
	

Parallel	Compu,ng	with	OpenACC	
	

Wei	Feinstein	
HPC	User	Services	

	
	

Parallel	Programming	Workshop	2017	
Louisiana	State	University	

	
	

	6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

AGENDA	
•  Fundamentals of Heterogeneous & GPU Computing
•  What are Compiler Directives?
•  Accelerating Applications with OpenACC

•  Identify Available Parallelism
•  Parallelize loops

•  Optimize Data Locality

•  Optimize loops
•  Interoperability

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

GPU
 Large Scale of

applications

Genomics	 Deep		
Learning	

Costal	Storm	
Predic,on	

Many-Core CPU

(Intel Xeon Phi)
Multi-Core

CPU

OpenMP	 OpenACC	 Phi	
Direc/ves	

High	Level	Programming	(direcitve/pragma)	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

GPU	Compu,ng	History	
•  The first Graphics Processing Unit (GPU) was designed as graphics

accelerators, supporting only specific fixed-function pipelines.
•  Starting in the late 1990s, the hardware became increasingly

programmable, NVIDIA's first GPU in 1999.
•  The General Purpose GPU (GPGPU): its excellent floating point

performance.
•  2006 world's 1st solution for general computing on GPUs. CUDA

was designed and launched by NVIDIA
•  CUDA (Compute Unified Device Architecture) is a parallel computing

platform and programming model created by NVIDIA and implemented
on the GPUs that they produce.

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

GPU CPU

Latency Processor Throughput processor

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Koenigsegg one
• 270 mph
•  Baton Rouge to New Orleans in

0.29 hr (18 mins)
•  Seats: 2

School bus
•  40 mph
•  BR to NO in 2 hr
•  Seats: 72

Latency	vs.	Throughput	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Koenigsegg one
• latency: 0.28 hr (18 mins)
•  Throughput: 2/0.28 = 7.14 people/hr

School bus
•  Latency: 2 hr
•  Throughput: 72/2 = 36

people/hr

Latency	vs.	Throughput	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

GPU CPU

Comparison	of	Architectures	
CPU
■

■

Optimized for low-latency
access to cached data sets
Control logic for out-of-
order and speculative
execution

GPU
■

■

■

Optimized for data-parallel,
throughput computation
Architecture tolerant of
memory latency
More transistors dedicated
to computation
Hide latency from other
threads via fast context
switching

DRAM

DRAM

Control

ALU ALU

ALU ALU

Cache

■

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

WHAT	IS	HETEROGENEOUS	COMPUTING?	
Application Execution

+

GPU CPU

High Data Parallelism High Serial
Performance

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Applications

Libraries

Easy to use
Most Performance

Programming
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives

3	Approaches	to		
Heterogeneous	Programming	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal
Image Processing

GPU Accelerated
Linear Algebra

Matrix Algebra on
GPU and Multicore NVIDIA cuFFT

C++ STL Features
for CUDA

Sparse Linear
Algebra IMSL Library A

Building-block
Algorithms for
CUD

Examples of GPU-accelerated Libraries

ArrayFire Matrix
Computations

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

GPU	Programming	Languages	

OpenACC, CUDA Fortran Fortran

OpenACC, CUDA C C

Thrust, CUDA C++ C++

PyCUDA, Copperhead Python

GPU.NET C#

MATLAB, Mathematica, LabVIEW
Numerical
analytics

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

		

SAXPY	

void	saxpy(int	N,	float	a,	float	*x,	float	*y){	
								for	(int	i	=	0;	i	<	N;	++i)	

y[i]	=	a*x[i]	+	y[i];	
}	
x,	y:	vector	with	N	elelments	
a:	scalar	
	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

void	saxpy_CPU(int	n,	float	a,	float	*x,	float	*y)	{				
											for	(int	i	=	0;	i	<	n;	++i)		{			

	y[i]	=	a	*	x[i]	+	y[i];	
}	

}	
int	main(int	argc,	char	**argv){	
long	n=	1<<20;			
float	*x	=	(float*)malloc(n	*	sizeof(float));	
	float	*y	=	(float*)malloc(n	*	sizeof(float));		
//	Ini,alize	vector	x,y	
for	(int	i	=	0;	i	<	n;	++i)	{		

		x[i]	=	1.0f;		
		y[i]	=	0.0f;	
}	

//	Perform	SAXPY	
saxpy_CPU(n,	a,	x,	y);	
}	
…	

Saxpy_CPU

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

extern	void		
cublasSaxpy(int,float,float*,int,float*,in
t);	

int	main(){	
…	
//	Ini,alize	vectors	x,	y	
for	(int	i	=	0;	i	<	n;	++i)	{	

x[i]	=	1.0f;		
y[i]	=	0.0f;	

}	
//	Perform	SAXPY	
#pragma	acc		
host_data	use_device(x,y)		
cublasSaxpy(n,	2.0,	x,	1,	y,	1);	

}	

Saxpy_cuBLAS Saxpy_OpenACC

…	

hip://docs.nvidia.com/cuda	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

void	saxpy_ACC(int	n,	float	a,	float	*x,	float	*y)	
	{	

#pragma	acc	parallel	loop		
for	(int	i	=	0;	i	<	n;	++I	{		
	y[i]	=	a	*	x[i]	+	y[i];	

			}		
}
int	main(){	
…	
//	Ini,alize	vectors	x,	y	
for	(int	i	=	0;	i	<	n;	++i)	{	

x[i]	=	1.0f;		
y[i]	=	0.0f;	

}	
//	Perform	SAXPY		
	saxpy_ACC(n,	a,	x,	y);	
}	
	

Saxpy_CUDA	
//	define	CUDA	kernel	func,on	
__global__	void	saxpy_kernel(float	a,	float*	x,	float*	y,	int	n){		
								int	i;		

	i	=	blockIdx.x*blockDim.x	+	threadIdx.x;		
									if(i	<=	n)	y[i]	=	a*x[i]	+	y[i];	
}	
Void	main(float	a,	float*	x,	float*	y,	int	n){			

	float	*xd,	*yd;	
//	manage	device	memory	
cudaMalloc((void**)&xd,	n*sizeof(float));	
cudaMalloc((void**)&yd,	n*sizeof(float));	
cudaMemcpy(xd,	x,	n*sizeof(float),	cudaMemcpyHostToDevice);		
	cudaMemcpy(yd,	y,	n*sizeof(float),	cudaMemcpyHostToDevice);	
//	calls	the	kernel	func,on	
saxpy_kernel<<<	(n+31)/32,	32	>>>(a,	xd,	yd,	n);			
cudaMemcpy(x,	xd,	n*sizeof(float),	cudaMemcpyDeviceToHost);	
//	free	device	memory	aner	use		
	cudaFree(xd);	
cudaFree(yd);	

}	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Applications

Libraries

Easy to use
Most Performance

Programming
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives

3	Approaches	to		
Heterogeneous	Programming	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

AGENDA	
•  Fundamentals of Heterogeneous & GPU Computing
•  What are Compiler Directives?
•  Accelerating Applications with OpenACC

•  Identify Available Parallelism
•  Parallelize loops

•  Optimize Data Locality

•  Optimize loops
•  Interoperability

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

What Are Compiler Directives?

int main() {

do_serial_stuff()

for(int i=0; i < BIGN; i++)
{
…compute intensive work
}

 }
do_more_serial_stuff();

}

#pragma acc parallel loop {

ßData and Execution returns to the CPU

ßInserts compiler hints to compute on GPU

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

What	are	OpenACC	Direc,ves?	

Program myscience
... serial code ...

!$acc kernels

do k = 1,n1
do i = 1,n2

code ...

...

... parallel

enddo
enddo

!$acc end kernels

End Program myscience

CPU GPU

OpenACC
Compiler
Directives

Portable compiler hints

Compiler parallelizes code

Designed for multicore CPUs &
many core GPUs

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

OpenACC Execution Model
Application Code

GPU CPU
Compute-Intensive Functions

Generate Parallel Code for GPU

Rest of Sequential
CPU Code

z	

2
2	

$acc parallel

$acc end parallel

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Rest of Sequential
CPU Code

History	of	OpenACC	
•  OpenACC is a specification/standard for high-level,

compiler directives to express parallelism on
accelerators.
•  Aims to be portable to a wide range of accelerators
•  One specification for multiple vendors, multiple

devices
•  Original members: CAPS, Cray, NVIDIA and PGI

•  First released 1.0 Nov 2011
•  2.0 was released Jue 2013
•  2.5 was released Oct 2015

http://www.openacc.org/specification

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Why	OPENACC?	

Simple: Directives are the easy path to accelerate
applications compute intensive

Open: OpenACC is an open GPU directives standard, making
GPU programming straightforward and portable across
parallel and multi-core processors

Portable: GPU Directives represent parallelism at a high
level, allowing portability to a wide range of architectures
with the same code

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Which	Compilers	Support	OpenACC	

 OpenACC Standard

•  PGI compilers for C, C++ and Fortran
•  Cray CCE compilers for Cray systems
•  CAPS compilers
•  NVIDIA

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Using	PGI	compilers	on	Mike		
Login in to SuperMike:
$ ssh usrid@mike.hpc.lsu.edu

Get an interactive compute node:
$ qsub -I -l nodes=1:ppn=16 –l walltime=4:00:00
 –q shelob -A hpc_train_2017

Add the PGI compiler v15.10
$ soft add +portland-15.10

$ pgcc –V

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

EXAMPLE:	JACOBI	ITERATION	Iteratively converges to correct value, e.g., temprature,
by computing new values at each point from the average
of neighboring points.

•  Example: Solve Laplace equation in 2D:

𝛻2 𝑓(𝑥, 𝑦) = 0	

𝐴𝑘 +1(𝑖, 𝑗) =
𝐴𝑘 (𝑖 − 1, 𝑗) + 𝐴𝑘 (𝑖 + 1, 𝑗) + 𝐴𝑘(𝑖, 𝑗 − 1)+ 𝐴𝑘 (𝑖, 𝑗 + 1)

4

A(i,j) A(i+1,j) A(i-1,j)

A(i,j-1)

A(i,j+1)

Example:	Jacobi	Itera,on	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

JACOBI Iteration: C
Iterate until
converged

Iterate across
matrix elements

Calculate new value
from neighbors

Compute max error
for convergence

Swap input/output
arrays

while (error > tol && iter < iter_max){
error = 0.0;

for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j]
 [i-1] + A[j-1][i] + A[j+1][i]);

 error = fmax(error, fabs(Anew[j][i]
 A[j][i]));
 }
}
for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {
 A[j][i] = Anew[j][i];
 }
}
	iter++;
} // end while loop

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

AGENDA	
•  Fundamentals of Heterogeneous & GPU Computing
•  What are Compiler Directives?
•  Accelerating Applications with OpenACC

•  Identify Available Parallelism
•  Parallelize loops

•  Optimize Data Locality

•  Optimize loops

•  Interoperability

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Identify Available Parallelism	
•  Identify section of a code consuming the significant

percentage of time (hot spots)
•  Routines, loops

•  Profilers:
•  gpof (GNU)
•  pgprof (PGI)
•  Vampir
•  NVIDIA visual profiler

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Code Profiling (pgprof)	
•  Compile code with profiling info
•  $ pgcc -Mprof=ccff laplace.c

•  Generate pgprof.out
•  $ pgcollect ./a.out
 --> pgprof.out

•  Visualize profile info
•  $ pgprof –exe ./a.out

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

AGENDA	
•  Fundamentals of Heterogeneous & GPU Computing
•  What are Compiler Directives?
•  Accelerating Applications with OpenACC

•  Identify Available Parallelism
•  Parallelize loops

•  Optimize Data Locality

•  Optimize loops

•  Interoperability

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

General	Direc,ve	Syntax	and	Scope	
•  C

•  #pragma	acc	directive	[clause	[,]	clause]...]	
{	
Often	followed	by	a	structured	code	block	
}	

•  Fortran
•  !$acc	directive	[clause	[,]	clause]...]	

Often	paired	with	a	matching	end	directive	
surrounding	a	structured	code	block	

•  !$acc	end	directive	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

	Kernels Direc,ve	
The kernels construct expresses that a region may
contain parallelism and the compiler determines what
can safely be parallelized.
#pragma acc kernels

{
for(int i=0; i<N; i++)
{

x[i]
y[i]

= 1.0;
= 2.0;

}

for(int i=0;i++{ i<N;
{
y[i] = a*x[i] +y[i];

}
}

kernel 1

kernel 2

The compiler
identifies 2 parallel

loops and generates 2
kernels.

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

A	kernel	is	a	func,on	executed		on	the	GPU	as	
an	array	of		threads	in	parallel	

Parallize with Kernels (C)
while (error > tol && iter < iter_max) {
 error = 0.0;
#pragma acc kernels {
 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {
 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] + A[j-1]

[i] + A[j+1][i]);
 error = fmax(error, fabs(Anew[j][i] - A[j][i]));
 }
 }
 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {
 A[j][i] = Anew[j][i];
 }
 } }
 iter++; }

Look for parallelism
within this region.

$pgcc –acc –fast –ta=nvidia,time –Minfo=all
laplace_kernels1.c

Kernels end here

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Parallize with Kernels (Fortran)
 do while (error .gt. tol .and. iter .lt. iter_max)
 error=0.0
!$acc kernels
 do j=1,m-2
 do i=1,n-2
 Anew(i,j) = 0.25_fp_kind * (A(i+1,j) + A(i-1,j) + &
 A(i ,j-1) + A(i ,j+1))
 error = max(error, abs(Anew(i,j)-A(i,j)))
 end do
 end do

 do j=1,m-2
 do i=1,n-2
 A(i,j) = Anew(i,j)
 end do
 end do
!$acc end kernels

Look for parallelism
within this region.

$pgfortran –acc –fast –ta=nvidia,time
–Minfo=all laplace_kernels1.f90

Kernels end here

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

How	to	compile	with	OpenACC	

Compile using PGI compiler
$ pgcc –acc –fast –ta=nvidia –Minfo=accel
laplace_kernels1.c

$ pgf90 –acc –fast –ta=nvidia –Minfo=accel
laplace_kernels1.f90

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

47, Generating copyout(Anew[1:4094][1:4094])
 Generating copyin(A[:4096][:4096])
 Generating copyout(A[1:4094][1:4094])
 48, Loop is parallelizable
 49, Loop is parallelizable
 Accelerator kernel generated
 Generating Tesla code
 48, #pragma acc loop gang /* blockIdx.y */
 49, #pragma acc loop gang, vector(128) /*
blockIdx.x threadIdx.x */
 52, Max reduction generated for error
 56, Loop is parallelizable
 57, Loop is parallelizable
 Accelerator kernel generated
 Generating Tesla code
 56, #pragma acc loop gang /* blockIdx.y */
 57, #pragma acc loop gang, vector(128) /*
blockIdx.x threadIdx.x */

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Compiler-Generated	Info	

Open a separate terminal
$ ssh –X mikexxx or shelobxxx

$ top: CPU utilization

$ nvidia-smi: GPU

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Check	CPU	&	GPU	U,liza,on	

Parallel Loop Directive
parallel - Programmer identifies a block of code containing
parallelism. Compiler generates a kernel.
loop - Programmer identifies a loop that can be parallelized within
the kernel.

NOTE: parallel & loop are often placed together

#pragma acc parallel loop

for(int i=0; i<N; i++)

{

 y[i] = a*x[i]+y[i];

{

Parallel
kernel

Kernel:
A function that
runs in parallel

on the GPU

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Loop	Clauses:	Private	&	Reduc,on	

private •  A copy of the variable is made for each loop
iteration. It is private by default

reduction •  A private copy of the affected variable is generated for
each loop iteration

•  A reduction is then performed on the variables.
•  Supports +, *, max, min, and various logical

operations

2
9

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Code using Parallel Loop Directive (C)
while (error > tol && iter < iter_max) {
 error = 0.0;
#pragma acc parallel loop reduction(max:err)
 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {
 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] + A[j-1]

[i] + A[j+1][i]);
 error = fmax(error, fabs(Anew[j][i] - A[j][i]));
 }
 }
#pragma acc parallel loop
 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {
 A[j][i] = Anew[j][i];
 }
 }
 iter++;
}

Parallelize loop on
accelerator

Parallelize loop on
accelerator

* A reduction means that all of the N*M values
for err will be reduced to just one, the max.

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Code using Parallel Loop Directive (Fortran)
 do while (error .gt. tol .and. iter .lt. iter_max)
 error=0.0
!$acc parallel loop reduction(max:err)
 do j=1,m-2
 do i=1,n-2
 Anew(i,j) = 0.25 *(A(i+1,j)+A(i-1,j) +

 A(i,j-1) + A(i,j+1))
 error = max(error, abs(Anew(i,j)-A(i,j)))
 end do
 end do
!$acc end parallel
!$acc parallel loop
 do j=1,m-2
 do i=1,n-2
 A(i,j) = Anew(i,j)
 end do
 end do
!$acc end parallel

Parallelize loop on
accelerator

Parallelize loop on
accelerator

* A reduction means that all of the N*M values
for err will be reduced to just one, the max.

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Kernels vs. Parallel Loops
Parallel Loop

•  Requires analysis by
programmer to ensure
safe parallelism

•  Will parallelize what a
compiler may miss

•  Straightforward path
from OpenMP

Kernels
•  Compiler performs parallel

analysis and parallelizes
what it believes safe

•  Can cover larger area of
code with single directive

•  Gives compiler additional
leeway to optimize.

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

OpenACC for Multicore CPUs
•  Originally targeted to NVIDIA and AMD (GPUs)

•  Latest PGI compiler (>=pgi15.10) generates parallel code on
CPUs using OpenMP

•  With the same set of OpenACC pragmas
•  GPUs: -ta=nvidia

•  CPUs: -ta=multicore using all the CPU cores

•  Or export ACC_NUM_CORES = [1 .. 16]

•  $ pgcc –ta=multicore,time –Minfo=all
laplace_kernels2.c

OpenACC for Multicore CPUs

48, Loop is parallelizable
 Generating Multicore code
 48, #pragma acc loop gang
 49, Loop is parallelizable
 56, Loop is parallelizable
 Generating Multicore code
 56, #pragma acc loop gang
 57, Loop is parallelizable
 Memory copy idiom, loop replaced by call to
__c_mcopy8

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Performance Comparison

Disappoin,ng	performance	
using	OpenACC	with		
kernels/Parallel	loop		

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

What Went Wrong?

$ export PGI_ACC_TIME=1
$ pgcc –ta=nvidia –Minfo=accel
 laplace_parallel2.c –o laplace_parallel2
	
$ pgcc –ta=nvidia,time –Minfo=accel
 laplace_parallel2.c –o laplace_parallel2

$./laplace_parallel2

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Data	Movement	main NVIDIA devicenum=0
 time(us): 88,667,910
47: compute region reached 1000 times
 47: data copyin transfers: 1000
 device time(us): total=8,667 max=37 min=8 avg=8
 47: kernel launched 1000 times
 grid: [4094] block: [128]
 device time(us): total=2,320,918 max=2,334 min=2,312 avg=2,320
 elapsed time(us): total=2,362,785 max=2,471 min=2,353 avg=2,362
 47: reduction kernel launched 1000 times
 grid: [1] block: [256]
 device time(us): total=14,001 max=15 min=14 avg=14
 elapsed time(us): total=32,924 max=72 min=31 avg=32
 47: data copyout transfers: 1000
 device time(us): total=16,973 max=49 min=14 avg=16
 47: data region reached 1000 times
 47: data copyin transfers: 8000
 device time(us): total=22,404,937 max=2,886 min=2,781 avg=2,800
 56: compute region reached 1000 times
 56: kernel launched 1000 times
 grid: [4094] block: [128]
 device time(us): total=1,802,925 max=1,822 min=1,783 avg=1,802
 elapsed time(us): total=1,847,383 max=1,884 min=1,827 avg=1,847
 56: data region reached 2000 times
 56: data copyin transfers: 8000
 device time(us): total=22,000,619 max=4,096 min=2,739 avg=2,750
 56: data copyout transfers: 8000
 device time(us): total=20,118,762 max=2,703 min=2,498 avg=2,514
 63: data region reached 1000 times
 63: data copyout transfers: 8000
 device time(us): total=20,121,450 max=2,664 min=2,498 avg=2,515

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

	 Total	,m
e:	88,66

7,910	

Data	tra
nsfer	,m

e:	84,67
1,301	

Compute	,m
e:	3,996

,609	

Performance	Profiling		
by	NVVP	from	Nvidia	

•  soft add +cuda-7.5.18

$ nvvp ./laplace_parallel2

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

AGENDA	

•  Fundamentals of Heterogeneous & GPU Computing
•  What are Compiler Directives?
•  Accelerating Applications with OpenACC

•  Identify Available Parallelism
•  Parallelize loops

•  Optimize Data Locality

•  Optimize loops
•  Interoperability

• 

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Data	Flow	

1. 		Copy	input	data	from	CPU	memory	to		
GPU	memory	

PCIe
Bus

5
5	

Data	Flow	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

1.  Copy	input	data	from	CPU	memory	to		
GPU	memory	

2.  Execute	GPU	Kernel	

PCIe
Bus

5
6	

Data	Flow	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

1.  Copy	input	data	from	CPU	memory	to		
GPU	memory	

2.  Execute	GPU	Kernel	
3.  Copy	results	from	GPU	memory	to		

CPU	memory	

PCIe
Bus

Data	Flow	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Two separate memory spaces between host and accelerator
■

■

Data transfer by DMA transfers
■  Hidden from the programmer in OpenACC, so beware:

■  Latency
Bandwidth

■  Limited device memory size

OpenACC Memory Model

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Code using Parallel Loop Pragam(C)
while (error > tol && iter < iter_max) {
 error = 0.0;
#pragma acc parallel loop reduction(max:err)
 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {
 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] + A[j-1]

[i] + A[j+1][i]);
 error = fmax(error, fabs(Anew[j][i] - A[j][i]));
 }
 }
#pragma acc parallel loop
 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {
 A[j][i] = Anew[j][i];
 }
 }
 iter++;
}

Parallelize loop on
accelerator

Parallelize loop on
accelerator

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

How	to	Improve	Data	Movement	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

•  Use data/array on GPU as long as possible

•  Move data between CUP and GPU as less-frequently

as possible

•  Don’t copy data back to CPU if not needed on CPU

Define	Data	Regions	
The data construct defines a region of code in which GPU
arrays remain on the GPU and are shared among all kernels in
that region.

#pragma acc data
{

#pragma acc parallel
loop
...
}

Data
Region

Arrays used within
the data region

will remain on the
GPU until the end
of the data region.

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

•  Allocates	memory	on	GPU	and	copies	data	from	
host	to	GPU	when	entering	region	and	copies	
data	to	the	host	when	exi,ng	region.	

•  Allocates	memory	on	GPU	and	copies	data	from	
host	to	GPU	when	entering	region.	

•  Allocates	memory	on	GPU	and	copies	data	to	
the	host	when	exi,ng	region.	

•  Allocates	memory	on	GPU	but	does	not	copy.	
•  Data	is	already	present	on	GPU	from	another	

containing	data	region.	

Data	Clauses	
copy (list)

copyin (list)

copyout (list)

create (list)

present (list)

present_or_copy[in|out], present_or_create, deviceptr.
Will be made as default in the future

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Array	Shaping	
Compiler sometimes cannot determine size of arrays, specify
explicitly using data clauses and array “shape”

C/C++
#pragma acc data copyin(a[0:size]),
copyout(b[s/4:3*s/4])

Fortran
!$acc data copyin(a(1:end)),
copyout(b(s/4:3*s/4))

Note: data clauses can be used on data, parallel, or kernels

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Op,mizing	Data	Locality	(C)	
#pragma acc data copy(A) create (Anew)
while (error > tol && iter < iter_max)
{
 error = 0.0;
#pragma acc kernels {
 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {
 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] + A[j-1][i] +

 A[j+1][i]);
 error = fmax(error, fabs(Anew[j][i] - A[j][i]));
 }
 }
for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {
 A[j][i] = Anew[j][i];
 }
 }
 iter++;
}
}

Copy A to/from the
accelerator only when

needed.

Create Anew as a device
temporary.

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Op,mizing	Data	Locality	(Fortran)	
!$acc data copy(A) create(Anew)
 do while (error .gt. tol .and. iter .lt. iter_max)
 error=0.0_fp_kind

!$acc kernels
 do j=1,m-2
 do i=1,n-2
 Anew(i,j) = 0.25_fp_kind * (A(i+1,j) + A(i-1,j) + &
 A(i ,j-1) + A(i ,j+1))
 error = max(error, abs(Anew(i,j)-A(i,j)))
 end do
 end do

do j=1,m-2
 do i=1,n-2
 A(i,j) = Anew(i,j)
 end do
 end do
!$acc end kernels

 if(mod(iter,100).eq.0) write(*,’(i5,f10.6)’), iter, error
 iter = iter + 1
 end do
!$acc end data

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Performance		

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

main NVIDIA devicenum=0
 time(us): 2,413,950
 43: data region reached 1 time
 43: data copyin transfers: 8
 device time(us): total=22,409 max=2,812 min=2,794 avg=2,801
 48: compute region reached 1000 times
 48: data copyin transfers: 1000
 device time(us): total=21,166 max=54 min=11 avg=21
 48: kernel launched 1000 times
 grid: [4094] block: [128]
 device time(us): total=2,320,508 max=2,336 min=2,310 avg=2,320
 elapsed time(us): total=2,365,313 max=2,396 min=2,355 avg=2,365
 48: reduction kernel launched 1000 times
 grid: [1] block: [256]
 device time(us): total=14,000 max=14 min=14 avg=14
 elapsed time(us): total=33,893 max=67 min=32 avg=33
 48: data copyout transfers: 1000
 device time(us): total=15,772 max=45 min=13 avg=15
 68: data region reached 1 time
 68: data copyout transfers: 9
 device time(us): total=20,095 max=2,509 min=30 avg=2,232

Prior	adding		
data	construct	

main NVIDIA devicenum=0
 time(us): 88,667,910a
47: compute region reached 1000 times
 47: data copyin transfers: 1000
 device time(us): total=8,667 max=37 min=8 avg=8
 47: kernel launched 1000 times
 grid: [4094] block: [128]
 device time(us): total=2,320,918 max=2,334 min=2,312 avg=2,320
 elapsed time(us): total=2,362,785 max=2,471 min=2,353 avg=2,362
 47: reduction kernel launched 1000 times
 grid: [1] block: [256]
 device time(us): total=14,001 max=15 min=14 avg=14
 elapsed time(us): total=32,924 max=72 min=31 avg=32
 47: data copyout transfers: 1000
 device time(us): total=16,973 max=49 min=14 avg=16
 47: data region reached 1000 times
 47: data copyin transfers: 8000
 device time(us): total=22,404,937 max=2,886 min=2,781 avg=2,800
 56: compute region reached 1000 times
 56: kernel launched 1000 times
 grid: [4094] block: [128]
 device time(us): total=1,802,925 max=1,822 min=1,783 avg=1,802
 elapsed time(us): total=1,847,383 max=1,884 min=1,827 avg=1,847
 56: data region reached 2000 times
 56: data copyin transfers: 8000
 device time(us): total=22,000,619 max=4,096 min=2,739 avg=2,750
 56: data copyout transfers: 8000
 device time(us): total=20,118,762 max=2,703 min=2,498 avg=2,514
 63: data region reached 1000 times
 63: data copyout transfers: 8000
 device time(us): total=20,121,450 max=2,664 min=2,498 avg=2,515

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Performance

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

AGENDA	
•  Fundamentals of Heterogeneous & GPU Computing
•  What are Compiler Directives?
•  Accelerating Applications with OpenACC

•  Identify Available Parallelism
•  Parallelize loops

•  Optimize Data Locality

•  Optimize loops
•  Interoperability

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

•  Vector threads work in
lockstep (SIMD/SIMT
parallelism)

•  Workers compute a vector

•  Gangs have 1 or more workers
and share resources (such as
cache, the streaming
multiprocessor, etc.)

•  Multiple gangs work
independently of each other

OpenACC: 3 Levels of Parallelism

Workers

Gang

Vector

Workers

Gang

Vector

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

CUDA	Kernels:	Parallel	Threads	

A	kernel	is	a	func,on	executed		
on	the	GPU	as	an	array	of		
threads	in	parallel	

All	threads	execute	the	same		
code,	can	take	different	paths	

Each	thread	has	an	ID	Select		
input/output	data		
Control	decisions	

float x =
input[threadIdx.x];
float y = func(x);
output[threadIdx.x] =
y;

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

CUDA	Kernels:	Subdivide	into	Blocks	

Threads are grouped into blocks

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

CUDA	Kernels:	Subdivide	into	Blocks	

Threads are grouped into blocks
Blocks are grouped into a grid

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Threads are grouped into blocks
Blocks are grouped into a grid
A kernel is executed as a grid of blocks of threads

CUDA	Kernels:	Subdivide	into	Blocks	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

MAPPING OPENACC TO
CUDA

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

OpenACC	Execution	Model	on	CUDA	
•  The	OpenACC	execu,on	model	has	

three	levels:		gang,	worker,	and	vector	

•  For	GPUs,	the	mapping	is	implementa,on	
dependent.		Some	possibili,es:	

•  gang==block,	worker==warp,	and	vector==threads	of	a	warp	

•  Depends	on	what	the	compiler	thinks	is	the	best	
mapping	for	a	problem	

•  code portability is reduced

	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Gang,	Worker,	Vector	Clauses	
•  gang, worker, and vector can be added to a loop clause
•  A parallel region can only specify one of each gang, worker,

vector
•  Control the size using the following clauses on the parallel

region
•  num_gangs(n), num_workers(n), vector_length(n)

#pragma acc kernels loop gang
for (int i = 0; i < n; ++i)

#pragma acc loop
vector(128)
for (int j = 0; j < n; ++j)
...

#pragma acc parallel vector_length(128)
#pragma acc loop gang
for (int i = 0; i < n; ++i)

#pragma acc loop vector

for (int j = 0; j < n;

++j)
...

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Collapse	Clause	
collapse(n): Transform the following n tightly nested
loops into one, flattened loop.

•  Useful when individual loops lack sufficient parallelism
or more than 3 loops are nested (gang/worker/vector)

#pragma acc parallel
#pragma acc loop
collapse(2)
for(int i=0;i<N; i++)

for(int j=0; j<N; j++)
...

!$acc parallel
!$acc loop collapse(2)
do j=1,N-1
 do i=1,N-1

...

Loops must be tightly nested

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

The	“restrict”	keyword	in	C	
Ø  Avoid pointer aliasing

–  Applied to a pointer, e.g. float *restrict ptr;
–  Meaning: “for the lifetime of ptr, only it or a value directly

derived from it (such as ptr + 1) will be used to access the
object to which it points”*

–  In simple, the ptr will only point to the memory space of itself
Ø  OpenACC compilers often require restrict to determine

independence.
–  Otherwise the compiler can’t parallelize loops that access ptr
–  Note: if programmer violates the declaration, behavior is

undefined.

*http://en.wikipedia.org/wiki/Restrict

Rou,ne	Construct	
Specifies that the compiler should generate a device copy
of the function/subroutine and what type of parallelism the
routine contains.

Clauses:

gang/worker/vector/seq (sequential)

Specifies the level of parallelism contained in the
routine.

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

#pragma acc routine vector
void foo(float* v, int i, int n) {
 #pragma acc loop vector
 for (int j=0; j<n; ++j) {
 v[i*n+j] = 1.0f/(i*j);
 }
}

#pragma acc parallel loop
for (int i=0; i<n; ++i) {
 foo(v,i);
 //call on the device
}

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Routine Construct

Update	Construct	
•  Fortran

•  #pragma acc update host/device [clause ...]
•  C

•  !$acc update host/device [clause ...]
•  Used to update existing data after it has changed in its

corresponding copy (e.g. update device copy after host
copy changes)

•  Move data from GPU to host, or host to GPU.
•  Data movement can be conditional, and

asynchronous.

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Asynchronous	Execution	
•  Ac,vated	through	async[(int)] clause	on	these	direc,ves:
■  parallel

■  kernels

■  update

•  Optional integer argument may be used to explicitly refer to region
in a wait directive

•  Two activities with same value are executed in the order the
host process encounters them

•  Two activities with different values may be executed in any order

Without async: host waits for device to finish execution

With async: host continues with code following directive

The	“wait”	Directive	
Executable directive
C:
#pragma acc wait [(int)]

Fortran:
!$acc wait [(int)]

Host thread waits for completion of asynchronous activities
Optional argument:
wait for asynchronous activity with argument in async clause

#pragma acc parallel loop async(1)
// kernel A

#pragma acc parallel loop async(2)

 // kernel B

#pragma acc wait(1,2) async(3)

#pragma acc parallel loop async(3)

// wait(1,2) // or wait directive

// kernel C

#pragma acc parallel loop async(4)
wait(3)

// kernel D

#pragma acc parallel loop async(5) \
wait(3)

// kernel E
#pragma acc wait(1)

//kernel F on host

4th	HPC	Parallel	Programming	Workshop	 OpenACC	Profiling	&	Tuning	 86	

A	 B	

c	

F	

D	 E	

AGENDA	
•  Fundamentals of Heterogeneous & GPU Computing
•  What are Compiler Directives?
•  Accelerating Applications with OpenACC

•  Identify Available Parallelism
•  Parallelize loops

•  Optimize Data Locality

•  Optimize loops
•  Interoperability

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Applications

Libraries

Easy to use
Most Performance

Programming
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives

3	Approaches	to		
Heterogeneous	Programming	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Libraries:	Easy,	High-Quality	Accelera,on	

Ease of use: Using libraries enables GPU acceleration
without in-depth knowledge of GPU
programming

“Drop-in”: Many GPU-accelerated libraries follow standard
APIs, thus enabling acceleration with minimal
code changes

Quality: Libraries offer high-quality implementations of
functions encountered in a broad range of
applications

Performance: NVIDIA libraries are tuned by experts

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

“host_data” Construct
C/C++
 #pragma acc kernels host_data use_device(list)

Fortran

!$acc kernels host_data use_device(list)

•  Make the address of device data available on host

•  Specified variable addresses refer to device memory

•  Variables must be present on device

deviceptr data clause: inform compiler that the data already
resides on the GPU

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

SAXPY	

•  	A	func,on	in	the	standard	Basic	Linear	Algebra	Subrou,nes	
(BLAS)	library	

void	saxpy(int	n,	float	a,	float	*x,	float	*restrict	y)	{	
								for	(int	i	=	0;	i	<	n;	++i)	
															y[i]	=	a*x[i]	+	y[i];	
}	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

cublasSaxpy	from	cuBlAS	library	
void	cublasSaxpy(int 	n,	

const	float	*alpha,		
const	float	 *x,	
int 	incx,	
float 	*y,	
int 	incy)	

•  A	func,on	in	the	standard	Basic	Linear	Algebra	Subrou,nes		

(BLAS)	library,	which	is	a	GPU-accelerated	library	ready	to	be	
used	on	GPUs.	

•  cuBLAS:	GPU-accelerated	drop-in	library	ready	to	be	used	
on	GPUs.				

	
	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

void	saxpy_acc(int	n,	float	a,	float	*x,	float	*y)	{	
#pragma	acc	parallel	loop		
for	(int	i	=	0;	i	<	n;	++i)
{		y[i]	=	a	*	x[i]	+	y[i];	
}	a	

}	

int	main(){	
…	
//	Ini,alize	vectors	x,	y	
#pragma	acc	data	create(x[0:n])	copyout(y[0:n])	

#pragma	acc	parallel	loop		
for	(int	i	=	0;	i	<	n;	++i)	{	
x[i]	=	1.0f;	y[i]	=	0.0f;	

extern	void		
cublasSaxpy(int,float,float*,int,float*,int);	

int	main(){	
…	
//	Ini,alize	vectors	x,	y	
#pragma	acc	data	create(x[0:n])	copyout(y[0:n])	

#pragma	acc	parallel	loop		
for	(int	i	=	0;	i	<	n;	++i)	{	
x[i]	=	1.0f;	y[i]	=	0.0f;	

}	
//	Perform	SAXPY	
#pragma	acc	host_data	use_device(x,y)		
cublasSaxpy(n,	2.0,	x,	1,	y,	1);	

Saxpy_cuBLAS Saxpy_acc

}	
//	Perform	SAXPY		
saxpy_acc(n,	a,	x,	y);	
}	
…	

…	

hip://docs.nvidia.com/cuda	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

void	saxpy_acc(int	n,	float	a,	float	*x,	float	*y)	{	
#pragma	acc	parallel	loop		
for	(int	i	=	0;	i	<	n;	++i)
{		y[i]	=	a	*	x[i]	+	y[i];	
}	a	

}	

int	main(){	
…	
//	Ini,alize	vectors	x,	y	
#pragma	acc	data	create(x[0:n])	copyout(y[0:n])	

#pragma	acc	parallel	loop		
for	(int	i	=	0;	i	<	n;	++i)	{	
x[i]	=	1.0f;	y[i]	=	0.0f;	

extern	void		
cublasSaxpy(int,float,float*,int,float*,int);	

int	main(){	
…	
//	Ini,alize	vectors	x,	y	
#pragma	acc	data	create(x[0:n])	copyout(y[0:n])	

#pragma	acc	parallel	loop		
for	(int	i	=	0;	i	<	n;	++i)	{	
x[i]	=	1.0f;	y[i]	=	0.0f;	

}	
//	Perform	SAXPY	
#pragma	acc	deviceptr	(x,y)		
cublasSaxpy(n,	2.0,	x,	1,	y,	1);	

Saxpy_cuBLAS

}	
//	Perform	SAXPY		
saxpy_acc(n,	a,	x,	y);	
}	
…	

…	

hip://docs.nvidia.com/cuda	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Saxpy_acc

Optimize
Data Locality

Optimize Loop
Performance

Parallelize
Loops with
OpenACC

Code
Profiling

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

More	Than	One	GPUs?	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

•  Internal control variables (ICVs):
•  acc-device-type-var

→ Controls which type of accelerator is used

•  acc-device-num-var
→ Controls which accelerator device is used

•  Setting ICVs by API calls
•  acc_set_device_type()
•  acc_set_device_num()

•  Querying of ICVs
•  acc_get_device_type()
•  acc_get_device_num()

Device	Management	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

acc_get_num_devices

•  Returns the number of accelerator devices attached to host and
the argument specifies type of devices to count

C:
– int acc_get_num_devices(acc_device_t)

Fortran:
– Integer function acc_get_num_devices(devicetype)

OpenACC	APIs	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

acc_set_device_num
•  Sets ICV ACC_DEVICE_NUM
•  Specifies which device of given type to use for next region Can not be called

in a parallel, kernels or data region

C:
–  Void acc_set_device_num(int,acc_device_t)

Fortran:
–  Subroutine
acc_set_device_num(devicenum,devicetype)

OpenACC	APIs	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

•  acc_get_device_num
–  Return value of ICV ACC_DEVICE_NUM
–  Return which device of given type to use for next region
–  Can not be called in a parallel, kernels or data region

•  C:
–  Void acc_get_device_num(acc_device_t)

•  Fortran:
– Subroutine acc_get_device_num(devicetype)

OpenACC	APIs	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

#pragma acc routine seq
void saxpy(int n, float a, float *x, float *restrict y) {
 #pragma acc loop //kernels
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i]/2.3/1.2;
}
int main(int argc, char **argv)
{
 int n = 1<<40;
 float *x = (float*)malloc(n*sizeof(float));
 float *y = (float*)malloc(n*sizeof(float));
 for (int i = 0; i < n; ++i) {
 x[i] = 2.0f;
 y[i] = 1.0f;
 }
int gpu_ct=acc_get_num_devices(acc_device_nvidia);
int tid=0;
#pragma omp parallel private(tid) num_threads(gpu_ct)
{
 int i=omp_get_thread_num();
 acc_set_device_num(i,acc_device_nvidia);
 #pragma acc data copyin(n) copyin(x[0:n]) copyout(y[0:n])
 {
 #pragma acc kernels
 for (int j=0; j<n*n; j++)
 {
 saxpy(n, 3.0f, x, y);
 }
 }
}

Direc,ve-based	programming	with	mul,ple	GPU	cards	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

[wfeinste@shelob030 openacc17]$ pgcc -acc -mp -fast saxpy_2gpu.c
[wfeinste@shelob030 openacc17]$ nvidia-smi
Mon May 29 02:20:46 2017
+--+
| NVIDIA-SMI 352.93 Driver Version: 352.93 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla K20Xm On | 0000:20:00.0 Off | 0 |
| N/A 18C P0 62W / 235W | 87MiB / 5759MiB | 99% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla K20Xm On | 0000:8B:00.0 Off | 0 |
| N/A 19C P0 63W / 235W | 87MiB / 5759MiB | 99% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| 0 18225 C ./a.out 71MiB |
| 1 18225 C ./a.out 71MiB |

•  OpenACC	only	supports	one	GPU	
•  Hybrid	model:	

– OpenACC	+	OpenMP	to	support	mul,-GPU		
parallel	programming	

– Data	management	

Direc,ve-based	programming	on		mul,-GPUs	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Ge{ng	Started	for	Labs	
•  Connect	to	mike	cluster:	

•  ssh	username@mike.hpc.lsu.edu	

•  Login	in	to	the	interac,ve	node	
					qsub	–I	–A	xxx		–l	wall,me=2:00:00		–l	nodes=1:ppn=16			
				-q	shelob	

•  Open	another	terminal		
					ssh	–X	shelobxxx	/mikexxx	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

•  Code profiling to identify the target for parallelization
 pgprof: PGI visual profiler

•  pgcc –Minfo=ccff mycode.c –o mycode
•  pgcollect mycode
•  pgprof –exe mycode

•  Add OpenACC pragmas/directives
–  pgcc –acc –ta=nvidia,time –Minfo=accel app.c –o app

–  pgf90 –acc –ta=nvidia,time –Minfo=accel app.f90 –o app

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

		General	Steps	for	Labs	

Exercise	1	

1.  For mm_acc_v0.c, speedup the matrix multiplication code segment
using OpenACC directives/pragmas

2.  For mm_acc_v1.c:
•  Change A, B and C to dynamic arrays, i.e., the size of the matrix can be

specified at runtime;
•  Complete the function matmul_acc using the OpenACC directives;
•  Compare performance with serial and OpenMP results

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Exercise	2	

6th	HPC	Parallel	Programming	Workshop	 Parallel	Compu,ng	with	OpenACC	

Speedup the code segment using OpenACC
directives/pragmas

