
Parallel Programming

Concepts

Feng Chen

HPC User Services

LSU HPC & LONI

sys-help@loni.org

Louisiana State University

Baton Rouge

May 29, 2017

05/29/2017 6th LONI Programming Workshop, Summer 2017 1

What we’ll be doing

 Learning to write C/Fortran programs that are explicitly parallel.

– Parallel Programming Concepts

– OpenMP

– OpenACC

– Understanding Parallel Applications

05/29/2017 6th LONI Programming Workshop, Summer 2017 2

Outline

 Why parallel programming?

– Some background

 Parallel hardware and software

– Parallel computing architecture

– Parallel programming models

 Performance evaluation

– Speedup, efficiency

– Amdahl’s law

– Gustafson’s law

– Scalability

 Lab session

– Compile and run OpenMP/MPI codes

– Speedup and efficiency

– Load balancing

05/29/2017 6th LONI Programming Workshop, Summer 2017 3

Why Parallel Programming?

Parallel Programming Concepts

05/29/2017 4

Applications

6th LONI Programming Workshop, Summer 2017

Protein folding

Energy Research

Data Analysis

Drug Discovery

Climate Modeling

05/29/2017 5

Some background

6th LONI Programming Workshop, Summer 201705/29/2017 6

Serial hardware and software

6th LONI Programming Workshop, Summer 2017

input

output

programs
Computer runs one

program at a time.

05/29/2017 7

Can we have something

that just run 100x faster?

The von Neumann Architecture

6th LONI Programming Workshop, Summer 201705/29/2017 8

Main Memory

(code/data)

Central

Processing Unit

Input

Device

Output

Device

Control Unit

Arithmetic

Logic Unit

Becomes

Larger

von Neumann bottleneck

6th LONI Programming Workshop, Summer 201705/29/2017 9

CPU

memory

The von Neumann Architecture

6th LONI Programming Workshop, Summer 201705/29/2017 10

Main Memory

(code/data)

Central

Processing Unit

Input
Device

Cache

Output
Device

Control Unit

Arithmetic

Logic Unit

Core

Cache - Principle of locality

 A CPU cache is a hardware cache used by the central processing unit

(CPU) of a computer to reduce the average cost (time or energy) to

access data from the main memory.

 A cache is a smaller, faster memory, closer to a processor core, which

stores copies of the data from frequently used main memory

locations.

 Accessing one location is followed by an access of a nearby location.

– Spatial locality – accessing a nearby location.

– Temporal locality – accessing in the near future.

6th LONI Programming Workshop, Summer 201705/29/2017 11

Changing Times

 From 1986 - 2002, microprocessors were speeding like a rocket,

increasing in performance an average of 50% per year.

 Since then, it’s dropped to about 20% increase per year.

05/29/2017 6th LONI Programming Workshop, Summer 2017 12

Source:
http://www.cs.columbia.edu/~sed

wards/classes/2012/3827-spring/

Limitation:

2 GHz Consumer

4 GHz Server

A Little Physics Problem

 Smaller transistors = faster processors.

 Faster processors = increased power consumption.

 Increased power consumption = increased heat.

 Increased heat = unreliable processors.

 Solution:

– Move away from single-core systems to multicore processors.

– “core” = central processing unit (CPU)

– Introducing parallelism

• What if your problem is also not CPU dominant?

6th LONI Programming Workshop, Summer 201705/29/2017 13

The von Neumann Architecture

6th LONI Programming Workshop, Summer 201705/29/2017 14

Main Memory

(code/data)

CPU

I/O I/O

Cache

core core

cachecache

CC-interconnect

Around year

2005

Cache coherence

 Programmers have no

control over caches

and when they get updated.

6th LONI Programming Workshop, Summer 2017

A shared memory system with two

cores and two caches

05/29/2017 15

An intelligent solution

 Instead of designing and building faster microprocessors, put multiple

processors on a single integrated circuit.

05/29/2017 6th LONI Programming Workshop, Summer 2017 16

Now it’s up to the programmers

 Up to now, performance increases have been attributable to

increasing density of transistors.

– But there are inherent problems...

 Adding more processors doesn’t help much if programmers aren’t

aware of them…

– … or don’t know how to use them.

 Serial programs don’t benefit from this approach (in most cases).

05/29/2017 6th LONI Programming Workshop, Summer 2017 17

Why we need to write parallel programs

 Running multiple instances of a serial program often isn’t very useful.

– Exception: Many embarrassingly parallel problems

• Solution: E.g. GNU Parallel

 Think of running multiple instances of your favorite game.

– Run VR game twice?

– What you really want is for it to run faster.

6th LONI Programming Workshop, Summer 201705/29/2017 18

Approaches From Serial To Parallel

 Write translation programs that automatically convert serial programs

into parallel programs.

– This is very difficult to do.

– Success has been limited.

 Rewrite serial programs so that they’re parallel.

– Some coding constructs can be recognized by an automatic program

generator, and converted to a parallel construct.

– However, it’s likely that the result will be a very inefficient program.

– Sometimes the best parallel solution is to step back and devise an

entirely new algorithm.

6th LONI Programming Workshop, Summer 201705/29/2017 19

How Do We Write Parallel Programs?

 Task parallelism

– Partition various tasks carried out solving the problem among the cores.

 Data parallelism

– Partition the data used in solving the problem among the cores.

– Each core carries out similar operations on it’s part of the data.

05/29/2017 6th LONI Programming Workshop, Summer 2017 20

Professor P

05/29/2017 6th LONI Programming Workshop, Summer 2017 21

15 questions

300 exams

Professor P’s grading assistants

05/29/2017 6th LONI Programming Workshop, Summer 2017 22

TA#1
TA#2 TA#3

Division Of Work

05/29/2017 6th LONI Programming Workshop, Summer 2017 23

TA#1

TA#2

TA#3

100 exams

100 exams

100 exams

Data Parallelism Task Parallelism

TA#1

Questions 1 - 5

TA#2

Questions 6 - 10

TA#3

Questions 11 - 15

Coordination

 Cores usually need to coordinate their work.

– Communication – one or more cores send their current partial sums to

another core.

– Synchronization – because each core works at its own pace, make sure

cores do not get too far ahead of the rest.

– Load balancing – share the work evenly among the cores so that one is

not heavily loaded.

05/29/2017 6th LONI Programming Workshop, Summer 2017 24

Terminology

 Concurrent computing – a program is one in which multiple tasks can

be in progress at any instant.

 Parallel computing – a program is one in which multiple tasks

cooperate closely to solve a problem

 Distributed computing – a program may need to cooperate with other

programs to solve a problem.

05/29/2017 6th LONI Programming Workshop, Summer 2017 25

Concluding Remarks

 The laws of physics have brought us to the doorstep of multicore

technology.

 Serial programs typically don’t benefit from multiple cores.

 Automatic parallel program generation from serial program code isn’t

the most efficient approach to get high performance from multicore

computers.

 Parallel programs are usually very complex and therefore, require

sound program techniques and development.

– Task Parallelism vs Data Parallelism

– Learning to write parallel programs involves learning how to coordinate

the cores.

• Communication/Load balancing/Synchronization

05/29/2017 6th LONI Programming Workshop, Summer 2017 26

Parallel Hardware

Parallel Programming Concepts

05/29/2017 27

Parallel Hardware

 A programmer can write code to exploit.

6th LONI Programming Workshop, Summer 201705/29/2017 28

Flynn’s Taxonomy on

Computer Architectures

6th LONI Programming Workshop, Summer 2017

SISD SIMD

MISD MIMD

Single Instruction

05/29/2017 29

Multiple Instruction

Single Data Multiple Data

Flynn’s Taxonomy of Parallelism

6th LONI Programming Workshop, Summer 2017

SISD SIMD

MISD MIMD

05/29/2017 30

Standard Multi-Core Model

Standard GPU processing model

SIMD

 Parallelism achieved by dividing data among the processors.

 Applies the same instruction to multiple data items.

 Called data parallelism.

6th LONI Programming Workshop, Summer 201705/29/2017 31

SIMD example

Graphics Processing Units (GPU)
 A graphics processing pipeline converts the internal representation

into an array of pixels that can be sent to a computer screen.

 Real time graphics application programming interfaces or API’s use

points, lines, and triangles to internally represent the surface of an

object.

 GPU’s can often optimize performance by using SIMD parallelism.

– The current generation of GPU’s use SIMD parallelism, although they

are not pure SIMD systems.

6th LONI Programming Workshop, Summer 201705/29/2017 32

MIMD

 In computing, MIMD (multiple instruction, multiple data) is a technique

employed to achieve parallelism.

 Machines using MIMD have a number of processors that function

asynchronously and independently. At any time, different processors

may be executing different instructions on different pieces of data.

– Supports multiple simultaneous instruction streams operating on

multiple data streams. Each of the processors in an SMP has its own

instruction decoding unit, so they can all carry out different instructions

simultaneously (Multiple Instruction).

– All processors in an SMP address the same memory banks, but there is

no architectural requirement that they have to coordinate which

elements they are working on within that memory, so processors can

simultaneously manipulate different data elements (Multiple Data).

6th LONI Programming Workshop, Summer 201705/29/2017 33

Type Of Parallel Hardware Systems

 Shared-memory

– The cores can share access to the computer’s memory.

– Coordinate the cores by having them examine and update shared

memory locations.

 Distributed-memory

– Each computation unit has its own, private memory.

– The computation units must communicate explicitly by sending

messages across a network.

05/29/2017 6th LONI Programming Workshop, Summer 2017 34

Shared-memory Distributed-memory

Shared Memory System

 A collection of autonomous processors is connected to a memory

system via an interconnection network.

 Each processor can access each memory location.

 The processors usually communicate implicitly by accessing shared

data structures.

 Most widely available shared memory systems use one or more

multicore processors.

– (multiple CPU’s or cores on a single chip)

6th LONI Programming Workshop, Summer 201705/29/2017 35

 UMA (Uniform Memory Access) is commonly represented today by

Symmetric Multiprocessor (SMP) machines

– Identical processors

– Equal access and access times to memory

– Sometimes called CC-UMA - Cache Coherent UMA. Cache coherent

means if one processor updates a location in shared memory, all the

other processors know about the update. Cache coherency is

accomplished at the hardware level.

UMA Multicore System

6th LONI Programming Workshop, Summer 2017

Time to access all the

memory locations will be

the same for all the cores.

05/29/2017 36

NUMA multicore system

 NUMA (Non-Uniform Memory Access) often made by physically linking

two or more SMPs

– One SMP can directly access memory of another SMP

– Not all processors have equal access time to all memories

– Memory access across link is slower

– If cache coherency is maintained, then may also be called CC-NUMA -

Cache Coherent NUMA

6th LONI Programming Workshop, Summer 2017

A memory location a core is directly

connected to can be accessed faster

than a memory location that must be

accessed through another chip.

05/29/2017 37

a shelob node model

Distributed Memory System

 Clusters (most popular)

– A collection of commodity systems.

– Connected by a commodity interconnection network.

 Nodes of a cluster are individual computations units joined by a

communication network.

6th LONI Programming Workshop, Summer 2017

Also known as hybrid systems

05/29/2017 38

Infiniband

Cluster And A Cluster Rack

6th LONI Programming Workshop, Summer 2017

Rack

Infiniband

Switch

Compute

Node

3905/29/2017

The QB2 cluster

Inside A Dell C8000 Compute Node

6th LONI Programming Workshop, Summer 2017

Storage

Accelerator 1

(GPU)
Accelerator 2

(GPU)

Processor

Memory

Network

Card

Processor

4005/29/2017

Conceptual Relationship

6th LONI Programming Workshop, Summer 2017

Cluster Compute
Node

CPUs

Memory

GPUs

4105/29/2017

Conclusion Remarks

 Flynn’s taxonomy

– SIMD - GPU

– MIMD - Multicore CPU

 Shared Memory and Distributed Memory hardware systems

– Shared memory nodes:

• NUMA

– Distributed memory system:

• Cluster

05/29/2017 6th LONI Programming Workshop, Summer 2017 42

Parallel Software

Parallel Programming Concepts

05/29/2017 43

Multitasking

 Multitasking is a method to allow multiple processes to share

processors (CPUs) and other system resources.

 Each CPU executes a single task at a time. However, multitasking

allows each processor to switch between tasks that are being

executed without having to wait for each task to finish.

6th LONI Programming Workshop, Summer 201705/29/2017 44

Memory

Core Core Core Core

Hardware

Software

Operating System

Process1 Process2

Thread1 Thread2 Thread3 Thread1 Thread2

Process and Thread

 An operating system “process” is basically an instance of program in

execution

– Components of a process:

• The executable machine language program.

• Data

• Process Control Block (PCB)

 Threads are contained within processes:

– Thread is the smallest execution unit to which processor allocates time.

– Components of a thread:

• Program counter, stack, set of registers, A thread id

6th LONI Programming Workshop, Summer 201705/29/2017 45

regs./stack

Data

PCB

regs./stack

Data
PCB

regs./stack regs./stack
shared among threads

per-thread

execution context

Difference Between Process/Threads

 Process:

– A process is an instance of a computer program that is being executed.

Each process has a complete set of its own variables.

 Thread:

– A thread of execution results from a fork of a computer program into two

or more concurrently running tasks. In most cases, a thread is contained

inside a process.

– A thread itself is not a program. Multiple threads can exist within the

same process and share resources such as memory, while different

processes do not share these resources.

 The major difference:

– Multithreading threads are being executed in one process sharing

common address space whereas in multi processing different

processes have different address space. Thus creating multiple

processes is costly compare to threads.

05/29/2017 6th LONI Programming Workshop, Summer 2017 46

A process and threads

6th LONI Programming Workshop, Summer 201705/29/2017 47

The burden is on software

 Hardware and compilers can keep up the pace needed.

 From now on…

– In shared memory programs:

• Start a single process and fork threads.

• Threads carry out tasks.

– In distributed memory programs:

• Start multiple processes.

• Processes carry out tasks.

6th LONI Programming Workshop, Summer 201705/29/2017 48

SPMD – single program multiple data

 A SPMD programs consists of a single executable that can behave as

if it were multiple different programs through the use of conditional

branches.

– Both data and task parallelism

6th LONI Programming Workshop, Summer 2017

if (I’m thread or process i)

do this;

else

do that;

05/29/2017 49

Parallel Programming Models

 Shared memory programming model

– OpenMP

– Pthread

– GPU

 Distributed memory programming model (Not covered in this year’s

workshop)

– MPI

 Hybrid Model (Not covered in this year’s workshop)

– Distributed + Shared

• MPI +

– OpenMP

– Pthread

– GPU

05/29/2017 6th LONI Programming Workshop, Summer 2017 50

Distributed Memory Programming

 Distributed Memory Programming is process-based

 Processes running simultaneously communicate by exchanging

messages

– Messages can be 2-sided - both sender and receiver are involved in the

process

– Or they can be 1-sided - only the sender or receiver is involved

 Most message passing programs employ a mixture of data and task

parallism

 Processes cannot access each other’s memory

– Communication is usually explicit

05/29/2017 6th LONI Programming Workshop, Summer 2017 51

p0 p1 p2 p3

msg msg

msg

msg

Message Passing Interface (MPI)

 MPI is a portable library used for writing parallel programs using the

message passing model

– You can expect MPI to be available on any HPC platform you use

 Based on a number of processes running independently in parallel

– HPC resource provides a command to launch multiple processes

simultaneously (e.g. mpirun, aprun)

 There are a number of different implementations but all should

support the MPI 2 standard

– As with different compilers, there will be variations between

implantations but all the features specified in the standard should work.

– Examples: MVAPICH2, OpenMPI, MPICH2

05/29/2017 6th LONI Programming Workshop, Summer 2017 52

Distributed Memory Prons and Cons

 Advantages:

– Flexible - almost any parallel algorithm imaginable can be implemented

– Scaling usually only limited by the choice of algorithm

– Portable - MPI (Message Passing Interface) library is provided on all

HPC platforms

 Disadvantages:

– Parallel routines usually become part of the program due to explicit

nature of communications

• Can be a large task to retrofit into existing code

– May not give optimum performance on shared memory machines

– Can be difficult to scale to very large number of processes (>100,000)

due to overheads

05/29/2017 6th LONI Programming Workshop, Summer 2017 53

Shard Memory Programming

 Shared memory programming is usually based on threads

– Although some hardware/software allows processes to be programmed

as if they share memory

– Sometimes known as Symmetric Multi-processing (SMP) although this

term is now a little old-fashioned

 Most often used for Data Parallelism

– Each thread operates the sma set of instuctions on a separate protion of

the data

 More difficult to use for Task Parallelism

– Each thread performs a different set of instructions

05/29/2017 6th LONI Programming Workshop, Summer 2017 54

Shared Memory Concepts

 Threads “communicate” by having access to the same memory space

 Any thread can alter any bit of data

 No explicit communicate between the parallel tasks

05/29/2017 6th LONI Programming Workshop, Summer 2017 55

p0

P0(T0) P0(T1)

a0 a4

a1 a5

a2 a6

a3 a7

Nondeterminism

6th LONI Programming Workshop, Summer 2017

. . .
printf ("Thread %d > my_val = %d\n", my_rank , my_x) ;

. . .

Thread 0 > my_val = 7

Thread 1 > my_val = 19

Thread 1 > my_val = 19

Thread 0 > my_val = 7

05/29/2017 56

Nondeterminism

6th LONI Programming Workshop, Summer 2017

my_val = Compute_val (my_rank) ;

x += my_val ;

05/29/2017 57

Nondeterminism

 Race condition

 Critical section

 Mutually exclusive

 Mutual exclusion lock (mutex, or simply lock)

6th LONI Programming Workshop, Summer 2017

my_val = Compute_val (my_rank) ;

Lock(&add_my_val_lock) ;

x += my_val ;

Unlock(&add_my_val_lock) ;

05/29/2017 58

Shared Memory Programming Models
 Pthread

– POSIX Threads

 OpenMP

– (Open Multi-Processing) is an application programming interface (API)

that supports multi-platform shared memory multiprocessing

programming

 Threading Building Blocks

– A C++ template library developed by Intel for parallel programming on

multi-core processors.

 Cilk

– Cilk, Cilk++ and Cilk Plus are general-purpose programming languages

designed for multithreaded parallel computing.

 OpenCL

– OpenCL is an open standard that can be used to program CPUs, GPUs,

and other devices from different vendors.

 CUDA

– CUDA is a parallel computing platform and application programming

interface (API) model created by NVidia.

05/29/2017 6th LONI Programming Workshop, Summer 2017 59

Shared Memory Prons and Cons

 Advantages:

– Conceptually simple

– Usually minor modifications to existing code

– Often very portable to different architectures

 Disadvantages

– Difficult to implement task-based parallelism, lack of flexibility

– Often does not scale well

– Requires a large amount of inherent data parallelism (e.g. large arrays)

to be effective

– Can be surprisingly difficult to get performance

05/29/2017 6th LONI Programming Workshop, Summer 2017 60

Performance

Parallel Programming Concepts

05/29/2017 61

Take Timing

 In order to determine the run time of a code, we usually need to

include calls to a timer function in our source code.

 We are more interested in wall clock time, not CPU time

– The program may be “active”-for example, waiting for a message-even

when the CPU is idle.

 To take parallel times:

– synchronize the processes/threads before starting the timer,

– after stopping the timer, find the maximum elapsed time among all the

processes/threads.

 Because of system variability, we usually need to run a program

several times with a given data set,

– Usually take the minimum time from the multiple runs.

 To reduce variability and improve overall run-times

– Usually run no more than one thread per core.

05/29/2017 6th LONI Programming Workshop, Summer 2017 62

Typical Timing Functions

 Unix, Linux System Call

#include <sys/time.h>

int gettimeofday(struct timeval *tv, struct timezone *tz);

 OpenMP

double omp_get_wtime(void);

 MPI

double MPI_Wtime(void)

 Typical code segments:

double start_time = get_current_time_function();

// barrier funtion if needed

// code segments to be timed

double time_elapsed = get_current_time_function() - start_time;

 In Bash:

TIC=$(date +%s.%N);

your code to be timed ...

TOC=$(date +%s.%N);

DURATION=$(echo "$TOC - $TIC" | bc -l)

05/29/2017 6th LONI Programming Workshop, Summer 2017 63

Timing Example
#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <omp.h>

int main(char *argc, char **argv) {

const long N = 1000000000;

double sum=0.0;

long i;

// openmp directives

double start_time = omp_get_wtime();

#pragma omp parallel for reduction(+:sum)

for (i=0;i<N;i++)

sum += i*2.0+i/2.0; // doing some floating point operations

double time = omp_get_wtime() - start_time;

printf("time= %4.3e\n", time);

printf("sum= %4.3e\n", sum);

return 0;

}

05/29/2017 6th LONI Programming Workshop, Summer 2017 64

Speedup

 Number of cores = p

 Serial run-time = Tserial

 Parallel run-time = Tparallel

 Speedup of a parallel program

 Linear speedup:

05/29/2017 65

serial

parallel

T
S

T

serial
parallel

T
T

p

6th LONI Programming Workshop, Summer 2017

Not the time from running a parallel

code using one thread/process

Efficiency Of A Parallel Program

 Definition of efficiency:

05/29/2017 6th LONI Programming Workshop, Summer 2017 66

serial

parallel serial

parallel

T

T TS
E

p p p T

Speedups And Efficiencies Of

A Parallel Program - Results
 Example Parallel Program

05/29/2017 6th LONI Programming Workshop, Summer 2017 67

p 1 2 4 8 16

T 2.74 1.38 0.70 0.37 0.21

S 1.00 1.99 3.93 7.50 12.91

E=S/p 1.00 0.99 0.98 0.94 0.81

Speedups And Efficiencies

On Different Problem Sizes

p 1 2 4 8 16

Original

N=1.0E+09

T 2.74 1.38 0.70 0.37 0.21

S 1.00 1.99 3.93 7.50 12.91

E=S/p 1.00 0.99 0.98 0.94 0.81

Double

N=2.0E+09

T 5.47 2.74 1.39 0.72 0.39

S 1.00 1.99 3.94 7.61 13.99

E=S/p 1.00 1.00 0.98 0.95 0.87

Half

N=5.0E+08

T 1.37 0.69 0.36 0.19 0.11

S 1.00 1.97 3.84 7.10 11.93

E=S/p 1.00 0.99 0.96 0.89 0.75

Quarter

N=2.5E+08

T 0.69 0.35 0.19 0.10 0.07

S 1.00 1.97 3.71 6.78 9.16

E=S/p 1.00 0.99 0.93 0.85 0.57

6th LONI Programming Workshop, Summer 201705/29/2017 68

Speedup

6th LONI Programming Workshop, Summer 201705/29/2017 69

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

d
u

p

Threads

Speedup vs Threads for Different Problem Size
(Original Size N=10^8)

Original Size

Double Size

Half Size

Quarter Size

Efficiency

6th LONI Programming Workshop, Summer 201705/29/2017 70

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

d
u

p

Threads

Efficiency vs Threads for Different Problem Size

Original Size

Double Size

Half Size

Quarter Size

Effect of Overhead

 Many parallel programs are developed by dividing the work of the

serial program among the processes/threads and adding in the

necessary “parallel overhead” such as mutual exclusion or

communication.

 Toverhead denotes the parallel overhead:

 To increase Speedup and Efficiency with increasing problem size,

what kind of condition should be satisfied for Tserial and Toverhead?

– See Exercise 2b)

6th LONI Programming Workshop, Summer 201705/29/2017 71

serial
parallel overhead

T
T T

p

Scalability of Parallel Systems

 Amadahl’s Law

– The size of the sequential fraction f determines how much speedup is

achievable

– One processor

– p processors

05/29/2017 6th LONI Programming Workshop, Summer 2017 72

1

11 1
1

serial

serial
serial

T p
S

T ff p
f T f f

p p

serialf T 1 serialf T

 1 serialT
f

p

Serial Section Parallel Section

Effect of Amdahl’s Law

 Plot of Speedup vs Number of processors at different f (parallel

portion)

05/29/2017 6th LONI Programming Workshop, Summer 2017 73

0.0

5.0

10.0

15.0

20.0

25.0

1 8 64 512 4096 32768

Sp
e

e
d

u
p

Number of Processors

f=0.05

f=0.10

f=0.50

f=0.75

Serial Portion

Amdahl’s Law

 Unless virtually all of a serial program is parallelized, the possible

speedup is going to be very limited — regardless of the number of

cores available.

 This is pretty daunting. Should we give up and go home?

6th LONI Programming Workshop, Summer 201705/29/2017 74

Gustafson's Law

 Addresses the shortcomings of Amdahl's law, which is based on the

assumption of a fixed problem size.

– Apply p processors to a task that has serial fraction f , scaling the task

to take the same amount of time as before, the speedup is:

05/29/2017 6th LONI Programming Workshop, Summer 2017 75

f 1 f p

 1 f

Serial

Section

Parallel section that

would have to be

executed in p serial

stages

f

 1 1S f f p p f p

Effect of Gustafson’s Law

 Plot of Speedup vs Number of processors at different f (serial portion)

05/29/2017 6th LONI Programming Workshop, Summer 2017 76

0

200

400

600

800

1000

1200

0 200 400 600 800 1000

Sp
e

e
d

u
p

Number of Processors

f=0.05

f=0.10

f=0.50

f=0.75

Serial Portion

Gustafson’s Law - Analogy

05/29/2017 6th LONI Programming Workshop, Summer 2017 77

v.s.

A

B

B

B

Commuting

Time:

Biological

Brains:

Amdahl vs Gustafson

 Amdahl’s law based on fixed problem size.

 Gustafson’s law based on fixed run time.

05/29/2017 6th LONI Programming Workshop, Summer 2017 78

Serial work Parallel work

P=1

P=2

P=4

P=8

Serial work Parallel work

P=1

P=2

P=4

P=8

Strong and Weak Scaling

 If we can find a corresponding rate of increase in the problem size so

that the program always has efficiency E, then the program is

scalable.

– Strong Scaling: Keeping the problem size fixed and pushing in more

workers or processors

• Goal: Minimize time to solution for a given problem

– Weak Scaling: Keeping the work per worker fixed and adding more

workers/processors (the overall problem size increases)

• Goal: solve the larger problems

05/29/2017 6th LONI Programming Workshop, Summer 2017 79

Scalability Example

 Serial execution:

 Parallel execution:

 Efficiency:

 To see if the program is scalable, we increase the number of

processors by a factor of k, and we want to find the factor x that we

need to increase the problem size by so that E is unchanged:

 Solve the above equation, we have:

 Thus the program is scalable (Efficiency will be unchanged)

05/29/2017 6th LONI Programming Workshop, Summer 2017 80

serialT n

1parallel

n
T

p

 1
serial

parallel

T n n
E

p T p n p n p

'
xn n

E E
xn kp n p

x k

Designing Parallel Programs

Parallel Programming Concepts

05/29/2017 816th LONI Programming Workshop, Summer 2017

Design a Parallel Program

 How to design a parallel program

– Partitioning

• Divide the work among the processes/threads so that

– Each process/thread gets roughly the same amount of work;

– Communication is minimized.

– Communication

• Arrange for the processes/threads to synchronize.

– Synchronization

• Arrange for communication among processes/threads

05/29/2017 6th LONI Programming Workshop, Summer 2017 82

Partitioning

 There are two basic ways to partition computational work among

parallel tasks:

05/29/2017 6th LONI Programming Workshop, Summer 2017 83

domain decomposition functional decomposition

Load Balancing

 Load balancing

– Distributing approximately equal amounts of work among tasks so that

all tasks are kept busy all of the time.

– Important to parallel programs for performance reasons.

 How to Achieve Load Balance:

– Equally partition the work each task receives, e.g.:

• For array/matrix operations where each task performs similar work, evenly

distribute the data set among the tasks.

• For loop iterations where the work done in each iteration is similar, evenly

distribute the iterations across the tasks.

– Use dynamic work assignment

• It may become necessary to design an algorithm which detects and handles

load imbalances as they occur dynamically within the code.

05/29/2017 6th LONI Programming Workshop, Summer 2017 84

Communications

 Factors to Consider:

– Cost of communications

– Latency vs. Bandwidth

• latency is the time it takes to send a minimal (0 byte) message from point A

to point B.

• bandwidth is the amount of data that can be communicated per unit of time.

– Synchronous vs. asynchronous communications

– Scope of communications

• Point-to-point

• Collective

– Efficiency of communications

– Overhead and Complexity

 Overall, try to minimize the communication!

05/29/2017 6th LONI Programming Workshop, Summer 2017 85

Synchronization

 Managing the sequence of work and the tasks performing it is a

critical design consideration for most parallel programs.

– Can be a significant factor in program performance (or lack of it)

– Often requires "serialization" of segments of the program.

 Types of Synchronization:

– Barrier

– Lock/semaphore

– Synchronous communication operations

05/29/2017 6th LONI Programming Workshop, Summer 2017 86

Communication and Synchronization

 In shared-memory programs, we often implicitly communicate among

the threads by synchronizing them.

 In distributed-memory programs, we often implicitly synchronize the

processes by communicating among them.

05/29/2017 6th LONI Programming Workshop, Summer 2017 87

A shared-memory system A distributed-memory system

Questions?

Parallel Programming Concepts

05/29/2017 886th LONI Programming Workshop, Summer 2017

Lab and Exercise Session

Parallel Programming Concepts

05/29/2017 89

Quiz

 Quiz link

– https://goo.gl/forms/j8B1HXtrrNoCE0vx1

05/29/2017 906th LONI Programming Workshop, Summer 2017

https://goo.gl/forms/j8B1HXtrrNoCE0vx1

 Open a terminal and log onto SuperMike2, download the git repository,

compile the examples:
log onto SuperMike2, hpctrn?? is your training account

[user@locallaptop]$ ssh -X hpctrn??@mike.hpc.lsu.edu

submit an interactive job to shelob queue

[hpctrn01@mike2]$ qsub -I -X -l nodes=1:ppn=16,walltime=8:00:00 -q shelob -A hpc_trn17mike2

qsub: waiting for job 658202.mike3 to start

...job welcome message...

[hpctrn01@shelob001]$ git clone https://github.com/lsuhpchelp/loniworkshop2017.git

[hpctrn01@shelob001 ~]$ git clone https://github.com/lsuhpchelp/loniworkshop2017.git

Initialized empty Git repository in /home/hpctrn01/loniworkshop2017/.git/

...

Unpacking objects: 100% (47/47), done.

[hpctrn01@shelob001 ~]$ cd loniworkshop2017/day1morning/exercise/

build all executables

[hpctrn01@shelob001 exercise]$ make

[hpctrn01@shelob001 exercise]$ vi ~/.soft

Add +Python-2.7.3-gcc-4.4.6 to ~/.soft and then resoft, for plotting purpose

[hpctrn01@shelob001 exercise]$ resoft

[hpctrn01@shelob001 exercise]$ which python

/usr/local/packages/Python/2.7.3/gcc-4.4.6/bin/python

Exercise 0 - Log onto Cluster

05/29/2017 916th LONI Programming Workshop, Summer 2017

mailto:hpctrn??@mike.hpc.lsu.edu
https://github.com/lsuhpchelp/loniworkshop2017.git

Exercise 1

 Compile and run OpenMP, MPI programs

– There is an example OpenMP and MPI programs provided for you, compile the

two programs using the intel (recommended) or gcc compiler

a) Observe the nondeterminism of the thread/process output

compile and run the hello world openmp code

$ icc -openmp hello_openmp.c -o hello_openmp.out

$./hello_openmp.out

compile and run the hello world mpi code

$ mpicc hello_mpi.c -o hello_mpi.out

$ mpirun -np 16 ./hello_mpi.out

b) Observe the running multiple processes/threads using the “top” utility (with the H

option for openmp codes)

run the mpi laplacian solver

$./run_lp_mpi.sh

open another terminal and ssh to the compute node, then type “top”

run the openmp laplacian solver

$./run_lp_omp.sh

open another terminal and go to the compute node, then type “top -H”

05/29/2017 926th LONI Programming Workshop, Summer 2017

Exercise 1

 b) Expected results from the “top”

o For the MPI version, you should see 16 processes:

o For the OpenMP version, you should see 16 threads (using top –H):

05/29/2017 6th LONI Programming Workshop, Summer 2017 93

Exercise 2 Performance

 a)

– Suppose the run-time of a serial program is given by Tserial =n2, where

the units of the run-time are in microseconds. Suppose that a

parallelization of this program has run-time

– Write a program that plots the speedups and efficiencies of this program

for various values of n and p. Run your program with n = 10, 20, 40, 80,

160, 320, and p = 1, 2, 4, 8, 16, 32, 64, 128.

– You can use the python template script provided for you (ex2a.py),

complete the portion (in FIXME) that calculates the Speedup S and

Efficiency E, or you can use your most comfortable plotting tool), based

on the plot:

What happens to the speedups and efficiencies as p is increased and n is

held fixed?

What happens when p is fixed and n is increased?

05/29/2017 6th LONI Programming Workshop, Summer 2017 94

 2

2logparallelT n p

Exercise 2 Performance

 b)

– Suppose that Tserial and Toverhead are both functions of the problem size n:

– Also suppose that we fix p and increase the problem size n.

 To increase Speedup and Efficiency with increasing problem size, what

condition should be satisfied for Tserial and Toverhead?

05/29/2017 6th LONI Programming Workshop, Summer 2017 95

parallel serial overheadT T p T

Exercise 3 - Scalability

 Compile and run the OpenMP version of the floating point sum

operation (floatoper_omp_par.c). Perform strong scaling and weak

scaling test using this code:

• For strong scaling, the Efficiency E:

• For weak scaling, the Efficiency E:

– Try to change the problem size and see the difference in efficiency

– Hint: You can use the bash scripts provided for you, and try to change

the variable BASE(the problem size N in the for loop) in

perf_omp_strong.sh and perf_omp_weak.sh, observe the

Efficiency v.s. Number of processors curve at different problem size N:

[fchen14@mike388 solution]$./perf_omp_strong.sh

[fchen14@mike388 solution]$./perf_omp_weak.sh

[fchen14@mike388 solution]$./ex3_perf_omp.py

05/29/2017 6th LONI Programming Workshop, Summer 2017 96

 strong serial parallelE T p T

 weak serial parallelE T T

Exercise 4 Load Balancing

 An MPI code need to process n data elements (indexed from 0 to n-1)

using p processes (indexed from 0 to p-1) , in order to achieve load

balancing, each core (process) should be assigned roughly the same

number of elements of computations. (loadbalance_mpi.c)

– Try to complete the code (in FIXME) so that each process (identified by

pid) prints the start and end index of the elements, for the below

example the output should be similar to:

To compile the program:

[fchen14@mike275 exercise]$ mpicc loadbalance_mpi.c

start 3 processes to process 13 elements

[fchen14@mike275 exercise]$ mpirun -np 3 ./a.out 13

pid:0, my_start=0, my_size=5, my_end=4

pid:1, my_start=5, my_size=4, my_end=8

pid:2, my_start=9, my_size=4, my_end=12

05/29/2017 6th LONI Programming Workshop, Summer 2017 97

0 1 2 3 4 5 6 7 8 9 10 11 12elements n=13

p0 p1 p2processes p=3

start_index
end_index

