
Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 1/69

Parallel Programming in
OpenMP

Xiaoxu Guan

High Performance Computing, LSU

May 29, 2017

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 2/69

Overview

• Parallel programming

◦ Prerequisite for parallel computing:

◦ Constructs for parallel execution

◦ Data communications

◦ Synchronization

• OpenMP programming: directives/pragmas, environment

variables, and run-time libraries

◦ Variables peculiar to OpenMP programming;

◦ Loop level parallelism;

◦ Nested thread parallelism;

◦ Non-loop level parallelism;

◦ Data race and false sharing;
• Summary

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 3/69

Parallel programming

• Parallel programming environment;
◦ Essential language extensions to the existing

language (Fortran 95);

◦ New constructs for directives/pragmas to existing
serial programs (OpenMP and HPF);

◦ Run-time libraries that support data
communication and synchronization (MPI and
Pthreads);

• OpenMP stands for Open Multi-Processing (API);

• OpenMP is one of the directives/pragmas approaches that

support parallelism on shared memory systems;

• OpenMP is supported by Fortran, and C/C++;

• OpenMP allows us to start from a serial code and provides

an incremental approach to express parallelism;

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 4/69

Shared-memory parallel programming

• System level and user’s application level;

• Pthreads specification is from the IEEE POSIX standard;

◦ Many control knobs at low level;

◦ Difficult to use and relatively heavyweight threads;
• Intel Cilk Plus

◦ C/C++ language extensions;
◦ Supported by GCC and Intel C/C++ compilers;
◦ Fork-join mechanism and efficient load-balancing

via work-stealing;

• Intel TBB (Threading Building Blocks)

◦ C++ libraries instead of language extension;

◦ Supports task and loop-level parallelism;
• OpenCL

◦ Offload work to devices, C/C++, Python, Java APIs;
◦ Low-level model;

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 5/69

The “Three Knights” in OpenMP

(1) Directives/pragmas need to express parallelism;
(2) Run-time libraries can dynamically control or change code

execution at run-time;
(3) Environment variables specify the run-time options;

• How does OpenMP achieve parallel computing?

◦ Specify parallel execution – parallel constructs allowing
parallel execution;

◦ Data communication – data constructs for
communication among threads;

◦ Synchronization – synchronization constructs;

• OpenMP directives/pragmas:

Fortran: !omp, comp, or *$omp [clauses]

C/C++: #pragma [clauses]

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 6/69

Parallel execution

• Constructs for parallel execution: OpenMP starts with a

single thread, but it supports the directives/pragmas to

spawn multiple threads in a fork-join model;

forkjoinfork join

• OpenMP do and parallel directives;

• OpenMP also allows you to change the number of threads at

run-time;

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 7/69

Data communication

• Each thread was assigned to a unique thread ID from 0 to

N − 1. Here N is the total number of threads;

• The key point is that there are three types of variables:

private, shared, and reduction variables;

• At run-time, there is always a common region in global

memory that allows all threads to access it, and this memory

region is used to store all shared variables;

• Each thread was also assigned a private memory region to

store all private variables. Thread a cannot access the

private variables stored in the private memory space for

thread b;

• Data communications are achieved through read and write

operations on shared variables among the threads;

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 8/69

Synchronization

• In OpenMP, synchronization is used to (1) control the access

to shared variables and (2) coordinate the workflow;

• Event and mutual exclusion synchronization;

• Event synchronization includes barrier directives, which

are either explicit or implicit; a thread has to wait until all

threads reach the same point;

• Mutual exclusion is supported through critical, atomic,

single, and master directives. All these are used to control

how many threads, which thread, or when a thread can

execute a specified code block or modify shared variables;

• Be careful with synchronization!

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 9/69

Compile OpenMP code

• Compiler options that enable OpenMP directives/pragmas:

Compiler Fortran C C++

Intel ifort -openmp icc -openmp icpc -openmp

PGI pgf90 -mp pgcc -mp pgCC -mp

GCC gfortran -fopenmp gcc -fopenmp g++ -fopenmp

• Compilers support conditional compilation in disabling

OpenMP. Intel compiler also provides the flag -openmp-stubs

at the compiler level;

• Load modules on the HPC or LONI machines:
$ module load [package name]

$ soft add [+package name] (resoft) # intel, pgi, or gcc.

• Set up an environment variable:
$ export OMP_NUM_THREADS=[number of threads]

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 10/69

Loop level parallelism

collin
Rectangle

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 11/69

First OpenMP “Hello World!” in Fortran and C

Fortran (hello_f.f90)1 program hello_world
2 implicit none
3
4 integer :: id, omp_get_thread_num
5
6 !$omp parallel
7 id = omp_get_thread_num()
8 write(*,’(1x,a,i3)’) "Hello World! from", id
9 !$omp end parallel

10
11 end program hello_world

$ export OMP_NUM_THREADS=16

on Mike-II in bash shell, or inline setting
$ ifort -o hello hello.f90 -openmp

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 12/69

First OpenMP “Hello World!” in Fortran and C

C (hello_c.c)1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <omp.h>
4
5 int main() {
6 int id;
7
8 #pragma omp parallel {
9 id = omp_get_thread_num();

10 printf("Hello World! from %3d\n", id);
11 }
12 }

$ export OMP_NUM_THREADS=16
on Mike-II in bash shell, or inline setting

$ icc -o hello hello.c -openmp

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 13/69

Loop-level parallelism

• Loop-level parallelism is one of the fine-grained approaches

supported by OpenMP;

• parallel do directive in Fortran and parallel for pragma

in C/C++;

Fortran1 !$omp parallel do [clauses]
2 do i = imin, imax, istep
3 loop body . . .

4 end do
5 [!$omp end parallel do]

C/C++1 #pragma omp parallel for [clauses]
2 for (i = imin; i <= imax; increment_expr)
3 {
4 loop body . . .;
5 }

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 14/69

Loop-level parallelism

• Other form of parallel loops:

Fortran1 !$omp parallel [clauses]
2 !$omp do [clauses]
3 do i = imin, imax, istep
4 loop body . . .

5 end do
6 !$omp end do
7 !$omp end parallel

C/C++1 #pragma omp parallel [clauses]
2 #pragma omp for [clauses]
3 for (i = imin; i <= imax; increment_expr)
4 {
5 loop body . . .;
6 }

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 15/69

Loop-level parallelism

• How about nested multiple loops? Where do we add

parallel for, right above outer loop or inner loop?

C/C++1 for (i = imin; i < imax; increment_i)
2 {
3 #pragma omp parallel for
4 for (j = jmin; j <= jmax; increment_j)
5 { loop body . . .; }
6 }

(inner loop)

C/C++ (outer loop)1 #pragma omp parallel for
2 for (i = imin; i <= imax; increment_i)
3 {
4 for (j = jmin; j <= jmax; increment_j)
5 { loop body . . .; }
6 }

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 16/69

More words on parallel loops

• OpenMP only supports Fortran do loops and C/C++ for loops

that the number of loop iterations is known for at run-time;

• However, it doesn’t support other loops, including do-while

and repeat-until loops in Fortran and while loops and

do-while loops in C/C++. In these cases, the trip count of

loop is unknown before entering the loop;

• Loop body has to follow parallel do or parallel for

immediately, and nothing in between them!

• There is an implicit barrier at the end of parallel do or

for loops;

• All loops must have a single entry point and single exit point.

We are not allowed to jump into a loop or branch out of a

loop (but . . .);

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 17/69

How to control variables in loops?

• Once we have entered the parallel region, for some variables,

multiple threads need to use the same named variables, but

they store different values at different memory locations;

these variables are called private variables;

• All private variables are undefined or uninitialized before

entry and after exit from parallel regions;

• The shared variables are also necessary to allow data

communication between threads;

• Default scope for variables: by default all the variables are

considered to be shared in parallel regions, unless they are

explicitly declared as private, reduction, or other types;

• Remember, Fortran and C/C++ may have different settings

regarding default rules;

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 18/69

How to control variables in loops?

• Let’s see how we can do it, for instance, in parallel loops;

• OpenMP provides a means to change the default rules;

• Clauses default(none), default(private), and

default(shared) in Fortran;

• But only default(none) and default(shared) in C/C++;

Fortran1 ALLOCATE(da(1:nsize), db(1:nsize))
2 !$omp parallel do default(none), &
3 !$omp private(i,temp), &
4 !$omp shared(imin,imax,istep,scale,da,db)
5 do i = imin, imax, istep
6 temp = scale * da(i)
7 da(i) = temp + db(i)
8 end do
9 !$omp end parallel do

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 19/69

How to control variables in loops?

• OpenMP reduction operations;

• The reduction variable is very special that it has both

characters of private and shared variables;

• Compiler needs to know what type of operation is associated

with the reduction variable; operation = +, *, max, min, etc;

• reduction(operation : variables_list)

Fortran1 ALLOCATE(da(1:nsize))
2 prod = 1.0d0
3 !$omp parallel do default(none), private(i), &
4 !$omp reduction(* : prod)
5 do i = imin, imax, istep
6 prod = prod * da(i)
7 end do What happens if we compile it?
8 !$omp end parallel do

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 20/69

How to control variables in loops?

• Two special “private” variables: firstprivate and

lastprivate; they are used to initialize and finalize some

private variables;

• firstprivate: upon entering a parallel do/for, the private

variable for each slave thread has a copy of the master

thread’s value;

• lastprivate: upon exiting a parallel do/for, no matter

which thread executed the last iteration (sequential), the

private variable was copied back to the master thread;

• Why do we need them? (1) all private variables are

undefined outside of a parallel region, (2) they provide a

simply way to exchange data to some extent through these

special private variables;

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 21/69

How to control variables in loops?

• In a parallel region, a given variable can only be one of

private, shared, or reduction, but it can be both of

firstprivate and lastprivate;

C/C++1 double ashift = shift ;
2 #pragma omp parallel for default(none), \
3 firstprivate(ashift), shared(a), \
4 private(i)
5 {
6 for (i = imin; i <= imax; ++i)
7 {
8 ashift = ashift + (double) i ;
9 a[i] = a[i] + ashift ;

10 }
11 }

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 22/69

How to control variables in loops?

• Exception of the default rules: Fortran and C/C++ behave

differently;

• The index in a parallel loop is always private. The index in a

sequential loop is also private in Fortran, but is shared in C

by default!

• Is the following code correct?

• Has the loop j been parallelized?

C/C++1 #pragma omp parallel for
2 for (i = imin; i <= imax; ++i)
3 {
4 for (j = jmin; j <= jmax; ++j)
5 a[i][j] = (double) (i + j) ;
6 }

• Do we have the same issues in the Fortran version?

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 23/69

How to control variables in loops?

• Exception of the default rules. Fortran and C/C++ behave

differently;

• The index in a parallel loop is always private. The index in a

sequential loop is also private in Fortran, but is shared in C

by default!

• Is the following code correct?

• Has the loop j been parallelized?

C/C++1 #pragma omp parallel for private(i,j)
2 for (i = imin; i <= imax; ++i)
3 {
4 for (j = jmin; j <= jmax; ++j)
5 a[i][j] = (double) (i + j) ;
6 }

• Do we have the same issues in the Fortran version?

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 24/69

How to control loops?

• Parallelize multiple nested loops;

• The collapse(n) for nested parallel loops (n > 1);

• Each thread takes a chunk of the i loop and a chunk of the j

loop at the same time;

• No statements in between;

C/C++1 #pragma omp parallel for private(i,j), \
2 collapse(2)
3 for (i = imin; i <= imax; ++i)
4 {
5 for (j = jmin; j <= jmax; ++j)
6 a[i][j] = (double) (i + j) ;
7 }

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 25/69

Restrictions on parallel loops

• Not all loops are parallelizable. What can we do?

• Think parallely and change your algorithms;

• We have to maintain the correctness of the results;

• One of the common mistakes is data race;

C/C++1 #pragma omp parallel for
2 {
3 for (i = imin; i <= imax; ++i)
4 r[i] = r[i] + r[i-1] ;
5 }

• Data race means that in a parallel region, the same memory

location is referred by two or more statements, and at least

one of them is a write operation;

• Data race requires more attention and might lead to incorrect

results!

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 26/69

Restrictions on parallel loops

• A closer look at at the data race: let’s run it on 2 threads and

assume that r[0]=a; r[1]=b; r[2]=c; and imin=1; imax=2;

• Note, r[1] is referred twice, and thus we have two scenarios:

if thread 0 finished first if thread 1 finished first

thread 0 thread 1 thread 1 thread 0

i = 1 i = 2 i = 2 i = 1

r[0]=a r[1]=b r[0]=a

r[1]=a+b r[2]=a+b+c r[2]=b+c r[1]=b+a

time time

• OpenMP standard does not guarantee which thread finishes

first or later;

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 27/69

Data dependence in loops

• How to identify data dependence and possibly remove it;

• A rule of thumb: (1) focus on those variables that are

accessed twice or more. If the same memory location is only

accessed (r/w) once, we don’t have data dependence for that

variable. (2) analyze all variables (mostly array elements) in

a loop body. (3) pay attention to the global variables.

C/C++1 for (i = imin; i <= imax; ++i)
2 { b[i] = b[i] + b[i-1] ; }

1 for (i = imin; i <= imax; ++i)
2 { b[i] = b[i] + a[i-1] ; }

1 for (i = 2; i <= imax; i+=2)
2 { a[i] = a[i] + a[i-1] ; }

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 28/69

Data dependence in loops

• How to identify data dependence and possibly remove it;

• A rule of thumb: (1) focus on those variables that are

accessed twice or more. If the same memory location is only

accessed (r/w) once, we don’t have data dependence for that

variable. (2) analyze all variables (mostly array elements) in

a loop body. (3) pay attention to the global variables.

C/C++1 for (i = imin; i <= imax; ++i)
2 { b[i] = b[i] + b[i-1] ; }

1 for (i = imin; i <= imax; ++i)
2 { b[i] = b[i] + a[i-1] ; }

1 for (i = 1; i <= imax/2; ++i)
2 { b[i] = b[i] + b[i+imax/2] ; }

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 29/69

Data dependence in loops

• Dataflow analysis for potential data dependence;

• Access sequence in two or more statements is critical;

• Three types of dataflows:

(1) flow dep. (2) anti-flow dep. (3) output dep.

1 for (i=0;i<10;++i)
2 { tmpi=sin(i);
3 b[i]=a[i]+tmpi; }

1 for (i=0;i<10;++i)
2 { tmpi=fact*c[i];
3 c[i]=b[i]+tmpi; }

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 30/69

Data dependence in loops

• Dataflow analysis for potential data dependence;

• Access sequence in two or more statements is critical;

• Three types of dataflows:

(1) flow dep. (2) anti-flow dep. (3) output dep.

S1 writes the var.
S2 reads the same var.

S1 reads the var.
S2 writes the same var.

(1) Flow dependence (2) Anti-flow dep.

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 31/69

Data dependence in loops

• Dataflow analysis for potential data dependence;

• Access sequence in two or more statements is critical;

• Three types of dataflows:

(1) flow dep. (2) anti-flow dep. (3) output dep.

S1 writes the var.
S2 reads the same var.

S1 reads the var.
S2 writes the same var.

(1) Flow dependence (2) Anti-flow dep.

1 for (i = imin; i <= imax; ++i)
2 { tmp = a[i] + b[i];
3 c[3] = sin(tmp); }

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 32/69

Data dependence in loops

• Dataflow analysis for potential data dependence;

• Access sequence in two or more statements is critical;

• Three types of dataflows:

(1) flow dep. (2) anti-flow dep. (3) output dep.

S1 writes the var.
S2 reads the same var.

S1 reads the var.
S2 writes the same var.

(1) Flow dependence (2) Anti-flow dep.

1 for (i = imin; i <= imax; ++i)
2 { tmp = a[i] + b[i];
3 c[3] = sin(tmp); }

Multiple statements write to the same memory location
(3) Output dependence

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 33/69

Data dependence in loops

• Is it possible to remove anti-flow and output dependences?

• The answer is yes in most cases: change the data structure;

• Can we parallelize the following serial code?

1 // array a[] and b[] are ready to use. v0 C/C++
2 for (i=0; i<nsize, i++)
3 a[i] = a[i+1] + b[i];

• This is a typical example of anti-flow dependence;

(1) For the given i-th iteration, read a[i+1] (RHS, S1);
(2) In the next i+1-th iteration, write a[i+1] (LFS, S2);

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 34/69

Data dependence in loops

• Is it possible to remove anti-flow and output dependences?

• The answer is yes in most cases: change the data structure;

• Data dependence follows a certain pattern;

• Define a new array with shifted indices;

1 // make a new array by shifting index. v1 C/C++
2 #pragma omp parallel for
3 for (i=0; i<nsize, i++) a_new[i] = a[i+1];
4
5 // array a[] and b[] are ready to use.
6 #pragma omp parallel for
7 for (i=0; i<nsize, i++)
8 a[i] = a_new[i] + b[i];

• Now the data dependences were removed;

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 35/69

How to control loops again?

• OpenMP supports three loop schedulings as clauses:

static, dynamic, and guided in the code, plus run-time

scheduling;

• schedule(type[, chunk_size])

For static, if chunk_size is given, loop iterations are divided
into multiple blocks and each block contains chun_size
iterations. The iterations will be assigned to threads in a
round-robin fashion. If chunk_size is not present, the loop
iterations will be (nearly) evenly divided and assigned to each
thread.

thread 0 thread 1 thread 2 thread 3

1
5
9
13

2
6
10
14

3
7
11

4
8
12

14 iterations
on 4 threads
in round-robin fashion

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 36/69

How to control loops again?

• For dynamic, if chunk_size is given, the partition is almost the

same as those of static. The difference is that with static,

the mapping between loop iterations and threads are done

during compilation, while for dynamic, it will be done at

run-time (therefore, more potentially overhead); if

chunk_size is not present, then it was set to 1.

• The guided scheduling means the chunk_size assigned to

threads decreases exponentially;

• Run-time scheduling: set the environment variable

OMP_SCHEDULE;

• $ export OMP_SCHEDULE=10, for instance;

• Each scheduling has its own pros and cons, so be careful

with chunk_size and potential overhead;

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 37/69

False sharing

• Let’s consider the following question: For a given integer

matrix, how do we count the total number of even matrix

elements?

• This is how the serial code looks like:

v0 C/C++1 // count the number of even integers.
2 counter_even = 0;
3 for (i=0; i<nosize; i++)
4 for (j=0; j<nosize; j++)
5 { itmp = matrix[i][j]%2;
6 if (itmp == 0) ++counter_even;
7 }
8 printf("Number of even integers is %d\n", \
9 counter_even);

• How do we parallelize these two loops?

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 38/69

False sharing

• Generally, loop-level parallelism is considered fine-grained

parallelism;

• Let’s try something different: manually decompose the data;

• This is called coarse-grained parallelism:

◦ We decompose the matrix in a row-wise and each
thread takes care of one block (for the outer loop);

◦ Then we define a counter array: each thread has
its own counter;

◦ Each thread counts the number of even matrix
elements in its own block;

◦ Finally, the master thread makes a summation;

• Reduce the overhead in the loop scheduling and maintain

good scalability and performance;

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 39/69

False sharing

1 // define the arrays.
2 counter = (int*)malloc(nothread*sizeof(int));
3 start_idx = (int*)malloc(nothread*sizeof(int));
4 end_idx = (int*)malloc(nothread*sizeof(int));
5 chunk_size = nosize / nothread + 1;

6 for (id=0; id<nothread; id++) v1 C/C++
7 { start_idx[id] = id*chunk_size;
8 end_idx[id] = MIN(start_idx[id]+chunk_size-1,\
9 nosize-1);i }

10 for(id=0;id<nothread;id++) counter[id] = 0;
11 #pragma omp parallel private(id,i,j,itmp)
12 { id = omp_get_thread_num();
13 for (i=start_idx[id]; i<=end_idx[id]; i++)
14 for (j=0; j<nosize; j++)
15 { itmp = matrix[i][j]%2;
16 if (itmp == 0) ++counter[id]; } }

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 40/69

False sharing

• False sharing affects performance: the array counter[];

• Thread only accesses its array element, but adjacent;

• What is false sharing? If two or more threads that access

the same cache line, at least one of them is to modify (write)

that cache line.

MESI protocol:
(1) Modified (M);
(2) Exclusive (E);
(3) Shared (S), and
(4) Invalid (I).

• Overhead to

synchronize the cache

and main memory;

Thread 0

core 0

Thread 1

core 1

cache line

memory

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 41/69

False sharing

• Understand memory and cache hierarchy:

• Lower-level cache (smaller, faster), but higher-level cache

(larger, slower);

Registers L1(D) 32 KB

4 cycles

40− 100 GB/s

L2 256 KB

12 cycles

30− 60 GB/s

25− 30 cycles

20− 40 GB/s

Registers L1(D) 32 KB L2 256 KB

Registers L1(D) 32 KB L2 256 KB

L3

shared

30 MB

main

memory

180− 350

cycles

4− 10

GB/s

Memory Hierarchy of Xeon Sandy-Bridge Processor

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 42/69

False sharing

• Can we remove the false sharing?

• The shared array counter[] is the root of the problems;

v2 C/C++1 #pragma omp parallel \
2 private(id,i,j,itmp,counter_own)
3 { counter_own = 0;
4 id = omp_get_thread_num();
5 for (i=start_idx[id]; i<=end_idx[id]; i++)
6 for (j=0; j<nosize; j++)
7 { itmp = matrix[i][j]%2;
8 if (itmp == 0) ++counter_own; }
9 counter[id] = counter_own; }

10 counter_even = 0;
11 for(id=0; id<nothread; id++) \
12 counter_even += counter[id];

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 43/69

False sharing

• Any improvement?

• Has the false sharing been removed completely?

• What happens if we simple do parallel for?

v3 C/C++1 // count the number of even integers.
2 counter_even = 0;
3 #pragma omp parallel for private(i,j,itmp)
4 for (i=0; i<nosize; i++)
5 for (j=0; j<nosize; j++)
6 { itmp = matrix[i][j]%2;
7 #pragma omp critical
8 if (itmp == 0) ++counter_even;
9 }

• Using critical to protect the access to the shared variable;

• Any room to improve it?

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 44/69

False sharing

• Using reduction instead of critical:

v4 C/C++1 // start a timer.
2 time_start = omp_get_wtime();
3 // count the number of even integers.
4 counter_even = 0;
5 #pragma omp parallel for private(i,j,itmp) \
6 reduction(+:counter_even)
7 for (i=0; i<nosize; i++)
8 for (j=0; j<nosize; j++)
9 { itmp = matrix[i][j]%2;
10 if (itmp == 0) ++counter_even;
11 }
12 time_end = omp_get_wtime();
13 printf("Elapsed time (sec) is \
14 %.5f\n",time_end-time_start);

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 45/69

False sharing

• Compare the performance of the different versions;

v4
v3
v2
v1

Number of OpenMP threads

S
p
ee
d
u
p

nsize = 10,000
False Sharing

SuperMIC

2018161412108642

12

10

8

6

4

2

0

v4
v3
v2
v1

Number of OpenMP threads

W
al
lt
im

e×
N
o.

of
th
re
ad
s
(s
ec
)

nsize = 10,000
False Sharing

SuperMIC

2018161412108642

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

• Which version is the best?

• In the ideal case, the walltime × No. of threads is flat;

• The coarse-grained data decomposition(v2) is the best in

terms of both speedup and walltime;

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 46/69

False sharing

• Compare the performance of the different versions;

v4
v2
v1

Number of OpenMP threads

S
p
ee
d
u
p

nsize = 100,000
False Sharing

SuperMIC

2018161412108642

18

16

14

12

10

8

6

4

2

0

v4
v2
v1

Number of OpenMP threads

W
al
lt
im

e×
N
o.

of
th
re
ad
s
(s
ec
)

nsize = 100,000
False Sharing

SuperMIC

2018161412108642

100

80

60

40

20

0

• Which version is the best?

• Performance also depends on the problem size;

• The coarse-grained data decomposition(v2) is the best in

terms of the speedup (v4) and walltime (v2);

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 47/69

False sharing

v1: manually decomposition with false sharing;
v2: manually decomposition with false sharing removed

(almost);
v3: using parallel for with critical;
v4: using parallel for with reduction;

• Don’t confuse false sharing with data race!

• Data race affects the correctness of your results;

• False sharing affects the code performance, but has

nothing to do with the correctness of data;

• Both are caused by shared variables;

“Sharing is the root of all contention!” (H. Sutter 2009)

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 48/69

Nested thread parallelism

collin
Rectangle

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 49/69

Nested thread parallelism

• The Intel MKL contains BLAS, LAPACK, Sparse BLAS and

solvers, FFT routines, . . .

• All BLAS/LAPACK routines were written in Fortran, and Intel

compiler provides the flag -mkl to link to it. It also supports a

CBLAS wrapper for C/C++ code;

• In some cases we need to call the MKL routines in a parallel

region. Note the problems of oversubscribing resources;

• -mkl=parallel Uses the threaded MKL routines. It is the

same as -mkl (default);

• -mkl=sequential Uses the non-threaded MKL routine.

• -mkl=cluster Uses the cluster part and the sequential part

of the MKL routines on multiple nodes. It is possible to link to

the cluster part and parallel routines at the same time;

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 50/69

Nested thread parallelism

• Consider matrix-matrix products that need to be repeated

multiple times;

• Link it to the MKL routine dgemm in Fortran or cblas_dgemm

routine in C;

C/C++1 // repeat "iteration" times: C = A×B.
2 #pragma omp parallel for
3 for (k=0; k<iteration; k++)
5 { cblas_dgemm(CblasRowMajor, CblasNoTrans, \
6 CblasNoTrans, nsize, nsize, nsize, \
7 alpha, matrix_a, nsize, matrix_b, nsize, \
8 beta, matrix_c, nsize); }

• The MKL routine was embedded in the parallel region;

• Explicit OpenMP threading and implicit MKL threading;

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 51/69

Nested thread parallelism

• Compile it with -openmp -mkl flags;

• On a compute node, run the following commands and

monitor the load average:

(1) Without setting anything but run $./threaded_dgemm

How many threads from OpenMP parallel for and

how many threads from the implicit MKL routine?

(2) How do we explicitly control the no. of the OpenMP

threads and the no. of the MKL threads?

$ OMP_NESTED=true MKL_DYNAMIC=false \

OMP_NUM_THREADS=2 MKL_NUM_THREADS=4

./threaded_dgemm

In this case, we ask 2 OpenMP threads and each of them

spawns 4 MKL threads;

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 52/69

Nested thread parallelism

• OMP_NUM_THREADS controls the number of OpenMP threads;

• MKL_NUM_THREADS controls the number of MKL threads;

• Setting MKL_NUM_THREADS=1 at run-time is kind of equivalent

to -mkl=sequential during compilation;

• What if we don’t explicitly specify both of the thread counts?
$ OMP_NESTED=true MKL_DYNMAIC=false ./threaded_dgemm

• How many threads spawned in total?

• OMP_NESTED enable/disable nested parallel regions. If not

defined, nested parallel regions are disabled by default;

• MKL_DYNAMIC=true allows the run-time system to detect and

decide how many threads need to spawn. This is good to

avoid oversubscription. If it is false, each MKL thread has

a chance to spawn the max of thread counts, which is bad;

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 53/69

Nested thread parallelism

• The default value of MKL_DYNAMIC is true.

• By default the MKL routines will use only 1 thread if they are

called in an OpenMP parallel region;

• “I’m not a programmer, why should I be concerned about it?”

• Some third-party applications or packages that were built on

the top of the Intel MKL may overwrite the default behavior at

run-time (call omp_set_nested() and mkl_set_dynamic());

(1) Modify the threaded_dgemm.c code by adding
omp_set_nested(1); mkl_set_dynamic(0);

(2) Compile it and run it with ./thread_dgemm
(3) Are there any problems and how can we fix it?
(4) Run it with $ OMP_NUM_THREADS=4 ./threaded_dgemm
How many threads in total?

• Use the env OMP_NUM_THREADS to control it;

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 54/69

Non-loop-level parallelism

collin
Rectangle

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 55/69

Parallel regions

• In addition to parallel do or for, most importantly, OpenMP

supports the parallelism beyond loop levels;

Fortran1 !$omp parallel [clauses]
2 code block
3 !$omp end parallel

C/C++1 #pragma omp parallel [clauses]
2 { code block ; }

• Each thread in the parallel team executes the same block of

code, but with different data;

• In parallel directives, clauses include:
private(list), shared(list), reduction(operation :
list), default(none | private | shared), if(logical
operation), copyin(list);

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 56/69

Any differences?

Fortran1 !$omp parallel
2 id = omp_get_thread_num()
3 write(*,*) "Hello World! from ", id
4 !$omp end parallel

Fortran1 !$omp parallel
2 do k = 1, 5
3 id = omp_get_thread_num()
4 write(*,*) "Hello World! from ", id, k
5 end do
6 !$omp end parallel

Fortran1 !$omp parallel do
2 do k = 1, 5
3 id = omp_get_thread_num()
4 write(*,*) "Hello World! from ", id, k
5 end do
6 !$omp end parallel do

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 57/69

Global variables in OpenMP

• In addition to automatic or static variables in Fortran and

C/C++, we also need global variables;

• common blocks or modules in Fortran, while globals in C/C++,

and we might have issues with private variables;

• Global/local variables between different code units for a

given thread;

• Private/shared variables between multiple threads in a given

code unit;

• The default data scoping rule is only apply to its lexical

region, and all rest are shared; How can we make private

variables “propagate” to other code units?

• OpenMP introduced the threadprivate directive to solve

data scoping issues;

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 58/69

Global variables in OpenMP

• !$omp threadprivate (list_common_variables) in Fortran;

• #pragma omp threadprivate (list_variables) in C/C++;

• We have global but private variables;

• The threadprivate variables are special private variables;

thus thread a cannot access the threaprivate variables

stored on thread b;

• The threadprivate variables persist from one parallel region

to another, because they are globals;

• Furthermore, OpenMP supports the copyin (list) clause to

initialize global variables on slave threads to be the values on

the master thread;

• #pragma omp parallel copyin (a,b,c) { code block; }

• Sounds similar to the Intel Xeon Phi programming?

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 59/69

Work-sharing directives

Fortran1 program mapping
2 implicit none
3 integer :: i,id,nothread, &
4 omp_get_thread_num, omp_get_num_threads
5
6 !$omp parallel private (k,id), shared(nothread)
7 id = omp_get_thread_num()
8 nothread = omp_get_num_threads()
9 !$omp do

10 do k = 1, 40
11 write(*,’(1x,2(a,i4))’) "id = ",id, " k = ",k
12 end do
13 !$omp end do [nowait]
14 !$omp end parallel
15 end program mapping

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 60/69

Work-sharing directives

join !$omp end parallel

fork !$omp parallel

1
2

3
4

7
8

!$omp do

!$omp end do

5
6

id = omp get thread num()

The point is that !$omp
do directive does not
spawn threads. In-
stead, only !$omp
parallel spawns mul-
tiple threads!

!$omp do needs to
be embedded in an
existing parallel region.

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 61/69

Work-sharing directives

• Work-sharing constructs do not spawn multiple threads; they

need to be embedded in a parallel region; if not, only one

thread will run work-sharing constructs;

• There is an implicit barrier at the end of a work-sharing

construct, but no implicit barrier upon the entry to it;

• Three work-sharing constructs:
!$omp do #pragma for

!$omp section #pragma section

!$omp single #pragma single

• A thread may work on zero, one, or more omp sections; but

only one thread runs omp single at a given time;

• Be sure there are no data dependencies between sections;

• All threads must encounter the same workflow (though it may

or may not execute the same code block at run-time);

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 62/69

Work-sharing directives

!$omp do !$omp section !$omp single
#pragma for #pragma section #pragma single

1
2

do /
for

3
4

7
8

5
6 S1 S3 S2

S
in
g
le

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 63/69

Work-sharing directives

C/C++1 #include <omp.h>
2 #define nsize 500
3 main() { int i, j, k ;
4 double a[nsize], b[nsize], c[nsize] ;
5 for (k = 0; k <= nsize, ++k) {
6 a[k] = (double) k; b[k] = a[k]; c[k] = 0.5*a[k];}
7
8 #pragma omp parallel {

9 #pragma omp sections {
10 #pragma omp section { code block_1; }
11 #pragma omp section { code block_2; }
12 #pragma omp section { code block_3; }
13 }
14 }

15 }

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 64/69

Synchronization

collin
Rectangle

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 65/69

Synchronization

• OpenMP provides the constructs for mutual exclusion:

critical, atomic, master, barrier, and run-time routines;
!$omp critical [name] code block
!$omp end critical [name] in Fortran;
#pragma omp critical [name] {code block;} in C/C++;

• [name] is an optional; But in Fortran, name here should be

unique (cannot be the same as those of do loops or if/endif

blocks, etc);

• At a given time, critical only allows one thread to run it,

and all other threads also need to go through the critical

section, but have to wait to enter the critical section;

• Don’t jump into or branch out of a critical section;

• It is useful in a parallel region;

• It might have a tremendous impact on code performance;

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 66/69

Synchronization

• The other way to think of reduction variable (say addition):

Fortran1 tsum = 0.0d0 ; nsize = 10000
2 !$omp parallel private(temp), shared(tsum,nsize)
3 temp = 0.0d0
4 !$omp do
5 do i = 1, nsize
6 temp = temp + array(i)
7 end do
8 !$omp end do
9

10 !$omp critical
11 tsum = tsum + temp
12 !$omp end critical
13
14 !$omp end parallel

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 67/69

Synchronization

• Using atomic to protect a shared variable:

C/C++1 #include <omp.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #define nsize 1000
5 int main () {
6 int i; double x = 0.0, answer;
7 #pragma omp parallel for private(i) shared(x) {
8 for (i = 1; i <= nsize; ++i) {
9 #pragma omp atomic

10 x += (double) i; } }
11 answer = (double) 0.5*(nsize+1)*nsize;
12 printf("%f\n", x);
13 printf("correct answer is %f\n", answer);
14 }

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 68/69

OpenMP run-time libraries

• integer omp_get_num_threads()

int omp_get_num_threads(void)

No. of threads in the current collaborating parallel region;

• integer omp_get_thread_num()

int omp_get_thread_num(void)

Return the thread IDs in a parallel team;

• integer omp_get_num_procs()

int omp_get_num_procs(void)

Get the number of “processors” available to the code;

• call omp_set_num_threads(num_threads)

omp_set_num_threads(num_threads)

Set number of threads to be num_threads for the following
parallel regions;

• omp_get_wtime() # Measure elapsed wall-clock time (in

seconds) relative to an arbitrary reference time;

Information Technology Services
6th Annual LONI HPC Parallel Programming Workshop, 2017

p. 69/69

Summary and Further Reading

• OpenMP loop-level, nested thread parallelism, non-loop level

parallelism, synchronization, and run-time libraries;

• How to protect shared variables; pay attention to them and

synchronization;

• Global and local variables in OpenMP programming (global

private variables);

• Data race and false sharing;

• Develop a defensive programming style;

Questions?
sys-help@loni.org

	Overview
	Overview

	Overview
	 Parallel programming
	 Shared-memory parallel programming
	 The ``blueThree Knights'' in OpenMP
	 Parallel execution
	 *-1.5mm Data communication
	 Synchronization
	 Compile OpenMP code
	
	 First OpenMP ``Hello World!'' in Fortran and C
	 First OpenMP ``Hello World!'' in Fortran and C
	 Loop-level parallelism
	 Loop-level parallelism
	 Loop-level parallelism
	 More words on parallel loops
	 How to control variables in loops?
	 How to control variables in loops?
	 How to control variables in loops?
	 How to control variables in loops?
	 How to control variables in loops?
	 How to control variables in loops?
	 How to control variables in loops?
	 How to control loops?
	 Restrictions on parallel loops
	 Restrictions on parallel loops
	 Data dependence in loops
	 Data dependence in loops
	 Data dependence in loops
	 Data dependence in loops
	 Data dependence in loops
	 Data dependence in loops
	 Data dependence in loops
	 Data dependence in loops
	 How to control loops again?
	 How to control loops again?
	 False sharing
	 False sharing
	 False sharing
	 False sharing
	 False sharing
	 False sharing
	 False sharing
	 False sharing
	 False sharing
	 False sharing
	 False sharing
	
	 Nested thread parallelism
	 Nested thread parallelism
	 Nested thread parallelism
	 Nested thread parallelism
	 Nested thread parallelism
	
	 Parallel regions
	 *-2mm Any differences?
	 Global variables in OpenMP
	 Global variables in OpenMP
	 Work-sharing directives
	 Work-sharing directives
	 Work-sharing directives
	 Work-sharing directives
	 Work-sharing directives
	
	 Synchronization
	 Synchronization
	 Synchronization
	 OpenMP run-time libraries
	 Summary and Further Reading

