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Overview

• Parallel applications and programming on shared-memory

and distributed-memory machines

• We follow the parallelism methodology from top to bottom

• Heterogeneous and homogeneous systems

• Models of parallel computing

• Multi-node level: MPI

• Single-node level: MPI/OpenMP

• Hybrid model: MPI + OpenMP

• Compute-bound and memory-bound applications

• Socket and Processor level: NUMA and affinity

• Core level: SIMD (pipeline and vectorization)

• Summary
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Parallel computing

• Parallel computing means a lot;

• It almost covers everything in the HPC community;

• Many programming languages support parallel computing:

◦ Fortran, C, and C++;

◦ Matlab, Mathematica;

◦ Python, R, Java, Hadoop, . . .;

◦ Parallel tools: GNU parallel, parallel shells, . . .;

• They support parallel computing at very different levels

through a variety of mechanisms;

• From embarrassment computing to parallel computing that

needs extensively data communication;

• Beyond the language level: parallel filesystems: lustre, and

the fabric network: Ethernet and Infiniband;
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Parallel computing

• Why parallel or concurrency computing?

• Goes beyond the single-core capability (memory and flops

per unit time), and therefore increases performance;

• Reduces wall-clock time, and saves energy;

• Finishes those impossible tasks in my lifetime;

• Handles larger and larger-scale problems;

Consider a production MPI job:

(a) Runs on 2, 500 CPU cores
(b) Finishes in ≃ 40 hours (wall-clock time)
(c) Charged CPU hours are 2, 500 × 40 = 0.1 M SUs
(d) It is about 100, 000/24/365 ≃ 11 years on 1 CPU core!

• Is parallel computing really necessary?
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Parallel computing

• Why parallel or concurrency computing?

• Goes beyond the single-core capability (memory and flops

per unit time), and therefore increases performance;

• Reduces wall-clock time, and saves energy;

• Finishes those impossible tasks in my lifetime;

• Handles larger and larger-scale problems;

• There is no free lunch, however!

• Different techniques other than serial coding are needed;

• Effective parallel algorithms in terms of performance;

• Increasing flops per unit time or throughput is one of our

endless goals in the HPC community;

• Think in parallel;

• Start parallel programming as soon as possible;
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Parallel computing

• Our goal here is to “Understanding Parallel Applications”;

• This is no simple and easy way to master parallel computing;

• Evolving software stack and architecture complexity;

• HPC is one of essential tools in my research;

• And my goal is to advance scientific progress;

• I’m not the code developer, what can I do?

• I have been a programmer for years, is there anything else I

should be concerned?

• Besides, “Understanding Parallel Applications” requires

basic knowledge of the hardware;

• Provide you a concrete introduction to parallel computing

and parallel architecture;

• Focus on performance and efficiency analysis;
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Parallel computing

• Parallel computing can be viewed from different ways;

• Flynn’s taxonomy: execution models to achieve parallelism

◦ SISD: single instruction, single data;
◦ MISD: multiple instruction, single data;
◦ SIMD: single instruction, multiple data;
◦ MIMD: multiple instructions, multiple data (or tasks);
◦ SPMD: single program, multiple data;

• Memory access and programming model:

◦ Shared memory: a set of cores that can access the
common and shared physical memory space;

◦ Distributed memory: No direct and remote access
to the memory assigned to other processes;

◦ Hybrid: they are not exclusive;
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Parallel computing

• Parallel computing can be viewed from different ways;

• Flynn’s taxonomy: execution models to achieve parallelism

◦ SISD: single instruction, single data;
◦ MISD: multiple instruction, single data;
◦ SIMD: single instruction, multiple data;
◦ MIMD: multiple instructions, multiple data (or tasks);
◦ SPMD: single program, multiple data;

• Model of workload breakup: data and task parallelism

1 for i from imin to imax, do
2 c(i) = a(i) + b(i)
3 end do Data parallelism

1 { for c(i) = a(i) + b(i) }
2 { for d(j) = sin(a(j)) } Task parallelism

• All the levels of parallelism found on a production cluster;
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Parallel computing
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Multi-node level parallelism
MPI applications on distributed-memory systems

collin
Text Box
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Multi-node level parallelism

• On a distributed-memory system:

◦ Each node has its own local memory;

◦ There is no physically global memory;

◦ Message passing: send/receive message through
network;

• MPI (Message Passing Interface) is a default programming

model on DM systems in HPC user community;

• MPI-1 started in 1992. The current standard is MPI 3.x.

• MPI standard is not an IEEE or ISO standard, but a de facto

standard in HPC world;

• Don’t be confused between MPI implementations and MPI

standard;

• MPICH, MVAPICH2, OpenMPI, Intel MPI, . . .;
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Multi-node level parallelism

• Requirements for parallel computing;

• How does MPI meet these requirements?

◦ Specify parallel execution – single program on
multiple data (SPMD) and tasks;

◦ Data communication – two- and one-side
communication (explicit or implicit message
passing);

◦ Synchronization – synchronization functions;

(1) Expose and then express parallelism;
(2) Must exactly know the data that need to be

transferred;
(3) Management of data transfer;
(4) Manually partition and decompose;
(5) Difficult to program and debug (deadlocks, . . .);
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Multi-node level parallelism

• Requirements for parallel computing;

• How does MPI meet these requirements?

◦ Specify parallel execution – single program on
multiple data (SPMD) and tasks;

◦ Data communication – two- and one-side
communication (explicit or implicit message
passing);

◦ Synchronization – synchronization functions;

(6) SPMD: All processes (MPI tasks) run the same
program. They can store different data but in the
same variable names because of distributed
memory location. Each process has its own
memory space;

(7) Less data communication, more computation;
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MPI collective communication

• Collective communications: synchronization, data

movement, and collective computation;
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MPI examples on multiple nodes

• Use Intel MPI (impi), MVAPICH2, and OpenMPI on Mike-II;

• impi: better performance on Intel architecture;

• It also supports diagnostic tools to report MPI cost;

Example 1: the open source miniFE code

(1) It is a part of the miniapps package;
(2) It is written in C++;
(3) It mimics the unstructured finite element

generation, assembly, and solution of a 3D
physical domain;

(4) It can be thought as the kernel part in many
science and engineering problems;

(5) Output the performance in FLOPS, walltime, and
MFLOP/s;
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MPI examples on multiple nodes

• Benchmark your parallel applications;

• The baseline info is important for further tuning;

• It also allows us to determine the optimal settings to run the

application more efficiently;

◦ Have a better understanding of your target machine;

◦ Set up a non-trivial case (or maybe an artificial test case, if
multiple production runs are not feasible);

◦ Know how large your workload is in the test case and make it
measurable;

◦ Set up the correct MPI run-time environment, if necessary;

◦ Be aware of the issues with high load, memory usage, and
intensive swapping;

◦ Any computational “experiments” should be reproducible;

◦ Tune only one of the multiple control knobs at a given time;
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MPI examples on multiple nodes

• Load Intel MPI (+impi-4.1.3.048-Intel-13.0.0);

• Run the pre-built miniFE.x on 1 or 2 nodes;

wrt 2 MPI tasks
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• The base info with 1 MPI task is not always available;

• On 2 nodes, the max FP perf. is 23.8 GFLOP/s (3.6%);

• Is it a compute-bound or memory-bound application?
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MPI examples on multiple nodes

• Load Intel MPI (+impi-4.1.3.048-Intel-13.0.0);

• Run the pre-built miniFE.x on 2 nodes;

1 $ mpirun -np 32 ./miniFE.x nx=500

1 Starting CG solver ... mpiicpc/mpiicc/mpiifort
2 Initial Residual = 501.001
3 . . .
4 Final Resid Norm: 0.00397271
• Check the yaml log:

1 # 32 cores on Mike-II regular nodes.
2 Total:
3 Total CG Time: 77.6081
4 Total CG Flops: 1.68522e+12
5 Total CG Mflops: 21714.4
6 Time per iteration: 0.38804
7 Total Program Time: 110.087
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MPI examples on multiple nodes

• Load MVAPICH2 (+mvapich2-1.9-Intel-13.0.0);

• Run the pre-built miniFE.x on 2 nodes;

1 $ mpirun -np 32 ./miniFE.x nx=500

1 Starting CG solver ... mpicxx/mpicc/mpif90
2 Initial Residual = 501.001
3 . . .
4 Final Resid Norm: 0.00393607
• Check the yaml log:

1 # 32 cores on Mike-II regular nodes.
2 Total:
3 Total CG Time: 79.0407
4 Total CG Flops: 1.68522e+12
5 Total CG Mflops: 21320.9
6 Time per iteration: 0.395203
7 Total Program Time: 104.769
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MPI examples on multiple nodes

• Load OpenMPI-1.6.2 (+openmpi-1.6.2-Intel-13.0.0);

• Run the pre-built miniFE.x on 2 nodes;

1 $ mpirun -np 32 ./miniFE.x nx=500

1 Starting CG solver ... mpicxx/mpicc/mpif90
2 Initial Residual = 501.001
3 . . .
4 Final Resid Norm: 0.00393607
• Check the yaml log:

1 # 32 cores on 2 Mike-II regular nodes.
2 Total:
3 Total CG Time: 221.005
4 Total CG Flops: 1.68522e+12
5 Total CG Mflops: 7625.23
6 Time per iteration: 1.10503
7 Total Program Time: 324.937
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MPI examples on multiple nodes

• The same performance with Intel MPI and MVAPICH2;

• OpenMPI-1.6.2 seems much slower than the ones above;

(1) High average load > 100 per node;
(2) Control the number of OpenMP threads;

1 $ OMP_NUM_THREADS=1 \
mpirun -np 32 ./miniFE.x nx=500

1 # 32 cores on 2 Mike-II regular nodes.
2 Total:
3 Total CG Time: 104.758
4 Total CG Flops: 1.68522e+12
5 Total CG Mflops: 16086.7
6 Time per iteration: 0.523792
7 Total Program Time: 182.978

(3) After that, the performance difference is ∼1.33×;
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MPI examples on multiple nodes

• Use OpenMPI-1.6.2, but reduce MPI tasks to 23;

1 $ OMP_NUM_THREADS=1 \
mpirun -np 23 ./miniFE.x nx=500

1 # 23 cores on 2 Mike-II regular nodes.
2 Total:
3 Total CG Time: 2194.6
4 Total CG Flops: 1.68522e+12
5 Total CG Mflops: 767.89
6 Time per iteration: 10.973
7 Total Program Time: 2365.55

• That’s too bad: 20× slower! What happened with -np 23?

• Memory footprint is ∼46 GB with nx=500;

• Load imbalance: (1) wrt process or MPI task, (2) wrt node;

• Intense swapping and large swap space in use (≫10 GB);
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MPI examples on multiple nodes

• Use OpenMPI-1.6.2, but reduce MPI tasks to 23;

• There are 16 MPI tasks on the 1st node, while the rest of the

7 tasks on the 2nd node – load imbalance wrt nodes;

• Swapping mechanism was triggered differently;

1 $ OMP_NUM_THREADS=1 \
mpirun -np 23 -npernode 12 ./miniFE.x nx=500

1 # 23 cores on 2 Mike-II regular node.
2 # 12 on 1st node, 11 on 2nd node.
3 Total:
4 Total CG Time: 104.151
5 Total CG Flops: 1.68522e+12
6 Total CG Mflops: 16180.6
7 Time per iteration: 0.520753
8 Total Program Time: 179.608

• Note that it is fine to have a little swapping (∼20 MB here);
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Latency and throughput

Latency and throughput matter
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MPI examples on multiple nodes

• No need to specify a machine file explicitly in the 3 cases;

• Try OpenMPI-1.6.5 (+openmpi-1.6.5-Intel-13.0.0);

1 $ OMP_NUM_THREADS=1 \
mpirun -np 32 ./miniFE. . .x nx=500

1 # 32 cores on 2 Mike-II regular nodes.
2 Total:
3 Total CG Time: ≫ 74 minutes
4 Total CG Flops: 1.68522e+12
5 Total CG Mflops: ???
6 Time per iteration: ???
7 Total Program Time: ≫ 74 minutes

• Too bad, again: all tasks piled up on 1st node and 2nd is idle;

• Load imbalance wrt node;

• Intense swapping and large swap space in use (≫ 23 GB);
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MPI examples on multiple nodes

• Use OpenMPI-1.6.5 (+openmpi-1.6.5-Intel-13.0.0);

• Specify a machine file explicitly;

1 $ OMP_NUM_THREADS=1 \
mpirun -np 32 -machinefile $PBS_NODEFILE \
./miniFE.x nx=500

1 # 32 cores on 2 Mike-II regular nodes.
2 Total:
3 Total CG Time: 213.942
4 Total CG Flops: 1.68522e+12
5 Total CG Mflops: 7876.99
6 Time per iteration: 1.06971
7 Total Program Time: 280.768

• After that, the MPI tasks were properly mapped on 2 nodes;

• Still 1.6× slower than OpenMP-1.6.2-Intel-13.0.0

(Total CG Mflops: 12659.4);
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MPI examples on multiple nodes

• Load Intel MPI (+impi-4.1.3.048-Intel-13.0.0);

• Diagnostic facilities (the log stats.ipm);

1$ I_MPI_STATS=ipm mpirun -np 32 ./miniFE.x nx=500

1 # [time] [calls] <%mpi> <%wall>
2 # MPI_Allreduce 324.365 13024 77.06 9.13
3 # MPI_Send 38.2421 75072 9.09 1.08
4 # MPI_Init 29.3108 32 6.96 0.83
5 # MPI_Wait 28.3825 75072 6.74 0.80
6 # MPI_Bcast 0.363768 64 0.09 0.01
7 # MPI_Allgather 0.163873 96 0.04 0.00
8 # MPI_Irecv 0.0918336 75072 0.02 0.00
9 # MPI_Comm_size 0.0051572 6720 0.00 0.00

10 # MPI_TOTAL 420.925 245536 100.00 11.85

• Overhead of MPI communication;
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MPI examples on multiple nodes

• Number of MPI tasks needs to match the nodes’ capacity;

• Pinning MPI tasks (ranks) to CPU cores;

• Properly distribute MPI tasks on multiple nodes;

• Run-time control:

• Intel MPI:
◦ -hostfile <filename> : specifies the host names on which

MPI job runs (same as -f);
◦ -ppn <number> : specifies no. of tasks per node;
• MVAPICH2:
◦ -hostfile <filename> (-f) : same as impi;
◦ -ppn <number> : same as impi;
• Open MPI:

◦ -hostfile <filename> (-machinefile) : see the above;
◦ -npernode <number> : specifies no. of tasks per node;
◦ -npersocket <number> : specifies no. of tasks per socket;
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Hybrid model
distributed-memory plus shared-memory systems
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Hybrid model

• Except inter-node MPI communication, no essential

difference between single- and multiple-node MPI jobs;

• Faster intra-node data communication within a node;

• More examples on a shared-memory systems;

• Here we focus on MPI+OpenMP:

Example 2: calculation of π

• MPI takes care of inter-node communication, while

intra-node parallelism is achieved by OpenMP;

• MPI: coarse-grained parl.; OpenMP: fine-grained parl.;

• Each MPI process can spawn multiple threads;

◦ May reduce the memory usage on node level;
◦ Good for accelerators or coprocessors;
◦ It is hard to outperform a pure MPI job;



Information Technology Services
7th Annual LONI HPC Workshop, 2018

p. 31/75

Hybrid model
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Hybrid model
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MPI_REDUCE(. . .) =⇒ result.
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Hybrid model
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• Pure MPI:

MPI rank 0 MPI rank 1 . . . MPI rank n− 1

• • • •
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xi
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MPI_REDUCE(. . .) =⇒ result.

• Hybrid MPI+OpenMP:

MPI rank 0 MPI rank 1 . . . MPI rank n− 1

• • • •

x1 x2 x3 x4

• • • •

x5 x6 x7 x8

•

xi
. . .

openmp plus reduction + MPI_REDUCE(. . .) =⇒ result.
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Hybrid model

Fortran1
2 Pure MPI
3 do i = istart, iend ! same var. diff. values
4 xi = h * (dble(i)-0.5_idp)
5 tmp = 1.0_idp + xi * xi
6 fsum = fsum + 1.0_idp / tmp
7 end do
8 fsum = 4.0_idp * h * fsum
9 call MPI_REDUCE(fsum,pi,1, . . ., &

10 MPI_SUM,0,MPI_COMM_WORLD,ierr)

• SPMD: Each MPI task runs the same program and holds the

same variable names;

• Due to the distinct memory space, the same variable

(istart and iend) may hold different values;
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Hybrid model

Fortran1 !$omp parallel do private(i,xi,tmp), &

2 reduction(+:fsum) Hybrid
3 do i = istart, iend ! same var. diff. values
4 xi = h * (dble(i)-0.5_idp)
5 tmp = 1.0_idp + xi * xi
6 fsum = fsum + 1.0_idp / tmp
7 end do
8 fsum = 4.0_idp * h * fsum
9 call MPI_REDUCE(fsum,pi,1, . . ., &

10 MPI_SUM,0,MPI_COMM_WORLD,ierr)

• Add the OpenMP directive/pragma to parallelize the loop;

• Make the partial sum (fsum) a reduction variable with plus

operation;

• The MPI_REDUCE is the same as before at the outer level;
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Hybrid model

• Hybrid MPI+OpenMP:

Fortran1 !$omp parallel do private(i,xi,tmp), &

2 reduction(+:fsum) Hybrid
3 do i = istart, iend ! same var. diff. values
4 xi = h * (dble(i)-0.5_idp)
5 . . .

• On Mike-II using impi-4.1.3.048, N = 2 × 109:

No. of MPI tasks No. of threads Wall time (sec)

16 1 0.45986

8 2 0.46088

4 4 0.46389

2 8 0.46021

1 16 0.45919
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Hybrid model

• How many OpenMP threads and MPI tasks are needed?

• What happens if OMP_NUM_THREADS=16 mpirun -np 16 . . .?

top - . . ., 1 user,load average: 186.71,84.11,32.83

Tasks: 813 total, 88 running, 725 sleeping, 0 stopped, 0 zombie

Cpu(s): 95.2%us,2.1%sy,0.0%ni,2.7%id,0.0%wa,0.0%hi,0.0%si,0.0%st

Mem: 32815036k total,16993228k used,15821808k free,48676k buffers

Swap: 100663292k total,45556k used,100617736k free,13629192k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

64761 xiaoxu 20 0 203m 3472 2868 R 1.3 0.0 0:00.04 mpi_openmp_pi_f

64762 xiaoxu 20 0 203m 3388 2800 R 1.3 0.0 0:00.04 mpi_openmp_pi_f

64763 xiaoxu 20 0 203m 3392 2804 R 1.3 0.0 0:00.04 mpi_openmp_pi_f

64764 xiaoxu 20 0 203m 5436 2804 R 1.3 0.0 0:00.04 mpi_openmp_pi_f

• Again, high load issues per node and should prevent;

• Don’t oversubscribe the node resources;

• MPI+OpenMP turns out to be MPI×OpenMP;
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Compute-bound and
memory-bound applications
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Where are the bottlenecks?

• A lot of factors can slow down your applications;

• In terms of execution units and a variety of bandwidths, we

have:

(1) Compute-bound (aka. “CPU”-bound);

(2) Cache-bound;

(3) Memory-bound;

(4) I/O-bound;

• For a given application, how do we know it is compute-bound

or memory-bound?

• Why do we need to know this and what is the benefit of it?

(1) you’re the developer of the application;

(2) you’re the user of the application;
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Where are the bottlenecks?

• A lot of factors can slow down your applications;

• Parallel algorithms, bandwidths, overhead, . . .;

• Once a datum is fetched from the memory, on average how

many arithmetic operations do we need to perform on that

datum to keep the execution units busy?

FP Performance (GFLOP/s) =
Memory BW (GB/s) × Operation Intensity (FLOP/byte)

y(FP Perf.)= k(BW.) x (OI.)

• However, the max performance cannot go beyond the

theoretical peak performance;
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Where are the bottlenecks?

• A lot of factors can slow down your applications;

• Parallel algorithms, bandwidths, overhead, . . .;
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Where are the bottlenecks?

• A lot of factors can slow down your applications;

• Parallel algorithms, bandwidths, overhead, . . .;
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Where are the bottlenecks?

• A lot of factors can slow down your applications;

• Parallel algorithms, bandwidths, overhead, . . .;

• On average, for each DP FP number an application needs at

least 25 FLOPs to be compute bound;

• What can we learn from the roofline model?

• It is not uncommon to see that there are many applications

performing at a level of much less than 30 GFLOP/s (10%);

• These applications are typically memory bound;

• We need to increase the OI. per data fetching;

• Reuse the data in caches as much as possible;

• Use well developed and optimized libraries: MKL routines on

Intel CPUs and ACML on AMD CPUs;

• Link your top-level applications to the optimized libraries;
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Compute bound

• On SuperMIC (Ivy Bridge at 2.8 GHz), the theoretical peak

performance is 22.4 GFLOP/s per core;

• Benchmark MKL DGEMM routine (matrix-matrix products);

C/C++1 const int nsize = 10000;
2 const int iteration = 20;
3 // allocate the matrices.
4 // initialize the matrices.
6 for (k=0; k<iteration; k++) // C = A × B.
7 { cblas_dgemm(CblasRowMajor, CblasNoTrans, \
8 CblasNoTrans, nsize, nsize, nsize, \
9 alpha, matrix_a, nsize, matrix_b, nsize, \

10 beta, matrix_c, nsize); }
11 perf = 2.0 * dsize * dsize * dsize * (double) \
12 (iteration) / elapsed_time / 1.e+6;
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Compute bound

• On SuperMIC (Ivy Bridge at 2.8 GHz), the theoretical peak

performance is 22.4 GFLOP/s per core;

• Benchmark MKL DGEMM routine (matrix-matrix products);
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Compute bound

• How does the attainable performance improve with respect to

the matrix size?

• How does the attainable performance improve with respect to

the thread count?

• What happens around the matrix size of 1, 000 × 1, 000?

No. of threads Attainable perf. Peak perf.

(matrix size 104
× 104) (GFLOP/s) (GFLOP/s)

1 27.16 22.4

2 52.41 44.8

4 98.46 89.6

10 220.3 224.0

20 209.0 448.0

• Turbo boost mode at higher frequency;



Information Technology Services
7th Annual LONI HPC Workshop, 2018

p. 47/75

Memory bound

• Does the roofline model tell us the whole story?

• The MKL DGEMM routine is compute bound;

• Consider the other scenario: what happens if my code does

not have too many FP operations?

• We need a quantity like the memory bandwidth (MB/s or

GB/s) to benchmark the code, instead of FLOP/s;

• Consider the out-of-place matrix transposition:

Fortran1 do i = 1, nsize
2 do j = 1, nsize
3 matrix_out(i,j)= matrix_inp(j,i)
4 end do
5 end do

• Throughput (GB/s) = 2N 2/(230Twalltime);
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Memory bound

• Intel Xeon processors on SuperMIC, Mike-II, QB2, and Philip;

Machine CPU Family CPU Freq. LLC DDR Freq.

SuperMIC E5 v2 2680 2.8 GHz 25 MB 1866 MHz

SuperMIC† E5 v4 2690 2.6 GHz 35 MB 2400 MHz

QB2 E5 v2 2680 2.8 GHz 25 MB 1866 MHz

QB2† E7 v2 4860 2.6 GHz 30 MB 1066 MHz

Mike-II E5 v1 2670 2.6 GHz 20 MB 1600 MHz

Mike-II† E7 4870 2.4 GHz 30 MB 1066 MHz

Philip X5570 2.93 GHz 8 MB 1333 MHz

†
on SuperMIC’s and QB2’s bigmem nodes, or Mike-II’s bigmemtb nodes.

• Different Xeon processors on bigmem or bigmemtb nodes

to support large memory;
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Memory bound

• Matrix transposition: MKL routine mkl_domatcopy;

C/C++1 for (k=0; k<iteration; k++)
2 mkl_domatcopy(’R’, ’T’, nsize, nsize, \
3 alpha, matrix_a, nsize, matrix_b, nsize);

• Benchmark the throughput (GB/s): 10 threads with numactl

Machine 4, 000 20, 000 40, 000

SuperMIC 23.93 21.22 18.68

SuperMIC†bigmem 17.96 18.01 18.08

QB2†k40 20.96 18.05 15.45

†k40
configured at 1600 MHz.

• Both memory bandwidth and latency contribute to the

throughput;
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Memory and compute bound

• Memory-bound by nature: increase throughput;

• Memory-bound due to implementation:

(1) Optimize the algorithm and code to reuse the data
in caches: spatial and temporal reuse;

(2) It is possible to convert memory-bound to
compute-bound code;

(3) Mixed heavy arithmetic parts and non-FP operations;
(4) Why most applications fall in the memory-bound

category?
(5) Know memory architecture better;
(6) Changing compiler may be helpful;
(7) Prior to optimizing the “hotspot”, identify if it is

compute-bound or memory-bound;
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Socket and processor level
within a socket or a processor

collin
Text Box
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Socket and processor level

• Within a node, several processors can be connected together

to form a multi-processor system;

• This is called a socket: two-socket or four-socket systems;

• The Intel Xeon processors Sandy Bridge (v1), Ivy Bridge

(v2), and Broadwell (v4) on SuperMIC, Mike-II, and QB2;

• Connection through the Intel QPI (QuickPath Interconnect),

while AMD uses HyperTransport technology;

• It can be thought of a point-to-point interconnection between

multiple-processors;

• Not only implemented as links between processors, but also

used to connect a processor and the I/O hub;

• How does this affect parallelism at the application or code

execution level?
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Socket and processor level

• The NUMA (non-uniform memory access) architecture;

• The key point in NUMA is about shared memory;

• Furthermore, it has been implemented as ccNUMA (cache

coherent NUMA);
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Socket and processor level

• The NUMA (non-uniform memory access) architecture;

• The key point in NUMA is about shared memory;

• Furthermore, it has been implemented as ccNUMA (cache

coherent NUMA);
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Socket and processor level

• Each processor is connected to its own RAM via the memory

controller;

• Due to the QPI links, CPU cores in a processor (node 0) can

access the RAM connected to the other processor (node 1);

Intel Xeon

E5
(node 0)

memory
controller

Intel Xeon

E5
(node 1)

memory
controller

QPI links

32 GB/s

memory memory

57.6 GB/s
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Socket and processor level

• Why the NUMA matters?

• Focus on how an array was allocated and initialized on

shared-memory system;

• “First Touch” policy – memory binding or affinity;

• Bandwidth differences in local and remote memory access;

• It may have significant impact on code performance;

• If it plays a role in application’s performance, are there any

ways to control it?

• Linux provides a wonderful tool numctl that allows us to

(1) run processes with a memory placement policy
or specified scheduling;

(2) set the processor affinity and memory affinity
of a process;
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Socket and processor level

• With numctl we can
(1) run processes with a memory placement policy

or specified scheduling;
(2) set the processor affinity and memory affinity

of a process;

# Lists the available cores: same as -H.
$ numactl --hardware

# Ensures memory is allocated only on specific nodes.
$ numactl --membind

# Ensures specified command and its child processes
# execute only on the specified node.
$ numactl --cpunodebind

# Ensures a specified command and its child processes
# execute only on the specified processor.
$ numactl --phycpubind
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Socket and processor level

• Memory latency between UMA cores and NUMA cores;

• On SuperMIC 2-socket regular node and 2-socket bigmem

node:

1 Measuring idle latencies (in ns)...
2 Numa node
3 Numa node 0 1 # DDR3 1866 MHz
4 0 72.3 123.0 # SuperMIC reg. node
5 1 123.5 72.9 # NUMA/UMA = 1.7

1 Bandwidths are in GB/sec
2 Using Read-only traffic type
3 Numa node
4 Numa node 0 1 # DDR3 1866 MHz
5 0 55.86 25.43 # SuperMIC reg. node
6 1 25.48 50.23 # UMA/NUMA = 2.2
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Socket and processor level

• Memory latency between UMA cores and NUMA cores;

• On SuperMIC 2-socket regular node and 2-socket bigmem

node:

1 Measuring idle latencies (in ns)...
2 Numa node
3 Numa node 0 1 # DDR4 2400 MHz
4 0 87.2 128.6 # SuperMIC bigmem node
5 1 129.8 87.9 # NUMA/UMA = 1.5

1 Bandwidths are in GB/sec
2 Using Read-only traffic type
3 Numa node
4 Numa node 0 1 # DDR4 2400 MHz
5 0 67.78 23.49 # SuperMIC bigmem node
6 1 23.41 67.94 # UMA/NUMA = 2.9
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Socket and processor level

• Memory latency between UMA cores and NUMA cores;

• On QB2 the 2-socket regular node and 4-socket bigmem node:

1 Measuring idle latencies (in ns)...
2 Numa node
3 Numa node 0 1 # DDR3 1866/1600 MHz
4 0 71.4 122.9 # QB2 reg. node
5 1 123.6 71.5 # NUMA/UMA = 1.7

1 Bandwidths are in GB/sec
2 Using Read-only traffic type
3 Numa node
4 Numa node 0 1 # DDR3 1866/1600 MHz
5 0 53.46 25.02 # QB2 reg. node
6 1 25.03 46.82 # UMA/NUMA = 2.2
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Socket and processor level

1 Measuring idle latencies (in ns)...
2 Numa node # QB2 bigmem node, 1.6
3 Numa node 0 1 2 3
4 0 129.4 202.1 192.0 200.9
5 1 202.2 130.4 199.6 194.2
6 2 196.4 196.0 129.0 193.4
7 3 201.4 195.9 191.4 128.2

1 Bandwidths are in GB/sec
2 Using Read-only traffic type # DDR3 1600/1066 MHz
3 Numa node # QB2 bigmem node, 4.2
4 Numa node 0 1 2 3
5 0 53.52 12.65 12.68 12.44
6 1 12.70 54.39 12.65 12.65
7 2 12.48 12.50 53.71 12.66
8 3 12.63 12.52 12.71 54.37
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Core level parallelism
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Core level (vectorization)

Instruction set Register width Processor

SSE 128-bit Pentium (1997)

SSE2 128-bit Pentium III (1999)

AVX 256-bit Xeon Sandy Bridge (2011)

AVX 256-bit AMD Bulldozer (2011)

AVX2 256-bit Xeon Haswell (2013)

AVX2 256-bit Xeon Broadwell (2014)

AVX2 256-bit AMD Carrizo (2015)

• Compiler and assembler support of AVX:
(1) GCC higher than v4.6;
(2) Intel compiler suite higher than v11.1;
(3) PGI compilers since 2012;

• Linux kernel version higher than 2.6.30 to support AVX;
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Core level (vectorization)

• Why vectorization matters?

• Vector width keeps increasing from 128-bit to 256-bit, even

to 512-bit on KNC and KNL;

• Take the advantage of longer vector register width;

• Each register in the 256-bit AVX can hold up to four 64-bit

(8-byte) DP floating point numbers, or eight SP numbers;

(1) For additions or products, it is preferable to operate four

pairs of DP numbers, or eight pairs of SP numbers with a

single instruction;

(2) By comparison, the vectorization (AVX) can deliver the

max speedup of 4 for DP or 8 for SP;

(3) Improvement for SP operations is always doubled

compared to DP;
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Core level (vectorization)

• Vectorization works in such a way so that the execution units

execute a single instruction on multiple data simultaneously

(in parallel) on a single CPU core (SIMD);

• Enabling vectorization in your applications will “potentially”

improve performance;

• Typically vectorization can be attributed to data parallelism;
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Core level (vectorization)

• Intel compilers support auto-vectorization for -O2 or higher;

• Compile the following code with -vec and -no-vec flags;

v0 C/C++1 // vectorized or non-vectorized loop
2 const int nsize = 20;
3 const int kitemax = 10000000;
4 // allocate and initialize vectors.
5 . . .
6 // sum over all vector elements
7 for (k=0; k<kitemax; k++)
8 for (i=0; i<nosize; i++)
9 vector_a[i] = vector_a[i] + vector_b[i] \

10 + vector_c[i] + vector_d[i] + vector_e[i];

• Add #pragma simd or #pragma vector right above the inner

loop, and see what happens;
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Core level (vectorization)

• Intel compilers support auto-vectorization for -O2 or higher;

• Compile the following code with -vec and -no-vec flags;

v0 C/C++1 // vectorized or non-vectorized loop
2 const int nsize = 20;
3 const int kitemax = 10000000;
4 // allocate and initialize vectors.
5 . . .
6 // sum over all vector elements
7 for (k=0; k<kitemax; k++)
8 for (i=0; i<nosize; i++)
9 vector_a[i] = vector_a[i] + vector_b[i] \

10 + vector_c[i] + vector_d[i] + vector_e[i];

• -vec (-O2): 0.113 sec; -no-vec (-O1): 0.226 sec with 1 thread;

• Does the speedup remain the same if we use more threads?
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Core level (vectorization)

• Intel compilers support auto-vectorization for -O2 or higher;

• Compile the following code with -vec and -no-vec flags;

v0 C/C++1 // vectorized or non-vectorized loop
2 const int nsize = 20;
3 const int kitemax = 10000000;
4 // allocate and initialize vectors.
5 . . .
6 // sum over all vector elements
7 for (k=0; k<kitemax; k++)
8 for (i=0; i<nosize; i++)
9 vector_a[i] = vector_a[i] + vector_b[i] \

10 + vector_c[i] + vector_d[i] + vector_e[i];

• Record the speedup of vec/no-vec with varying nosize;

• nosize = 20, 200, 500, 1000, 3000, and 5000 (1 thread);
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Core level (vectorization)

• Let’s take a look at which loop is vectorized and which is not:

turn -vec-report3 on;

v0 C/C++
. . ._v0.c(52): (col. 3) remark: LOOP WAS VECTORIZED
. . ._v0.c(78): (col. 4) remark: LOOP WAS VECTORIZED
. . ._v0.c(77): (col. 4) remark: loop was not

vectorized: not inner loop

• Everything is expected. We know that the inner loop is a

good candidate for vectorization.
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Core level (vectorization)

• Check the speedup and performance:

-no-vec
-vec

speedup (-vec/-no-vec)
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_c_v0 on SuperMIC

• A speedup of ∼2 for small data and ∼1 for large data;

• Significant improvement over the non-vectorized loops;

• The max performance is about 31% of the peak performance

(22.4 GFLOP/s) with one thread on SuperMIC;
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Core level (vectorization)

• Can we do better?

• Make nosize unknown at compilation time (v1), so the

compiler may choose a different optimization technique;

v1 C/C++1 // vectorized or non-vectorized loop
2 int main (int argc, char *argv[])
3 . . .
4 nosize = atoi(argv[1]);
5 . . .
6 // sum over all vector elements
7 for (k=0; k<kitemax; k++)
8 for (i=0; i<nosize; i++)
9 vector_a[i] = vector_a[i] + vector_b[i] \

10 + vector_c[i] + vector_d[i] + vector_e[i];
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Core level (vectorization)

• Can we do better?

• Make nosize unknown at compilation time (v1), so the

compiler may choose a different optimization technique;

v1 C/C++
. . ._v1.c(50): (col. 3) remark: LOOP WAS VECTORIZED
. . ._v1.c(75): (col. 4) remark: PERMUTED LOOP WAS

VECTORIZED
. . ._v1.c(76): (col. 4) remark: loop was not

vectorized: not inner loop

• Confused?!

• The compiler is smart enough to permute (swap) the inner

and outer loops, and vectorize the “inner” (the ordinary

outer) loop;
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Core level (vectorization)

• Again, the speedup and performance:

-vec v0
-no-vec v1
-vec v1

-vec/-no-vec v1
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• Significant improvement for the large data size;

• The relative performance (-vec/-no-vec) may be lower

(small data);

• The performance of -no-vec is also improved;
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Core level (vectorization)

• On SuperMIC (Ivy Bridge at 2.8 GHz), a simple estimate

shows we achieved ∼2.5 DP FLOP/cycle (v1);

• Both Sandy Bridge and Ivy Bridge support up to 8 DP

FLOP/cycle (4 add and 4 mul);

• Thus, 2.5/8 ≃ 31% of the peak performance;

• Can we improve it?
◦ Loop was already vectorized;

◦ Contiguous memory access;

◦ Memory affinity?

◦ Reuse the data in cache?

◦ FP execution units are not saturated;

◦ . . .
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Summary

• Performance scales on different levels:

◦ MPI: ∼10-1000×;

◦ OpenMP: ∼10-40×;

◦ Memory affinity on multiple-socket: ∼2-4×;

◦ Vectorization: ∼4-8×;

• Compute-bound and memory-bound applications;

• Bottlenecks in most parallel applications;

• Memory hierarchy and throughput;

• Performance killers: High load, load imbalance issues, and

intensive swapping, . . .;

Questions?
sys-help@loni.org


	Overview
	Overview

	Overview
	Parallel computing
	Parallel computing
	Parallel computing
	Parallel computing
	Parallel computing
	Parallel computing
	Parallel computing 
	
	Multi-node level parallelism 
	Multi-node level parallelism 
	Multi-node level parallelism 
	MPI collective communication
	MPI examples on multiple nodes
	MPI examples on multiple nodes
	 MPI examples on multiple nodes 
	MPI examples on multiple nodes
	MPI examples on multiple nodes
	MPI examples on multiple nodes
	MPI examples on multiple nodes
	MPI examples on multiple nodes
	MPI examples on multiple nodes
	Latency and throughput 
	MPI examples on multiple nodes
	MPI examples on multiple nodes
	MPI examples on multiple nodes
	 MPI examples on multiple nodes 
	
	Hybrid model
	Hybrid model
	Hybrid model
	Hybrid model
	 Hybrid model 
	 Hybrid model 
	 Hybrid model 
	 Hybrid model 
	
	Where are the bottlenecks? 
	Where are the bottlenecks? 
	Where are the bottlenecks? 
	Where are the bottlenecks? 
	Where are the bottlenecks? 
	Compute bound 
	Compute bound 
	Compute bound 
	Memory bound 
	Memory bound
	Memory bound 
	Memory and compute bound 
	
	Socket and processor level
	 Socket and processor level 
	 Socket and processor level 
	 Socket and processor level 
	 Socket and processor level 
	 Socket and processor level 
	 Socket and processor level 
	 Socket and processor level 
	 Socket and processor level 
	 Socket and processor level 
	
	 Core level (vectorization) 
	 Core level (vectorization) 
	Core level (vectorization) 
	Core level (vectorization) 
	Core level (vectorization) 
	Core level (vectorization) 
	Core level (vectorization) 
	Core level (vectorization) 
	Core level (vectorization) 
	Core level (vectorization) 
	Core level (vectorization) 
	Core level (vectorization) 
	 Summary 




