiplication code segment using OpenACC directives/pragmas
- 2. For mm_acc_v1.c:
 - Change A, B and C to dynamic arrays, i.e., the size of the matrix can be specified at runtime;
 - Complete the function matmul_acc using the OpenACC directives;
 - Compare performance with serial and OpenMP results

Exercise 2

Calculate π value using the equation: $\int_{0}^{1} \frac{4.0}{(1.0 + x^{2})} = \pi$ with the numerical integration: $\sum_{i=1}^{n} \frac{4.0}{(1.0 + x_{i} \cdot x_{i})} \Delta x \approx \pi$

Speedup the code segment using OpenACC directives/pragmas