
The STUTTGART TB-LMTO-ASA program.

R. W. Tank, O. Jepsen, and O. K. Andersen.
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1,

D-70569 Stuttgart, Federal Republic of Germany .

This document describes how to install and run the TB-LMTO program version 47 under UNIX.
The development of this program has been managed by Ole Krogh Andersen; the first version was

constructed mostly by Mark van Schilfgaarde during 1987-88. Over the years the following people
(in alphabetic order) have written, corrected or made additions to the program: Vladimir Antonov,
Peter Braun, Armin Burkhardt, Volker Eyert, Georges Krier, Toni A. Paxton, Andrei Postnikov,
Andreas Savin. The latest major revisions and additions are due to the people below the title.

This document was written by Ove Jepsen. Questions or comments should be directed to him
(jepsen@and.mpi-stuttgart.mpg.de).

For use of this program see the License agreement in Section XII.
Version 47 was last updated September 1998.
This documentation was written in LATEX2e and can be printed with version 3.0 of the REVTEX

macros.
The linear muffin-tin orbital (LMTO) method has been described in numerous publications. For

a description of the LMTO method in general see Ref. 1, the tight-binding (TB) version see Ref.
2, the down-folding technique Ref. 3, the tetrahedron method Ref. 4, accuracy using overlapping
spheres Ref. 5, and a detailed example Ref. 6. Some useful books are also worth mentioning:
The Mathematical Theory of Symmetry in Solids, Ref. 7, contains among other things all the
Brillouin zones, International Tables for Crystallography, Ref. 8, contains all crystallographic space
groups and Pearson’s Handbook of Crystallographic Data for Intermetallic phases, Ref. 9, contains
structural data for many compounds and elements.

Contents

I.Installation of the TB-LMTO programs 1

II.Execution of the TB-LMTO programs 1

III.Organization of TB-LMTO Programs 6
A.Content of the main directory 6
1.Dimensions/size of the program 7

B.Content of the subdirectories 7
1.Main programs 7
2.Structure related routines 7
3.Atomic programs 7
4.Solid state programs 7
5.Utility subdirectories 8
6.Plots 8

IV.Data files 8

V.Description of the CTRL file, Categories and

Tokens 8
A.Category HEADER (optional) 9
B.Category VERS 9
1.Token LMASA- of cast integer 9

C.Category IO (optional) 9
1.Token HELP= of cast logical (optional) 9
2.Token VERBOS= of cast integer (optional) 9
3.Token WKP= of cast logical (optional) 9
4.Token IACTIV= of cast logical (optional) 9
5.Token ERRTOL= of cast integer (optional) 9
6.Token OUTPUT= of cast character (optional) 9
7.Token ERR= of cast character (optional) 9

D.Category DIM 10

1.Token NBAS= of cast integer (optional) 10
2.Token NCLASS= of cast integer (optional) 10
3.Token NL= of cast integer 10
4.Token LDIM= of cast integer 10
5.Token IDIM= of cast integer 10
6.Token NSYMOP= of cast integer 10
7.Token NKP= of cast integer 10

E.Category STRUC 10
1.Token ALAT= of cast double 10
2.Token PLAT= of cast double and length 9 10
3.Token FIXLAT= of cast logical 10

F.Category OPTIONS (optional) 10
1.Token NSPIN= of cast integer (optional) 10
2.Token REL= of cast logical (optional) 10
3.Token CCOR= of cast logical (optional) 10
4.Token NONLOC= of cast logical (optional) 10
5.Token NRXC= of cast logical (optional) 10
6.Token NRMIX= of cast integer (optional) 11
7.Token Q= of cast character (optional) 11
8.Token CORDRD= of cast logical (optional) 11
9.Token CARTESIAN= of cast logical (optional) 11
10.Token NITATOM= of cast integer (optional) 11
11.Token CHARGE= of cast logical (optional) 11
12.Token FATBAND= of cast logical (optional) 11
13.Token AFM= of cast logical (optional) 11
14.Token FS= of cast logical (optional) 11
15.Token OVLCOR= of cast logical (optional) 11
16.Token WRIBAS= of cast logical (optional) 11
17.Token SEWALD= of cast logical (optional) 11

G.Category CLASS 11
1.Token ATOM= of cast character 11
2.Token NEWNAM= of cast logical 12

3.Token Z= of cast double 12
4.Token R= of cast double (optional) 12
5.Token LMX= of cast integer (optional) 12
6.Token IDXDN= of cast integer and length 4
(optional) 12

7.Token CONF= of cast integer and length 4
(optional) 12

8.Token IDMOD= of cast integer and length 4
(optional) 12

H.Category SITE 12
1.Token ATOM= of cast character 12
2.Token POS= of cast double and length 3 12
3.Token X= of cast double and length 3 12

I.Category SYMGRP (optional) 12
1.Token NGEN= of cast integer (optional) 13
2.Token GENGRP= of cast integer (optional) 13
3.Token USESYM= of cast logical (optional) 13
4.Token SPCGRP= of cast character (optional) 13
5.Token IORIGIN= of cast integer (optional) 13

J.Category SCALE 13
1.Token SCLWSR= of cast logical (optional) 13
2.Token FACVOL= of cast double (optional) 13
3.Token OMMAX1= of cast double and length 3
(optional) 13

4.Token OMMAX2= of cast double and length 3
(optional) 13

5.Token GAMMA= of cast double (optional) 13
K.Category STR 13
1.Token KAPPA2= of cast double (optional) 13
2.Token KW**2= of cast double (optional) 14
3.Token IALPHA= of cast integer (optional) 14
4.Token ALPHA= of cast double (optional) 14
5.Token ADOT= of cast double (optional) 14
6.Token SIGMA= of cast double (optional) 14
7.Token DOWATS= of cast logical (optional) 14
8.Token DELTR= of cast double (optional) 14
9.Token LMAXW= of cast integer (optional) 14
10.Token RMAXS= of cast double (optional) 14
11.Token NDIMIN= of cast integer (optional) 14
12.Token ITRANS= of cast integer (optional) 14
13.Token DONALP= of cast logical (optional) 14
14.Token LDN= of cast integer (optional) 14
15.Token MDN= of cast integer (optional) 14
16.Token JBASDN= of cast integer (optional) 15
17.Token EPS= of cast double (optional) 15
18.Token NOCALC= of cast logical (optional) 15

L.Category BZ 15
1.Token NKABC= of cast integer and length 3 15
2.Token MAXKP= of cast integer 15
3.Token TETRA= of cast logical (optional) 15
4.Token METAL= of cast logical (optional) 15
5.Tokens N=, W=, RANGE=, and NPTS= 15
6.Token TOL= of cast double (optional) 15

M.Category EWALD (optional) 15
1.Token AS= of cast double (optional) 15
2.Token NKDMX= of cast integer (optional) 15
3.Token TOL= of cast double (optional) 15

N.Category DOS 15

1.Token NOPTS= of cast integer 15
2.Token EMIN= of cast double 15
3.Token EMAX= of cast double 15

O.Category SYML 16
1.Token NQ= of cast integer 16
2.Tokens Q1, Q2= of cast double and length 3 16
3.Tokens LAB1, LAB2= of cast character 16

P.Category START (optional) 16
1.Token NIT= of cast integer (optional) 16
2.Token BROY= of cast logical (optional) 16
3.Token WC= of cast double (optional) 16
4.Token NMIX= of cast integer (optional) 16
5.Token BETA= of cast double (optional) 16
6.Token CNVG= of cast double (optional) 16
7.Token CNVGET= of cast double (optional) 16
8.Token FREE= of cast logical (optional) 16
9.Token BEGMOM= of cast logical (optional) 16
10.Token CNTROL= of cast logical (optional) 17
11.Token EFERMI= of cast double precision
(optional) 17

12.Token VMTZ= of cast double precision (optional) 17
Q.Category HARTREE 17
1.Tokens LT1, LT2, LT3= of cast integer 17
2.Token BEGATOM= of cast logical (optional) 17

R.Category PLOT 17
1.Token ORIGIN= of cast double and length 3 17
2.Tokens R1, R2, and R3= of cast double and length
3 17

3.Tokens RMIN and RMAX= of cast double 17
4.Tokens TMIN and TMAX= of cast double 17
5.Tokens PMIN and PMAX= of cast double 17
6.Tokens NDELR1, NDELR2, and NDELR3= of cast
integer 17

7.Token FORMAT= of cast integer (optional) 17
S.Category CHARGE 18
1.Token LMTODAT= of cast logical 18
2.Token CHARWIN= of cast logical (optional) 18
3.Token EMIN= of cast double 18
4.Token EMAX= of cast double 18
5.Token ELF= of cast logical 18
6.Token ADDCOR= of cast logical 18
7.Token SPINDENS= of cast logical 18

T.Category FINDES 18
1.Token RMINES= of cast double (optional) 18
2.Token RMAXES= of cast double (optional) 18
3.Token MAXPT= of cast integer (optional) 18
4.Token NRXYZ= of cast integer and length 3
(optional) 18

U.Category SCELL 18
1.Token PLAT= of cast double and length 9 18
2.Token EQUIV= of cast logical (optional) 18

V.Category RHOFIT 19
1.Token FIT= of cast logical 19
2.Token KAPPA2= of cast double 19
3.Token KW**2= of cast double 19
4.Token RMAXS= of cast double 19
5.Token SIGMA= of cast double 19
6.Token LMXRHO= of cast double 19

VI.Iterations Towards Self-Consistency 19

VII.Accurate band structure away from the center

of gravity 20

VIII.Frozen potential calculations 20

IX.Spin polarized calculations 20

X.Plot programs 21

A.Gnuplot 21

B.Common features of the plotting programs 22

C.Charge density and ELF plot 23

D.Hartree potential plot 23

E.Band structure plot 24

F.Density of states plot 25

G.Fermi Surface plot 25

XI.Copyright 26

XII.License Agreement 26

A.The preprocessor 26

B.Machine Dependencies 27

1.Machine constants 27

References 27

I. INSTALLATION OF THE TB-LMTO
PROGRAMS

The source code is compressed on the distribution
diskette from where this documentation was down-
loaded.

The uncompression, creation of directories, and copy-
ing to directories is done automatically as described in
the READ.ME file on the distribution disk. This can be
done under MS-DOS or UNIX.

The GNUPLOT graphical package on the distribution
diskette can be used for all plots, see Section X.

Options are provided for creation of plot data files ap-
propriate for IBM Visualization Data Explorer version 2,
which is available for IBM, Sun, HP, and SGI machines.

The path name in the makefile and in all files with the
extension .exec in the lmto47 directory (hereafter called
the main directory, and directories one level below this
will be called subdirectories) has to be changed to the
appropriate name. Furthermore, the path name in get-
main and in getmakefile in the main directory should also
be changed. Typing ‘make all’ will then compile and link
all programs according to the rules in the makefile.

II. EXECUTION OF THE TB-LMTO
PROGRAMS

1. The basic input data is inserted in the CTRL file.
The CTRL file shown below contains the minimum
amount of information to be typed, in order to
run the TB-LMTO programs. The rest may be
obtained from the default values in the program,
which are written into the CTRL file by the pro-
gram.

HEADER NiSe2 Pyrit (Acta Chem. Scand.
v. 23 p. 2325 1969)

VERS LMASA-47
STRUC ALAT=11.2683

PLAT=1 0 0
0 1 0

0 0 1
CLASS ATOM=NI Z=28

ATOM=Se Z=34
SITE ATOM=NI POS= .0 .0 .0

ATOM=NI POS= .5 .0 .5
ATOM=NI POS= .0 .5 .5

ATOM=NI POS= .5 .5 .0
ATOM=Se POS= .383 .383 .383
ATOM=Se POS= .617 .617 .617

ATOM=Se POS= .117 .617 .883
ATOM=Se POS= .883 .383 .117

ATOM=Se POS= .617 .883 .117
ATOM=Se POS= .383 .117 .883

ATOM=Se POS= .883 .117 .617
ATOM=Se POS= .117 .883 .383

The input consists of tokens, like ATOM= or
Z=. These are grouped together in categories, like
CLASS. The name of a category always starts in
the first column of a line. This will be explained in
detail in Section V. ALAT= is a lattice constant in
a.u. (i.e. Bohr radii), PLAT= are the lattice trans-
lation vectors and POS= are the atomic positions.
The latter two are in Cartesian coordinates and in
units of ALAT.

All Ni atoms and all Se atoms are equivalent i.e.
there are two classes. From the information in the
CTRL file, the program will find the symmetry i.e.
all space group operations and the generators of
the space group. If the symmetry of the bravais
lattice is incompatible with the symmetry of the
basis, then the symmetry of the bravais lattice is
used. Alternatively to the CTRL file above, the
symmetry generators and only one of each of the
inequivalent atoms could have been given. The pro-
gram will complete the basis:

HEADER NiSe2 Pyrit (Acta Chem. Scand.
v. 23 p. 2325 1969)

VERS LMASA-47
STRUC ALAT=11.2683

PLAT=1 0 0
0 1 0

0 0 1
CLASS ATOM=NI Z=28

ATOM=Se Z=34
SITE ATOM=NI POS= .0 .0 .0

ATOM=Se POS= .383 .383 .383
SYMGRP NGEN=3 GENGRP=I R3D MX:(.5,.5,0)

The category SYMGRP contains three tokens:
NGEN= the number of generators supplied,
GENGRP= the names of the generators as defined
in the Subsection ‘Category SYMGRP’.

A third possibility is to use the interactive program
lminit.run in the main directory. An example is
shown below, where the user’s answer to the query
is indicated by the string after ‘–>’ and followed by
‘(Answer)’.

| QUERY : SPCGRP:

| SYMBOL OR NUMBER OF SPACE GROUP
|

| Enter: ’nnn’, nnn is the value for SPCGRP,
| ’a’ to abort program execution.

| ->205 (Answer)

Space group: Pa-3 No.:205
Crystal system: cubic

Generators: I R3D MX::(1/2,1/2,0)

| QUERY : atomic-units ? (else in Angstrom)
|

| Enter: ’nnn’, nnn is the value for ATUNITS,
| default value=T

| ’a’ to abort program execution.
| ’/’ to accept default value

| ->/

Now enter lattice parameters

| QUERY : A:lattice constant (atomic units)

|
| Enter: ’nnn’, nnn is the value for A,

| ’a’ to abort program execution.
| ->11.2683 (Answer)

CTRLUC: PLAT ALAT=11.2683

1.00000 .00000 .00000
.00000 1.00000 .00000

.00000 .00000 1.00000

| QUERY: label or nuclear charge of class 1
|

| Enter: ’nnn’, nnn is the value for label,
| ’a’ to abort program execution.

| ’q’ to quit
| ->28 (Answer)

Class: Ni ; nuclear charge 28 (atom Ni)

| QUERY: X = position of Ni (in units of the

| translation vectors a, b, c)
|

| Enter: ’nnn’, nnn is the value for X,
| default value=0. 0. 0.

| ’a’ to abort program execution.
| ’/’ to accept default value

| ->/ (Answer)

| QUERY: label or nuclear charge of class 2
|

| Enter: ’nnn’, nnn is the value for label,
| ’a’ to abort program execution.

| ’q’ to quit
| ->34 (Answer)

Class: Se ; nuclear charge 34 (atom Se)

| QUERY : X = position of Se
|

| Enter: ’nnn’, nnn is the value for X,
| default value=0. 0. 0.

| ’a’ to abort program execution.
| ’/’ to accept default value

| ->.383 .383 .383

| QUERY: label or nuclear charge of class 3
|

| Enter: ’nnn’, nnn is the value for label,
| ’a’ to abort program execution.

| ’q’ to quit
| ->q (Answer)

CHKSYM: Check the symmetry of the crystal:

GENGRP: A subgroup of the space group will

be created from 3 generators
The generators created 24 sym. ops.

ADDBAS: The basis has been extended from
2 to 12 atoms.

The new positions are:

ATOM=Ni POS= .500 .500 .000
ATOM=Ni POS= .000 .500 .500

ATOM=Ni POS= .500 .000 .500
ATOM=Se POS= -.383 -.383 -.383

ATOM=Se POS= .117 .883 .383
ATOM=Se POS= .883 .117 -.383

ATOM=Se POS= .383 .117 .883
ATOM=Se POS= .883 .383 .117

ATOM=Se POS= -.383 .883 .117
ATOM=Se POS= .117 -.383 .883

SYMLAT: lattice invariant under 48 sym. ops.

SYMCRY: crystal invariant under 24 sym. ops.

SHOSYM: Bravais system : cubic

Bravais lattice: cubic primitive
Centring type : P

Crystal family : cubic
Crystal system : cubic

Point group : m-3

The resulting CTRL file looks like this:

HEADER Ni4Se8, cubic primitive

SYMGRP NGEN=3 GENGRP=I R3D MX:(.5,.5,0)
SPCGRP=Pa-3

STRUC ALAT=11.2683
PLAT=1 0 0

0 1 0
0 0 1

CLASS ATOM=Ni Z=28

ATOM=Se Z=34
SITE ATOM=Ni POS=0.000 0.000 0.000

ATOM=Ni POS=0.500 0.500 0.000
ATOM=Ni POS=0.500 0.000 0.500

ATOM=Ni POS=0.000 0.500 0.500
ATOM=Se POS=0.383 0.117 -.117

ATOM=Se POS=-.383 -.117 0.117
ATOM=Se POS=-.117 0.383 0.117

ATOM=Se POS=0.117 -.383 -.117
ATOM=Se POS=0.117 -.117 0.383

ATOM=Se POS=-.117 0.117 -.383
ATOM=Se POS=0.383 0.383 0.383

ATOM=Se POS=-.383 -.383 -.383

2. The next step is to find the size of the atomic
spheres. First muffin-tin (MT) radii are found by
lmhart.run and inserted into the CTRL file. The
result of this run is shown below.

HEADER Ni4Se8, cubic primitive
VERS LMASA-47

IO VERBOS=30 OUTPUT=LM ERR=ERR
SYMGRP NGEN=3 GENGRP=I R3D MX:(.5,.5,0)

SPCGRP=Pa-3
STRUC ALAT=11.2683

PLAT=1 0 0
0 1 0

0 0 1
DIM NBAS=12 NCLASS=2 NL=3 LDIM=68

IDIM=40 NSYMOP=24
CLASS ATOM=Ni Z=28 R=2.41776510

ATOM=Se Z=34 R=2.28352037
SITE ATOM=Ni POS=0.000 0.000 0.000

ATOM=Ni POS=0.500 0.500 0.000
ATOM=Ni POS=0.500 0.000 0.500

ATOM=Ni POS=0.000 0.500 0.500
ATOM=Se POS=0.383 0.117 -.117

ATOM=Se POS=-.383 -.117 0.117
ATOM=Se POS=-.117 0.383 0.117

ATOM=Se POS=0.117 -.383 -.117
ATOM=Se POS=0.117 -.117 0.383

ATOM=Se POS=-.117 0.117 -.383
ATOM=Se POS=0.383 0.383 0.383

ATOM=Se POS=-.383 -.383 -.383

The two tokens (R=) with the MT-radii in a.u.
have been inserted in category CLASS. Further-
more, a new class, IO, has been inserted with the
tokens: VERBOS= which specifies the amount of
output the programs print and the number of de-
fault tokens which will be inserted in the CTRL
file by the programs which updates the CTRL file,
OUTPUT= which gives a file name to which stan-
dard out will be directed, ERR= which gives a file
name to which error messages will be directed.

3. The overlap between the WS-spheres is checked by
the lmovl.run program. The result written to stan-
dard out looks like (the output has been edited to
fit into this documentation):

Info: impossible to reach VOL, increase OMMAX.

CELL VOLUME= 1430.78771,
SUM OF SPHERE VOLUMES= 992.45473

IB JB CL1 CL2 DIST SUMRS 1/d 1/s1 1/s2

==
1 5 Ni Se .42 .48 16 27 28

--
5 1 Se Ni .42 .48 16 28 27

5 6 Se Se .41 .47 16 28 28
--

The first line tells that space filling could not be
reached with the default maximum overlaps (two
atomic spheres are allowed to overlap no more than
16% in the sence of 1/d below, max. overlap be-
tween an atomic and an interstitial sphere is 18%,
and max. overlap between two interstitial spheres
is 20%).

The next two lines show the cell volume and the
volume inside the expanded spheres.

In the table, each line displays two neighboring
atoms with WS-radii s1 and s2, and the distance
between them d. Under ‘1/d’, ‘1/s1’, and ‘1/s2’
are the results of s1+s2−d

d
, s1+s2−d

s1
, and s1+s2−d

s2
,

respectively, in percent. If the two sphere radii are
very much different, one should check ‘1/s1’, where
s1 is the smallest radius. (A big sphere may swal-
low a small sphere.)

Since in the present case space filling could not be
reached, interstitial spheres have to be inserted.

4. Interstitial spheres are found by the lmes.run pro-
gram. The resulting CTRL file is shown below.

HEADER Ni4Se8, cubic primitive
VERS LMASA-47

IO VERBOS=30 OUTPUT=OVL ERR=ERR
SYMGRP NGEN=3 GENGRP=I R3D MX:(.5,.5,0)

SPCGRP=Pa-3
STRUC ALAT=11.2683

PLAT=1 0 0
0 1 0
0 0 1

DIM NBAS=36 NCLASS=3 NL=3 LDIM=68
IDIM=40 NSYMOP=24

CLASS ATOM=Ni Z=28 R=2.41776510
ATOM=Se Z=34 R=2.28352037

ATOM=E Z= 0 R=1.53150056
SITE ATOM=Ni POS=0.00000 0.00000 0.00000

ATOM=Ni POS=0.50000 0.50000 0.00000
ATOM=Ni POS=0.50000 0.00000 0.50000

ATOM=Ni POS=0.00000 0.50000 0.50000
ATOM=Se POS=0.38300 0.11700 -.11700

ATOM=Se POS=-.38300 -.11700 0.11700
ATOM=Se POS=-.11700 0.38300 0.11700

ATOM=Se POS=0.11700 -.38300 -.11700
ATOM=Se POS=0.11700 -.11700 0.38300

ATOM=Se POS=-.11700 0.11700 -.38300
ATOM=Se POS=0.38300 0.38300 0.38300

ATOM=Se POS=-.38300 -.38300 -.38300
ATOM=E POS=0.28510 -.18060 0.09608
ATOM=E POS=-.28510 0.18060 -.09608

ATOM=E POS=0.09608 0.28510 -.18060
ATOM=E POS=-.09608 -.28510 0.18060

ATOM=E POS=0.18060 -.09608 -.28510
ATOM=E POS=-.18060 0.09608 0.28510

ATOM=E POS=0.31939 0.09608 0.21489
ATOM=E POS=0.21489 0.31939 0.09608

ATOM=E POS=-.31939 -.09608 -.21489
ATOM=E POS=-.21489 -.31939 -.09608

ATOM=E POS=0.09608 0.21489 0.31939
ATOM=E POS=-.09608 -.21489 -.31939

ATOM=E POS=0.40391 -.21489 -.18060
ATOM=E POS=-.40391 0.21489 0.18060

ATOM=E POS=-.18060 0.40391 -.21489
ATOM=E POS=0.18060 -.40391 0.21489

ATOM=E POS=0.21489 0.18060 -.40391
ATOM=E POS=-.21489 -.18060 0.40391

ATOM=E POS=0.40391 -.28510 0.31939
ATOM=E POS=0.31939 0.40391 -.28510

ATOM=E POS=-.40391 0.28510 -.31939
ATOM=E POS=-.31939 -.40391 0.28510
ATOM=E POS=-.28510 0.31939 0.40391

ATOM=E POS=0.28510 -.31939 -.40391

The program found 24 interstitial spheres, all
equivalent, with a sphere radius between 0.9 and 4.0
a.u. These limits are default and can be changed.
Notice that a new category DIM has been inserted,
which contain information about some dimensions.

5. Check the overlap again with lmovl.run. Standard
out now looks like:

IB JB CL1 CL2 DIST SUMRS 1/d 1/s1 1/s2
===

1 5 NI Se .42 .47 13 22 23
1 20 NI E1 .35 .40 13 18 29

5 1 Se NI .42 .47 13 23 22

5 6 Se Se .41 .46 13 23 23
5 14 Se E1 .34 .38 13 19 28

5 15 Se E1 .38 .38 1 1 2
5 17 Se E1 .34 .38 13 19 28
5 22 Se E1 .34 .38 13 19 28

5 23 Se E1 .34 .38 13 19 28
5 29 Se E1 .38 .38 1 1 2

5 31 Se E1 .34 .38 13 19 28
5 34 Se E1 .34 .38 13 19 28

5 35 Se E1 .38 .38 1 1 2
5 36 Se E1 .34 .38 13 19 28

13 2 E1 NI .35 .40 13 29 18

13 6 E1 Se .34 .38 13 28 19
13 7 E1 Se .38 .38 1 2 1

13 8 E1 Se .34 .38 13 28 19
13 12 E1 Se .34 .38 13 28 19

13 15 E1 E1 .27 .31 12 21 21
13 25 E1 E1 .30 .31 1 2 2

The program found space filling with a maximum
overlap of 13% which is fine and one can proceed.

6. Complete the CTRL file with the lmctl.run pro-
gram, but first change the token VERBOS= to 50
in category IO to ensure that all default values are
inserted.

HEADER Ni4Se8, cubic primitive
VERS LMASA-47

IO VERBOS=50 HELP=F WKP=F IACTIV=F
ERRTOL=2 OUTPUT=CTL ERR=ERR

SYMGRP NGEN=3 GENGRP=I R3D MX:(.5,.5,0)
SPCGRP=Pa-3 USESYM=F

STRUC ALAT=11.2683
PLAT=1 0 0

0 1 0
0 0 1 FIXLAT=T

DIM NBAS=36 NCLASS=3 NL=3 LDIM=92
IDIM=232 NSYMOP=24 NKP=11

OPTIONS NSPIN=1 REL=T CCOR=T NONLOC=F
NRXC=1 NRMIX=2 CORDRD=F

NITATOM=30 CHARGE=F FATBAND=F AFM=F
FS=F CARTESIAN=T WRIBAS=F Q=----

CLASS ATOM=Ni Z=28 R=2.72719158 LMX=2
CONF=4 4 3 4 IDXDN=1 1 1 IDMOD=0 0 0

ATOM=Se Z=34 R=2.57576616 LMX=2
CONF=4 4 4 4 IDXDN=1 1 2 IDMOD=0 0 0

ATOM=E Z= 0 R=1.72750257 LMX=2
CONF=1 2 3 4 IDXDN=1 2 2 IDMOD=0 0 0

SITE ATOM=Ni POS=0.00000 0.00000 0.0000
ATOM=Ni POS=0.50000 0.50000 0.0000

ATOM=Ni POS=0.50000 0.00000 0.5000
ATOM=Ni POS=0.00000 0.50000 0.5000

ATOM=Se POS=0.38300 0.11700 -.1170
ATOM=Se POS=-.38300 -.11700 0.1170

ATOM=Se POS=-.11700 0.38300 0.1170
ATOM=Se POS=0.11700 -.38300 -.1170

ATOM=Se POS=0.11700 -.11700 0.3830
ATOM=Se POS=-.11700 0.11700 -.3830

ATOM=Se POS=0.38300 0.38300 0.3830
ATOM=Se POS=-.38300 -.38300 -.3830

ATOM=E POS=0.28510 -.18060 0.0960
ATOM=E POS=-.28510 0.18060 -.0960

ATOM=E POS=0.09608 0.28510 -.1806
ATOM=E POS=-.09608 -.28510 0.1806

ATOM=E POS=0.18060 -.09608 -.2851
ATOM=E POS=-.18060 0.09608 0.2851
ATOM=E POS=0.31939 0.09608 0.2148

ATOM=E POS=0.21489 0.31939 0.0960
ATOM=E POS=-.31939 -.09608 -.2148

ATOM=E POS=-.21489 -.31939 -.0960
ATOM=E POS=0.09608 0.21489 0.3193

ATOM=E POS=-.09608 -.21489 -.3193
ATOM=E POS=0.40391 -.21489 -.1806

ATOM=E POS=-.40391 0.21489 0.1806
ATOM=E POS=-.18060 0.40391 -.2148

ATOM=E POS=0.18060 -.40391 0.2148
ATOM=E POS=0.21489 0.18060 -.4039

ATOM=E POS=-.21489 -.18060 0.4039
ATOM=E POS=0.40391 -.28510 0.3193

ATOM=E POS=0.31939 0.40391 -.2851
ATOM=E POS=-.40391 0.28510 -.3193

ATOM=E POS=-.31939 -.40391 0.2851
ATOM=E POS=-.28510 0.31939 0.4039

ATOM=E POS=0.28510 -.31939 -.4039
SCALE SCLWSR=T OMMAX1=.16 .18 .20

OMMAX2=.40 .45 .50
STR KAPPA2=0 RMAXS=3.2 NDIMIN=350

NOCALC=F IALPHA=0

DOWATS=F DELTR=.1 LMAXW=8
ATOM=Ni SIGMA=.7 .7 .7

ATOM=Se SIGMA=.7 .7 .7
ATOM=E SIGMA=.7 .7 .7

START NIT=30 BROY=T WC=-1 NMIX=1 BETA=.5
FREE=F CNVG=.00001 CNVGET=.00001

BEGMOM=T CNTROL=T
EFERMI=-.25 VMTZ=-.75

ATOM=Ni P=4.67 4.41 3.86
Q=0.6 0.0 0.0

0.8 0.0 0.0
8.6 0.0 0.0

enu =-.543 -.398 -.304
c =-.419 0.544 -.281

sqrdel=0.464 0.580 0.188
p =0.054 0.027 2.398

gamma =0.546 0.240 -.009
ATOM=Se P=4.95 4.84 4.17

Q=2.0 0.0 0.0
3.7 0.0 0.0

0.3 0.0 0.0
enu =-1.005 -0.388 -0.513

c =-1.304 -0.360 1.311
sqrdel= 0.344 0.387 0.596

p = 0.372 0.170 0.024
gamma = 0.442 0.145 0.150

ATOM=E P=1.5 2.5 3.5
Q=0 0 0

0 0 0
0 0 0

enu =-1.758 -0.642 1.316
c = 0.990 3.503 6.985

sqrdel= 0.590 0.485 0.400
p = 0.006 0.003 0.001

gamma = 0.358 0.065 0.022
CHARGE LMTODAT=T ELF=F ADDCOR=F

SPINDENS=F

CHARWIN=F EMIN=-2 EMAX=2
PLOT ORIGIN=0 0 0

R1=1 0 0 NDELR1=0
R2=0 1 0 NDELR2=0

R3=0 0 1 NDELR3=0
FORMAT=1

BZ NKABC=4 4 4 TETRA=T METAL=T
TOL=.000001

N=0 W=.005 RANGE=5 NPTS=1001
EWALD NKDMX=250 AS=2 TOL=.000001

RHOFIT FIT=F KAPPA2=0 RMAXS=3.5
ATOM=Ni LMXRHO=2 SIGMA=.7 .7 .7

ATOM=Se LMXRHO=2 SIGMA=.7 .7 .7
ATOM=E LMXRHO=2 SIGMA=.7 .7 .7

SCELL PLAT=1 0 0
0 1 0

0 0 1 EQUIV=T
HARTREE BEGATOM=T LT1=2 LT2=2 LT3=2

DOS NOPTS=801 EMIN=-2 EMAX=2
SYML NQ=30 Q1=0.0 0.0 0.0 LAB1=g

Q2=0.5 0.5 0.0 LAB2=M

NQ=20 Q1=0.5 0.5 0.0 LAB1=M
Q2=0.5 0.0 0.0 LAB2=X

NQ=20 Q1=0.5 0.0 0.0 LAB1=X
Q2=0.0 0.0 0.0 LAB2=g

NQ=35 Q1=0.0 0.0 0.0 LAB1=g
Q2=0.5 0.5 0.5 LAB2=R

FINDES RMINES=.9 RMAXES=4 NRXYZ=72 72 72

Notice that the Wigner-Sitz radii have been in-
serted because SCLWSR=T.

This is a complete CTRL file. The meaning of only
a few of these tokens is necessary in order to run
the program, however, a complete list with a de-
scription of each token is given in SectionV.

7. Before calculating the TB real space structure con-
stants Sα and Ṡα for the combined correction term

by the lmstr.run program, the verbosity is lowered
by changing VERBOS= to 40 in category IO. Sα

only depends on the structure and the number of
partial waves included, while Ṡ also depends on the
WS-radii. If these are changed during the calcula-
tions, the structure constants have to be recalcu-
lated.

8. A self-consistent-field (SCF) calculation can now
be performed using the program lm.run. If self-
consistency is not achieved within the specified
number of iterations (10 in the present case, the
token NIT= in category START), the iterations
can be continued using as start values, the infor-
mation (potentials, potential parameters, etc.) in
the atomic files which were generated by lm.run
or from the potential parameters or moments from
the last iteration which the program wrote into the
CTRL file. If it is decided to start the SCF cal-
culation from scratch, then the atomic files must
be erased. In the present case the program was
converged before the 10th iteration. However, the
default values for the k-mesh in the Brillouin zone
are small (4 divisions along each of the primitive
reciprocal translation vectors in the present case
(in general it depend on the structure), see token
NKABC= in category BZ).

9. lm.run is executed again with a larger number of
k-points. This is only necessary for a metal where
the Fermi energy and the Fermi surface must be ac-
curately determined or for insulators if nice density
of states is wanted. Change token NKABC= to e.g.
16 16 16 (depending on the length of the recipro-
cal translation vectors) in category BZ. In category
START, the token BEGMOM= is set to F. This
tells the program to start with a band structure
calculation.

10. After the SCF solution to the problem has been
found, the results are analyzed. First, the band
structure along lines in k-space is calculated us-
ing lmbnd.run. The default values for the lines are
given in category SYML. If orbital projected bands
(fat bands) are needed the token FATBAND= must
be changed to T in category OPTIONS. It should
be noticed that if the atomic files are present the
potential parameters are calculated with the enu’s
in the CTRL file i.e. one can change the enu’s to
the range of interest. It should, however, be noticed
that the Fermi energy is not recalculated. The band
structure is plotted by gnubnd.exec as described in
Section XE.

11. The atom and orbital projected densities of states
(DOS) are calculated by lmdos.run. The default
values for the energy window is the smallest and
the largest eigenvalue (which are output from the
lm.run). These and the number of mesh points are
given in category DOS and they must be changed

appropriately. To get nice curves also for semicon-
ductors an iteration with more k-points should be
performed by lm.run as described above. The DOS
is plotted by gnudos.exec as described in Section
XF.

12. The full charge density is calculated by lm.run in
the charge mode i.e. the token CHARGE= is set to
T in category OPTIONS. If the electron localiza-
tion function (ELF) is also needed, the token ELF=
is set to T in category CHARGE. The r-mesh on
which these functions are calculated is given in cat-
egory PLOT which must be changed. The plots are
performed by gnucharge.exec as described in Sec-
tion X C if token FORMAT=1 in category PLOT
or with Data Explorer if FORMAT=3.

13. The Fermi surface data is calculated by lm.run if
the token FS= is set to T in category OPTIONS.
This can be plotted by gnufs.exec as described in
Section X G (Note that not all structures are im-
plemented yet!), or by Data Explorer.

III. ORGANIZATION OF TB-LMTO
PROGRAMS

A. Content of the main directory

All executable programs are in the main directory. The
TB-LMTO package consists of four classes of programs.

(i) Programs to construct and check the data in the
main input file (CTRL):

lminit.run generates a CTRL file with the structural
data.

lmhart.run generates overlapping potentials from
atomic Hartree potentials or finds MT-radii.

lmovl.run calculates and displays sphere overlaps.
lmes.run finds interstitial spheres.
lmctl.run rewrites the CTRL file according to the pa-

rameters in the original CTRL and atomic files and in-
serts default values.

lmscell.run increases the basis for super cell calcula-
tions.

lmnghbr.run produces a table of neighbors for each
atom.

lmclean.run reduces the CTRL file to the essential crys-
tallographic data.

(ii) Programs to calculate the structure constants and
performe self-consistent calculations:

lmstr.run generates the structure constants.
lm.run is the main LMTO program performing self-

consistency iterations.
(iii) Programs to calculate the data to be displayed:
lmbnd.run generates bands for plotting.
lmdos.run generates density of states for plotting.
lm.run generates output for lmdos.run and charge den-

sity for plotting. (This is the same as under (ii) above,
but run with different options.)

(iv) Plot programs. The programs with extension exec
will (1) execute the program with the same name but ex-
tension run, which produces data files for the GNUPLOT
program, (2) call the GNUPLOT program to make the
plot, and (3) delete the temporary data files.

gnudos.exec: For density of states plot.
gnubnd.exec: For energy bands plot.
gnucharge.exec: For charge density plots.
gnufs.exec: For Fermi surface plots.
All these executable programs are made by the UNIX

make command which compiles and links the source
codes in the subdirectories. All information about how
this should be done is in the makefile, which is also lo-
cated in the main directory. The main programs for the
first three classes of programs above are made from the
content of the file lmall.f in the main directory. This is
done by make using the information in makefile, getmain,
and the program ccomp. ccomp and its source ccomp.c
are in the main directory. The latter is the only program
written in the language C. For a description of ccomp.c
see Appendix A. The reason why the main programs are
constructed in this way is that when changes are made,
this only has to be done once, namely in lmall.f.

1. Dimensions/size of the program

Since the program is written in FORTRAN77 no true
dynamical memory allocation can be performed. How-
ever, a ‘semi-dynamical memory allocation’ procedure is
implemented. Apart from small fixed size arrays all ar-
rays are stored in a work-array called w in the main pro-
grams. At the time a new array is needed, say the Hamil-
tonian, its size is calculated and space for it is allocated in
the work array. When the array it not needed anymore,
the space is freed and other arrays can be stored in the
same place. This prevents ‘over-dimensioning’. The size
of the work array, however, depends on the size of the
problem i.e. number of atoms, number of k-points, num-
ber of partial waves, etc. The size of the work array is
given by wksize in the main programs. If wksize is too
small for the problem at hand the program will abort,
requesting increase of wksize.

B. Content of the subdirectories

After installation of the package each subdirectory con-
tains files of source codes (.f or .c) and object codes (.o).
Each file contains one main program or one subroutine.
These are linked together by the UNIX make command
to executable programs (.run) using the makefile.

1. Main programs

MAIN: All main programs. These are generated by
make as described above.

MAINA: Some subroutines which have to be linked
to the main program and some routines to calculate the
Hartree potential.

2. Structure related routines

TBSTR: Real-space tight-binding structure constants
Sα and Ṡα for combined-correction term.

FINDES: Programs to find interstitial spheres.
LATTICE: Routines which manipulate the lattice vec-

tors.
HARTREE: Programs to calculate Hartree potentials.

3. Atomic programs

ATOM: Produces potential parameters (pp) and other
atomic information from the moments. Non-relativistic
calculations may be performed by setting REL=F in cat-
egory OPTIONS. One can choose between the von Barth-
Hedin or the Cheperly-Alder local density exchange cor-
relation potential. The Langreth-Mehl-Hu and Perdew-
Wang gradient corretions are also implemented.

4. Solid state programs

BNDASA: Calculates energy bands and evaluates the
moments.

TETRA: Sets up the k-points and weights for k-space
integration using the tetrahedron method.

SAMPLE: k-space integration by sampling.
MAD: Evaluates the Madelung potential and energy.
DENS: Calculates full charge density and the ELF.
RHONS: Makes a fit to the full charge density.
SYM: Generates all operations in a space group from

a set of generators. This is used to determine the k-
points in the irreducible part of the Brillouin zone, and
to symmetrize the density matrix which is only calculated
in the irreducible BZ.

5. Utility subdirectories

LMIO: Input of the CTRL file using library in IOLIB.
IOLIB: Fortran support for input and file handling.
IOCTRL: Programs to write the CTRL file.
EISP: Matrix diagonalization routines.
LINP: Linear algebra routines.
BLAS: Basic linear algebra routines.
EXTENS: Various utility routines and machine con-

stants.
TEX: This document and the Review of Modern

Physics style file rmp.sty.

6. Plots

PLOT: Programs to produce the data files used by
GNUPLOT. This is the only subdirectory where the pro-
grams are not split into subroutines.

IV. DATA FILES

The names of the data files given below should be used,
though the actual name depends on the operating sys-
tem. The name of the program which produces the data
file is given in parentheses.

CTRL: An input and documentation file for all pro-
grams. All data in this file are described in detail in
Section V.

ATOM-NAME: There is one file assigned to each in-
equivalent atom. A complete file (one generated in the
atomic program) contains some general information, the
moments, potential parameters and the ASA or Hartree
potential and core density within the sphere. The mo-
ments and potential parameters are most commonly read
from this file, but it is possible to input the moments or
the potential parameters from the CTRL file instead, in
which case these files need not be present at the start of
a run. The name ATOM-NAME is fixed by the string
following ATOM= in the CLASS category of the CTRL
file.

The atomic file also has categories delimited by a non-
blank character in the first column. The categories are:
GEN: A table of output generated by the ATOM pro-
gram. MOMNTS: The P’s and moments Q. PPAR: The
potential parameters. POT: The potential without the
nuclear part (-2Z/r). The lmhart.run stores the Hartree
atomic potential here, but after the run the atomic files
are removed in order that they are not used by mistake
as starting potentials in the SCF run. COR: The core
electron density. PHI: φ and φ̇.

None of these categories is essential unless the informa-
tion is required. For example, if you begin with a band
calculation, it is essential that the potential parameters
be present either here or in the CTRL file. If you begin
with the moments, the moments must be present either
here or in the CTRL file. Like in the CTRL file, the
data is formatted. Having the potential present, facil-
itates the iterations towards self-consistency within the
sphere. (lmhart.run and lm.run)

STR: Unformatted file structure constants S and Ṡ for
the combined correction. (lmstr.run)

MIXM: This file contains moments and potential pa-
rameters from previous iterations for the Anderson or
Broyden mixing. This is delited after the job. (lm.run)

MOMS: Moments belonging to each eigenvalue (eigen-
vectors are only summed over the different magnetic
states m). This is delited after the job. (lm.run)

BAND: Eigenvalues and angular momentum weights
for density of states calculation. (lm.run)

LMDM: Density matrix used for full charge density
calculation. (lm.run)

RHO: Full charge density (Including core if the token
ADDCOR=T in category CHARGE). (lm.run)

RHOV: Valence charge density (Only produced if to-
ken ADDCOR=F in category CHARGE). (lm.run)

RHOC: Core charge density (Only produced if token
ADDCOR=T in category CHARGE). (lm.run)

RHOS: Spin density density (Only produced if token
SPINDENS=T in category CHARGE). (lm.run)

RHOF: Fitted charge density. (Only produced if token
FIT=T in category RHOFIT). (lm.run)

BNDS: Energy bands. (lmbnd.run)
EIGN: Eigenvalues and full eigenvectors in the orthog-

onal representation - for ‘fatbands’ plot. Note that this
file can be big and in case ‘fatbands’ are not needed, set
token FATBAND=F in category OPTIONS. (lmbnd.run)

DOS: Atom and orbital projected densities of states.
(lmdos.run)

A number of files with extension .dx are created if
the token FORMAT=3 in the category PLOT. These are
used in the plots using Data Explorer.

V. DESCRIPTION OF THE CTRL FILE,
CATEGORIES AND TOKENS

Examples of CTRL files are shown in Section II.
The control file is the main input file, which can also

serve to document a calculation. Data is read from the
control file by categories, one category at a time. A cate-
gory begins with a nonblank character in the first column;
it ends with the next occurrence of one. The name of the
category is the string that begins the category; e.g. the
category ‘STRUC’ begins with ‘STRUC’ and ends before
‘CLASS’. Data within a category is identified by a token,
e.g. NSPIN=. Categories can occur in any order, but
only the first category of a given name is used. Apart
from a mild exception described later, the order of to-
kens within a category is also irrelevant. Only the 200
first characters in each line are read and a # works as an
end-of-line character. See the documentation in IOLIB
for a detailed description of the input procedures.

Several programs modify the CTRL file for instance:
lmhart.run inserts MT-radii, lmes.run inserts interstitial
spheres, lmctl.run inserts default values for tokens not al-
ready specified in the CTRL file, and lmscell.run inserts
data from the single cell to the super cell. The latter two
changes the sphere radii to space filling spheres if the
token SCLWSR=T in category SCALE. Furthermore, if
lm.run ran successfully then the new potential parame-
ters, the moments, the Fermi energy and the muffin-tin
zero is written in the CTRL file. This means that the
BAND file need not be present when running lmbnd.run

(previously the Fermi energy was read from this file) and
the atomic files need not be present when continuing the
iterations (although it is somewhat faster to continue
with the atomic files because the potentials are present).

A complete list of categories and an explanation of each
token is given below.

Each subsection contains the name of the category and
each ‘subsubsection’ contains the name of the token.

A. Category HEADER (optional)

Provides space to describe the contents of the control
file.

B. Category VERS

1. Token LMASA- of cast integer

Is the version number to ensure compatibility of the
CTRL file with the executing program. The program will
send a warning message if the version number is incorrect,
but it will not stop.

C. Category IO (optional)

1. Token HELP= of cast logical (optional)

T: print a list of tokens and data appropriate for this
program, without reading anything.

2. Token VERBOS= of cast integer (optional)

Is an integer that determines the verbosity of output
a program sends to standard out. The output is roughly
as follows:

0: nearly nothing is printed 10: very terse 20: terse
30: normal 40: normal 50: verbose 100: low-level debug-
ging 110: intermediate level debugging 120: high-level
debugging.

3. Token WKP= of cast logical (optional)

Is a switch that turns on the ‘debug’ mode in the dy-
namic memory routines. An effective heap is declared as
a single integer array in the main program. Pieces are
apportioned dynamically by calls to routine defdr.f and
others. They can be ‘released’ to be reused. You can
watch the memory grow and shrink if this is turned on.

4. Token IACTIV= of cast logical (optional)

Is a switch that turns on the ‘interactive’ mode. When
this mode is on, you have an option to abort program
execution, change the verbosity, turn on the work array
debug switch WKP= , or sometimes to change a value of

a single variable that may be passed to query. There is
also the option to turn off the interactive mode. At the
prompt, enter either a simple carriage return, or one of
the following: ‘Vnnn’, where nnn is the new verbosity;
‘W’ to toggle printing of work array; ‘I’ to turn off inter-
active prompt; ‘A’ to abort program execution or, in the
case when a variable is passed, you may also enter ‘Snnn’,
where nnn is a number (or T or F for logical variable);
to change the value of that variable.

5. Token ERRTOL= of cast integer (optional)

An error or inconsistency discovered by the program is
assigned an integer error code from 0 to 4. If the error
code is larger or equal to the value of ERRTOL, the pro-
gram will stop. The meaning of the error codes are: 0;
information, 1; warning, 2; error (this is the default), 3;
severe error, meaning that the results cannot be trusted,
4; fatal error, the program will always stop. For ER-
RTOL > 4, ERRTOL is set to 4. For ERRTOL=–1 all
errors will be ignored and the program will continue.

6. Token OUTPUT= of cast character (optional)

A file name to which standard out is routed. OUT-
PUT=* means standard out.

7. Token ERR= of cast character (optional)

A file name to which standard error is routed. ERR=*
means standard error.

D. Category DIM

In this category some parameters related to the dimen-
sion of the problem is given. These are output from the
programs and not needed to run the programs.

1. Token NBAS= of cast integer (optional)

Is the number of atoms in the basis. This is not used
as an input to the calculation.

2. Token NCLASS= of cast integer (optional)

Is the number of classes (inequivalent atoms not re-
lated by symmetry). This is not used as an input to the
calculation.

3. Token NL= of cast integer

Maximum number of ℓ values on any sphere. This need
not be given.

4. Token LDIM= of cast integer

The number of low partial waves.

5. Token IDIM= of cast integer

The number of intermediat (down-folded) partial
waves.

6. Token NSYMOP= of cast integer

The number of symmetry operations in the space
group.

7. Token NKP= of cast integer

The number of irreducible k-points.

E. Category STRUC

1. Token ALAT= of cast double

Is a scaling factor, in atomic units (Bohr radii), of the
primitive translation and basis vectors.

2. Token PLAT= of cast double and length 9

Are primitive translation vectors, t1, t2, t3, in units of
ALAT and in Cartesian coordinates. The order is as
follows: t1xt1yt1zt2xt2yt2zt3xt3yt3z.

3. Token FIXLAT= of cast logical

The program may change the lattice. If this is not
wanted choose FIXLAT=T. (FIXLAT=T is default.)

F. Category OPTIONS (optional)

Is self explanatory.

1. Token NSPIN= of cast integer (optional)

Must be 1 for non-spin-polarized or 2 for spin-polarized
calculations.

2. Token REL= of cast logical (optional)

T: The scalar relativistic wave equation is solved. F:
The non-relativistic Schrödinger equation is solved.

3. Token CCOR= of cast logical (optional)

Turns on the combined correction. Program lmstr.run
always calculates the Ṡα. They are stored in a file SDOT
for use by program lm.run and lmbnd.run, which will in-
clude the combined correction into the LMTO Hamilto-
nian and overlap matrices when this switch is set to T.

4. Token NONLOC= of cast logical (optional)

T: Turns on one of the non-local exchange correlations
specified by the token NRXC.

5. Token NRXC= of cast logical (optional)

For NRXC=1 the von Barth-Hedin local exchange cor-
relation potential is used. If the token NONLOC=T
the Langreth-Mehl-Hu non-local exchange correlation is
added. For NRXC=2 the Vosko-Wilk-Nusair local ex-
change correlation potential is used. If the token NON-
LOC=T the Perdew-Wang non-local exchange correla-
tion is added.

6. Token NRMIX= of cast integer (optional)

Determines the number of previous iterations in the
charge density to mix when making a sphere self-
consistent. Anderson mixing is used to mix the charge
density to facilitate convergence. Practical experience
has shown that NRMIX=2 works well (this is the de-
fault), and normally you should not need to worry about
this parameter. It may occasionally happen that the
sphere program will not converge with Anderson mixing,
in which case you should set NRMIX to 0.

7. Token Q= of cast character (optional)

BAND, MAD, ATOM, SHOW make the program stop
after the band structure calculation, the Madelung cal-
culation etc.

8. Token CORDRD= of cast logical (optional)

T: Reads the core density from the atomic file. The
core density is not calculated inside the atomic loop but
kept frozen. (Default is F.)

9. Token CARTESIAN= of cast logical (optional)

T: The position of the atoms is given in cartesian co-
ordinates and in units of ALAT. F: The position of the
atoms is given in units of the translation vectors (length
and direction) a, b, c. For non-symmorphic groups, also
the non-primitive translation vectors associated with the
space group operations are given in these units.

10. Token NITATOM= of cast integer (optional)

Number of atomic iterations. To make any atom self-
consistent NITATOM=80 suffices. However, there is no
need for fully self-consistent atoms in the beginning of
the band structure loops since the moments are not fully
self-consistent. The default is 30

11. Token CHARGE= of cast logical (optional)

T: Full charge density is calculated. Other Tokens are
automatically set to the right values. (Only active for
lm.run.)

12. Token FATBAND= of cast logical (optional)

T: a file (EIGN) is produced by lmbnd.run containing
the eigenvalues and eigenvectors. This is used by the plot
program to give the energy bands a width proportional
to specified orbital characters. The default is F.

13. Token AFM= of cast logical (optional)

T: Anti ferromagnetic calculation. I.e. the electronic
structure is only calculated for one spin direction. It
should be noticed that the atoms in the two spin sublat-
tices must occur in exactly the same order in the CTRL
file as explained in Section IX.

14. Token FS= of cast logical (optional)

T: The program lm.run produces a file LMFS, which
can be used to plot the Fermi surface.

15. Token OVLCOR= of cast logical (optional)

T: A correction for the sphere overlap is added to the
hamiltonian and overlap matrices. This is not well op-
timized, therefore, it is recommended to use the default
value F.

16. Token WRIBAS= of cast logical (optional)

T: The lmctl.run program will create a file cstruc.dx
with all atomic positions within the volume defined in
category PLOT. This can be used by DATA EXPLORER
to make a plot of the structure. If lmctl.run is executed
interactively (token IACTIV=T in category IO) the col-
ors and the ‘sticks’ connecting the atoms can be chosen,
otherwise they are chosen by the program.

17. Token SEWALD= of cast logical (optional)

T: The structure constants are calculated by the Ewald
method. (Default is F.) This could be usefull if it is
difficult to converge the structure constants by the real
space method.

G. Category CLASS

Contains information relevant to parameters inside
atomic spheres for each inequivalent atom.

1. Token ATOM= of cast character

A one– (or more) character string naming the atom
of that class. This string names the disk file – at least
for some operating systems – that will hold important
information about that atom (potential parameters, mo-
ments, potential etc.), and is used elsewhere in the input
(see categories SITE and START below) to identify a
particular atom. Following the token ATOM=, several
tokens are sought:

2. Token NEWNAM= of cast logical

T: The program is allowed to change the names of the
atoms.

3. Token Z= of cast double

The nuclear charge of the atom. For interstitial spheres
Z=0.

4. Token R= of cast double (optional)

The sphere radius, in atomic units (Bohr radii).

5. Token LMX= of cast integer (optional)

The maximum ℓ quantum number inside the sphere.

6. Token IDXDN= of cast integer and length 4 (optional)

Can take the value 0, 1, 2, or 3, for each ℓ. This
determines if the partial wave should be treated as low
(1), intermediate (2) (i.e. it will be downfolded), or high
(3) (i.e. it will be thrown away). If IDXDN=0; then the
program decides if the partial wave should be treated as
low, intermediate, or high.

7. Token CONF= of cast integer and length 4 (optional)

Configuration i.e. a principal quantum number. This
determines which states will be treated as core states. For
each ℓ all states with principal quantum number smaller
than that given by CONF will be treated as core states.

8. Token IDMOD= of cast integer and length 4 (optional)

Is a set of integers, one for each ℓ-channel. IDMOD
controls how the potential parameter Eν changes from
one iteration to the next in a self-consistency cycle.

IDMOD=0 lets the Eν ’s shift to the center of gravity
of the occupied part of the band (this is the default);

IDMOD=1 essentially freezes the logarithmic deriva-
tive of the wave function phi at the sphere radius;

IDMOD=2 freezes the Eν’s from one iteration to the
next.

Because data must be read for each atom, tokens are
repeated (once for each class). For that reason, there is
some restriction as to the order of tokens. Tokens Z=,
R=, R/W=, LMX= and CONF= must follow the token
ATOM= they are associated with and precede the next
token ATOM=.

H. Category SITE

Holds site information.

1. Token ATOM= of cast character

Is needed to identify which atom in category CLASS
that site belongs to. Similarly to category CLASS, one
set of tokens is read for each site in the basis, and there
is a similar restriction on the order of tokens.

2. Token POS= of cast double and length 3

Is a basis vector, in units of ALAT and in cartesian
coordinates. The basis could alternatively be given in
units of the translation vectors a, b, and c (see token
X=). Some of the programs require the most compact
basis position i.e. positions closest to the origin. These
new positions are calculated by the programs and written
back into the CTRL file.

3. Token X= of cast double and length 3

Is a basis vector, in units of the translation vectors a,
b, c. The basis could alternatively be given in units of
ALAT and in cartesian coordinates (see token POS=).
This is only read if the token CARTESIAN=F in cate-
gory OPTIONS (see this and the description to the token
POS=).

I. Category SYMGRP (optional)

Provides information to confine integrations to a
smaller part of the Brillouin zone. One enters a small
number of space group operations; subroutines in the
subdirectory SYM will generate all inequivalent products
of these operations. For example, the three operations
R4X, MX and R3D are sufficient to generate all 48 ele-
ments of the cubic octahedron symmetry. Symbols have
the form O:(nx,ny,nz) where O is one of M, I or Rj for
mirror, inversion and j-fold rotation; and nx,ny,nz are a
triplet of indices specifying the axis of operation. You
may use X, Y, Z or D as shorthand for (1,0,0), (0,1,0),
(0,0,1), (1,1,1). You may also enter products, such as
I*R4X. Since these operations restrict numerical integra-
tion to a portion of the BZ, it is important that the class
definitions in category CLASS are compatible with these
operations. If these operations must assume two atoms
to be equivalent but are not so defined in CLASS, the
electron density in those two atoms may not be equiva-
lent. For non-symmorphic space groups the translational
part of the group operation must also be specified (this
is only used for calculating the density matrix, i.e. for
charge density calculation). This is done by adding after
the rotational part :(rx,ry,rz). I. e. for the NiSe2 exam-
ple above MZ:(0.5,0,0.5). If the token CARTESIAN=F
in category OPTIONS the translation is given in terme of
the chemists a, b, and c and the rotation part is separated
from the translation part by ::. I. e. MZ::(0.5,0,0.5).

1. Token NGEN= of cast integer (optional)

The number of generators that follows.

2. Token GENGRP= of cast integer (optional)

The names of the generators separated by a blank.

3. Token USESYM= of cast logical (optional)

T: The space group generated from the generators is
used. This may be useful if the calculation has to be per-
formed for a lower symmetry than the actual symmetry
of the solid. F: The space group of the solid is found by
the program and used in the calculation. Furthermore,
if some atoms are missing in category SITE they will be
added to the basis. I.e. only one of the equivalent atoms
must be supplied in SITE. After the basis has been com-
pleted it is recommended to use USESYM=F.

4. Token SPCGRP= of cast character (optional)

Is the name of the space group. See Ref. 8.

5. Token IORIGIN= of cast integer (optional)

Can take the values 1 or 2 depending on the choice of
origin. The same convension as in Ref. 8 is used. This is
used for generation the CTRL file by lminit.run.

J. Category SCALE

Contains information about scaling the sphere radii.

1. Token SCLWSR= of cast logical (optional)

T: Scale the sphere radii. F: Do not scale.

2. Token FACVOL= of cast double (optional)

Scale the sphere volumes to FACVOL× the unit cell
volume. Default is FACVOL=1.

3. Token OMMAX1= of cast double and length 3 (optional)

Scale to an overlap (s1+s2–d)/d < OMMAX1, keeping
s1/s2 ratio. s1 and s2 are the two sphere radii and d is
the distance between the centers of the spheres. The
three numbers are for atom-atom, atom-interstitial, and
interstitial-interstitial overlap, respectively. The default
values are: 0.16, 0.18, and 0.20.

4. Token OMMAX2= of cast double and length 3 (optional)

Scale to an overlap (s1+s2–d)/s < OMMAX2, keep-
ing s1/s2 ratio. s1 and s2 are the two sphere radii, s
is the smallest of these, and d is the distance between
the centers of the spheres. The three numbers are for
atom-atom, atom-interstitial, and interstitial-interstitial
overlap, respectively. The default values are: 0.40, 0.45,
and 0.50.

5. Token GAMMA= of cast double (optional)

Linear scaling of radii to space filling volume. s(new)
= a(s(old)+b), where ab=GAMMA(a-1) × the average
Wigner-Seitz radius.

K. Category STR

Contains information for the structure constant pro-
gram. Real space tight-binding structure constants are
generated for a cluster of atoms inside RMAXS×W
around each basis atom by ‘inversion’ using Cholesky
decomposition. See the explanation in the subdirectory
TBSTR.

1. Token KAPPA2= of cast double (optional)

Kappa square. The default is zero, but the program
works for positive as well as negative kappas. Alterna-
tively KW**2 may be used as input.

2. Token KW**2= of cast double (optional)

(Kappa×average Wigner-Seitz radius) squared.

3. Token IALPHA= of cast integer (optional)

IALPHA=0: αl,R = jl(kappa × SIGMA ×
sR)/nl(kappa × SIGMA × sR) is used. Where SIGMA
is a token.

IALPHA=1: α’s are calculated in the program. α and
α̇ depend on kappa. The canonical α’s only applies for
kappa=0. Optimal α’s (leading to screening for non-zero
kappa’s) have been calculated as a function of kappa and
a fit formula has been found. This is used to calculate
the α’s.

IALPHA=2: α (token ALPHA) and α̇ (token ADOT)
must be supplied in the CTRL file.

4. Token ALPHA= of cast double (optional)

A list of α values which are read as follows:

STR ATOM=i ALPHA=al(0,i) al(1,i) ... al(lmx,i)
ADOT= ad(0,i) ad(1,i) ... ad(lmx,i)

ATOM=j ALPHA=al(0,j) al(1,j) ... al(lmx,j)
ADOT= ad(0,j) ad(1,j) ... ad(lmx,j)

...

Where the al’s and ad’s are numbers (one for each ℓ and
atom) ALPHA and ADOT are tokens.

5. Token ADOT= of cast double (optional)

ADOT is α̇. For format of input, see the token AL-
PHA. Only used if CCOR=T.

6. Token SIGMA= of cast double (optional)

Screening core radii used to make α’s if the token IAL-
PHA=0. They are read as follows:

STR ATOM=i SIGMA=si(0,i) ... si(lmx,i)

ATOM=j SIGMA=si(0,j) ... si(lmx,j)
...

Where the si’s are numbers, one for each ℓ and atom.

7. Token DOWATS= of cast logical (optional)

T: A ‘Watson sphere’ with a radius enclosing all atomic
spheres in the cluster plus DELTR (Token DELTR be-
low) × W (=the average Wigner-Seitz radius) is placed
around each cluster of atoms. On this sphere the enve-
lope functions expanded in spherical harmonics is zero
for all l’s below LMAXW (Token LMAXW below).

8. Token DELTR= of cast double (optional)

See Token DOWATS above.

9. Token LMAXW= of cast integer (optional)

See Token DOWATS above.

10. Token RMAXS= of cast double (optional)

Is the maximum sphere radius (in units of the average
WS) in which neighbors will be included in the generation
of structure constants. This takes a default value and is
not required as input. For ‘strange’ structures one should
calculate the structure constants for several RMAXS and
check if the structure constants are converged.

11. Token NDIMIN= of cast integer (optional)

For positive values of NDIMIN, the number of sites
in the cluster around each site is determined as the
total number of orbitals in the cluster > NDIMIN.
The number of orbitals on each site is weighted by
WSR(tail)/WSR(head). I. e. NDIMIN < Sum(i) (num-
ber of orbitals at site i)×s(i)/s(j) for the cluster around
site j. This is not done if NDIMIN=0. The default value
is 350.

12. Token ITRANS= of cast integer (optional)

This token is only effective for the lmstr.run program.
It can take three values: 0, the usual TB-structure con-
stants; 1 or 2, new structure constants. Default is 0.

13. Token DONALP= of cast logical (optional)

T: Plot a screened envelope function: ‖N〉+ ǫ‖Ṅ〉. See
Ref. 10. The following tokens: LDN, MDN, JBASDN
and EPS must be supplied.

14. Token LDN= of cast integer (optional)

See token DONALP. LDN is the ℓ-value of the func-
tion.

15. Token MDN= of cast integer (optional)

See token DONALP. MDN is the m-value of the func-
tion.

16. Token JBASDN= of cast integer (optional)

See token DONALP. JBASDN is the atom number on
which the function is centered.

17. Token EPS= of cast double (optional)

See token DONALP. EPS is the ǫ-value of the function.

18. Token NOCALC= of cast logical (optional)

Is available if it is desired to read the structure con-
stants from the file without recalculating them. This is
mostly useful if you would like to look at them (by turn-
ing the verbosity above 40) without recalculating them.

L. Category BZ

Holds information concerning the numerical integra-
tion of energy bands, etc. over the Brillouin Zone. The
LMTO programs are not tied to any particular method,
so the desired method must be specified by a token. In all
methods, the BZ is split into a mesh of parallelepipeds.

1. Token NKABC= of cast integer and length 3

Is the number of divisions of the three primitive re-
ciprocal translation vectors. This is preferable to the
alternative token MAXKP below, since the divisions can
be chosen so that the step length is about the same along
the three vectors.

2. Token MAXKP= of cast integer

Is the maximum number of k-points in the entire Bril-
louin zone.

3. Token TETRA= of cast logical (optional)

T: k-space integration by the tetrahedron method. F:
integration by sampling. (Don’t use F!!! O.J.)

4. Token METAL= of cast logical (optional)

T: for metals. F: for insulators. If not known or for
the first iterations choose T.

5. Tokens N=, W=, RANGE=, and NPTS=

Parameters used in k-space integration by sampling.

6. Token TOL= of cast double (optional)

Is the accuracy with which the Fermi level will be de-
termined.

M. Category EWALD (optional)

Holds information controlling the Madelung sums. The
defaults are almost always adequate; for a detailed de-
scription the reader is referred to the documentation on
the Madelung sums in the program in the subdirectory
MAD. For ‘strange’ structures one should check the con-
vergence by decreasing the token TOL= (see below).

1. Token AS= of cast double (optional)

Controls the relative number of lattice vectors in real
and reciprocal space.

2. Token NKDMX= of cast integer (optional)

Maximum number of terms in the Ewald sum (used for
both real space and reciprocal space sums)

3. Token TOL= of cast double (optional)

Is the error criterion for the Ewald sums.

N. Category DOS

Holds information about the energy mesh in the den-
sity of states calculations.

1. Token NOPTS= of cast integer

Number of energy mesh points.

2. Token EMIN= of cast double

First energy mesh point.

3. Token EMAX= of cast double

Last energy mesh point.

O. Category SYML

Holds information about lines in k-space along which
the band structure should be calculated and plotted.

1. Token NQ= of cast integer

The number of points along the line.

2. Tokens Q1, Q2= of cast double and length 3

The first point and last point on the line in Cartesian
coordinates and in units of 2π/ALAT, where ALAT is
the lattice constant given in the CTRL file.

3. Tokens LAB1, LAB2= of cast character

The labels of the first and last point on the line. Be-
cause of limitations in the present version of gnuplot the
Γ point should be given the label G.

P. Category START (optional)

Controls the flow of execution and the mixing scheme
used in the iterations towards self-consistency in the
lm.run program. Either the modified Broyden mixing
or Anderson mixing scheme can be used to get an op-
timal input vector of P and Q for the next iteration
to self-consistency. For more information, see subrou-
tines mixpq.f, mixpqa.f and mixpqb.f in the subdirectory
MAINA.

1. Token NIT= of cast integer (optional)

Is the number of iterations lm.run executes before quit-
ting (unless self-consistency is achieved earlier).

2. Token BROY= of cast logical (optional)

T: Modified Broyden mixing. F: Anderson or linear
mixing.

3. Token WC= of cast double (optional)

Specifies how strong previous iteration steps are
weighted in the modified Broyden scheme. For WC large,
the last iteration step is weighted most. When starting
with bad moments it is useful to cancel the stored Jacobi
matrix after some iterations to let the calculation for-
get its history (delete file MIXM). You can also choose
an arbitrary negative value for WC. In this case, WC is
adjusted internally according to the inverse root mean
square difference of the components of the mixed vector.

4. Token NMIX= of cast integer (optional)

Is the number of previous iterations mixed in with the
present one using the Anderson scheme. Use NMIX=0
for linear mixing and the the token BETA= the feedback
parameter.

5. Token BETA= of cast double (optional)

Is the proportion of the new iteration (as obtained from
the Anderson mixing) admixed with the (1-BETA) of the
old iteration. When difficulties with convergence occur
BETA should be reduced.

6. Token CNVG= of cast double (optional)

Is the tolerance in the RMS change in the zeroth mo-
ments before self-consistency is achieved.

7. Token CNVGET= of cast double (optional)

Is the tolerance in the total energy before self-
consistency is achieved.

8. Token FREE= of cast logical (optional)

Is intended to facilitate a self-consistent free-atom cal-
culation. When FREE is true, the program uses R=30
for the sphere radius rather than whatever R is passed
to it; the boundary conditions at R are taken to be
value=slope=0 (R=30 should be large enough that these
boundary conditions are sufficiently close to that of a free
atom.); subroutine atscpp.f in subdirectory ATOM does
not calculate potential parameters or save anything to
disk; and program lm.run terminates after all the atoms
have been calculated. Token FREE= T, and running
lmbnd.run, free-electron bands are produced. In this case
the structure constants are not used.

9. Token BEGMOM= of cast logical (optional)

T: Causes program lm.run to begin with moments from
which potential parameters are generated. F: the poten-
tial parameters are used and the program proceeds di-
rectly to the band calculation.

10. Token CNTROL= of cast logical (optional)

T: Read and use moments or potential parameters sup-
plied in the CTRL file. F: The data following CNTROL
are not used. Both the ‘continuous principal quantum
numbers’ P (as described in the section ‘Iterations To-
wards Self-Consistency’) and the Q’s (the moments) must
be present for a given atom as displayed in the example;
however, it is not necessary to have an input for each
atom. Moments are read in Q0, Q1, Q2, once for each
ℓ channel, and then once for each spin, if there are two
spins. In the case ATOM=NI in the above example, 0.6
electrons is put in the s orbital, 0.8 in the p and 8.6 in
the d.

11. Token EFERMI= of cast double precision (optional)

The Fermi energy. This is an output from the pro-
gram. If it is not calculated a default value of -0.25Ry is
inserted.

12. Token VMTZ= of cast double precision (optional)

The muffin-tin zero. This is an output from the pro-
gram. If it is not calculated a default value of -0.75Ry is
inserted.

Q. Category HARTREE

Gives information about the calculation of the overlap-
ping Hartree potential.

1. Tokens LT1, LT2, LT3= of cast integer

The solid Hartree potential is a superposition of atomic
Hartree potentials. Atoms in unit cells translated from
–LT1 to +LT1 (and equivalently for LT2 and LT3) are
taken into account.

2. Token BEGATOM= of cast logical (optional)

T: Calculation of the SCF potential for each atom
(Notice that the token FREE is effective) and keep the
Hartree part. F: The potentials are read from the atom
files. After this an overlapping Hartree potential for the
solid is constructed and stored in the file POT.

R. Category PLOT

Gives the mesh on which the full charge density, the
ELF, or the Hartree potential has to be calculated. The
mesh can be given by the three vectors R1, R2, and R3 or
on a sphere in which case the radius (RMIN and RMAX),
the angle theta (TMIN and TMAX in the range from 0
to 180 degrees), and the angle phi (PMIN and PMAX in
the range from 0 to 360 degrees) has to be given.

1. Token ORIGIN= of cast double and length 3

Origin of the mesh in Cartesian coordinates and in
units of ALAT.

2. Tokens R1, R2, and R3= of cast double and length 3

Are three vectors spanning a parallelepiped in which
the charge density is calculated. Units of ALAT.

3. Tokens RMIN and RMAX= of cast double

Radii in a spherical coordinate system.

4. Tokens TMIN and TMAX= of cast double

Theta angles in a spherical coordinate system.

5. Tokens PMIN and PMAX= of cast double

PHI angles in a spherical coordinate system.

6. Tokens NDELR1, NDELR2, and NDELR3= of cast
integer

Number of mesh points along the R1, R2, and R3
vectors respectively, or from RMIN to RMAX, from
TMIN to TMAX, and PMIN to PMAX respectibely. If
NDELR3=0 the charge density is evaluated in the plane
spanned by R1 and R2. If NDELR2= is also 0 the charge
density is evaluated along the line R1. For spherical co-
ordinates NDELR1=0 gives plots on a sphere.

7. Token FORMAT= of cast integer (optional)

Selects the format of the output file. FORMAT=1,
the format is appropriate for the GNUPLOT. =3, the
format appropriate for DATA EXPLORER. =2, the for-
mat for 2D plots: x, y, f(x,y) and for 3D plots x, y, z,
f(x,y,z), where x, y, and z are the x-, y-, and z-coordinate
of the mesh point and f is the value of the function at this
point. There is one mesh point per line. This format is
appropriate for other plot packages.

S. Category CHARGE

Information about the full charge or spin density cal-
culation.

1. Token LMTODAT= of cast logical

T: for the first plane in which the charge density has
to be evaluated. For subsequent planes some data are al-
ready present (i.e. LMDM) and need not be recalculated,
therefore LMTODAT= F. Default is T.

2. Token CHARWIN= of cast logical (optional)

T: Only states in the energy window from EMIN to
EMAX are included. F: All occupied states are included
(default).

3. Token EMIN= of cast double

For CHARWIN=T, EMIN is the minimum energy in
the energy window.

4. Token EMAX= of cast double

For CHARWIN=T, EMAX is the maximum energy in
the energy window.

5. Token ELF= of cast logical

T: in addition to the charge density, the electron local-
ization function is calculated.

6. Token ADDCOR= of cast logical

T: The core charge density is added to the valence
charge density. F: The core is not added, which is the
default.

7. Token SPINDENS= of cast logical

T: The spin density is also calculated.

T. Category FINDES

Information about the search for interstitial spheres.
The program lmes.run first checks if the atomic muffin-
tin radii found by lmhart.run can be scaled to fill space
without violating the overlap rules in category SCALE.
If this is the case then the program stops. If it is not the
case the program searches for interstitial spheres (ES).
For each ES found with radius larger than the token
RMINES (see this) the space filling is checked (scaling
to space filling and checking overlaps). If space filling
is reached the program stops, otherwise more ES are
searched for. The program will eventually stop either
because space filling has been reached or no more ES can
be found with radii larger than RMINES. In the latter
case RMINES has to reduced.

1. Token RMINES= of cast double (optional)

No sphere with radius smaller than RMINES (in a.u.)
should be found. The default value is 1.25 a.u.

2. Token RMAXES= of cast double (optional)

No sphere with radius larger than RMAXES (in a.u.)
should be found. The default value is 4.5 a.u.

3. Token MAXPT= of cast integer (optional)

A real space mesh is used in the search for interstitial
spheres. MAXPT is approximately the total number of
points in the unit cell. Alternatively the token NRXYZ=
below can be used.

4. Token NRXYZ= of cast integer and length 3 (optional)

A real space mesh is used in the search for interstitial
spheres. The three numbers NRXYZ are the divisions of
the three translation vectors.

U. Category SCELL

Information for supercell calculations.

1. Token PLAT= of cast double and length 9

Primitive translation vectors for the supercell. This is
equivalent to the token PLAT in category STRUC and
should be compatible with this i.e. the supercell transla-
tions should be a multiplum of those in STRUC.

2. Token EQUIV= of cast logical (optional)

T: The atomic data in category CLASS and SITE for
the supercell will be completed from the single cell data.

V. Category RHOFIT

This category holds information about fitting the
charge density. It is not recommended to use it!

1. Token FIT= of cast logical

T: Fit the charge density.

2. Token KAPPA2= of cast double

Energy of the fitting functions.

3. Token KW**2= of cast double

EKAP (see above) times the average Wigner-Seitz ra-
dius squared.

4. Token RMAXS= of cast double

Size of cluster used for calculating the structure con-
stants. Same as in category STR.

5. Token SIGMA= of cast double

Fitting radius. This is read in the same way as in
category STR.

RHOFIT ATOM=i LMXRHO=2 SIGMA=s(0,i) ... s(lmx,i)
ATOM=j LMXRHO=2 SIGMA=s(0,j) ... s(lmx,j)
...

Where the s’s are numbers. The value of LMXRHO is
only an example.

6. Token LMXRHO= of cast double

Maximum ℓ as each site. See token SIGMA= how it is
read.

VI. ITERATIONS TOWARDS
SELF-CONSISTENCY

Just as the LMTO method breaks naturally into an
atomic part and a ‘solid’ part, so do the programs. In
general the ‘solid’ part requires potential parameters and
structure constants as its input, from which it gener-
ates bands, energy moments, densities-of-states, etc. The
‘atomic’ part takes moments as its input and calculates
potential parameters from it. The atomic part requires
very little information beyond the moments and Eν ’s or
boundary conditions to completely specify the electronic
structure within an atomic sphere.

An LMTO calculation is self-consistent when the
atomic part produces, from moments generated by the
solid part, once again the same potential parameters that
the solid part used to generate the moments in the first
place. The self-consistency works by alternating between
the solid part and atomic part, generating moments, then
potential parameters, then moments again until the pro-
cess converges. The program can be started either with
the solid part, specifying potential parameters, or with
the atomic part, specifying the moments.

Because the method is a linear one, only three func-
tions can carry charge inside a sphere (φ2, φφ̇, φ̇2) and
therefore the properties of a sphere, within the approxi-
mations of the linear method are completely determined

by the first three moments, the atomic number and the
Eν ’s or boundary conditions at the surface of the sphere.
In some sense these numbers are ‘fundamental’ to a
sphere; the atomic program will generate a self-consistent
potential for a specified set of moments and Eν ’s and gen-
erate potential parameters from it.

From the point of view of the bands, the Hamiltonian is
completely specified by the potential parameters (and the
structure constants). These are fundamental to the band
program; it will generate moments from the eigenvec-
tors of the Hamiltonian. Full self-consistency is achieved
when the ‘input moments’ coincide with the ‘output mo-
ments’, or equivalently when the input pp’s coincide with
the output pp’s.

The ASA program can start equally as well from either
potential parameters or moments, though it is generally
easier to start from the moments, if no prior information
is available. This is because one can usually begin with a
very simple starting guess (choosing the zeroth moment
to be the charge of the free atom, the first and second to
be zero) that is usually good enough to iterate towards
self-consistency.

If potential parameters are available, you may choose
to begin directly with a band calculation and need not
worry about the moments. If you wish to make a self-
consistent calculation, you must also supply the principal
quantum numbers for each ℓ channel in the so-called P
number described in the following paragraphs.

To make a sphere self-consistent one needs the mo-
ments and also to specify the boundary condition on the
wave function at the sphere radius, or the Eν of the wave
function φ. For a given potential, there is a unique corre-
spondence between the logarithmic derivative Dν at the
sphere radius and Eν , so in principle, it is possible to
specify either one.

There is a set of numbers called P (one for each ℓ chan-
nel) that supplies the information about both the prin-
cipal quantum number and the logarithmic derivative,
D. P is defined as: P = .5 - atan(Dν)/π + n where n
(its integer part) is the principal quantum number; its
fractional part varies smoothly from 0 (for the bottom
extreme of the band for that principal quantum number)
to 1 (the top extreme of the band), and can be thought of
as a ‘continuously variable’ principal quantum number.
Here is a table of Pn as function of Dν : Dν 10 5 1 0 -1 -2
-3 -4 -10 Pn .03 .06 .25 .5 .75 .85 .90 .92 .97

P must be supplied to the atom program. The frac-
tional part of P is automatically supplied by the output
of a band calculation (provided the token IDMOD in cat-
egory CLASS is not 1), but you must supply P (in ad-
dition to the moments Q) if you choose to begin with
moments. P, together with the moments Q can be input
directly through the control file. A word on choices for
the fractional part of P: .3 is quite free- electron-like and
suitable for free-electron-like ℓ channels such as Si d elec-
trons, while .8 is quite tight-binding-like and suitable for
deep states like Cu d orbitals. If there is no information
from the very beginning, .5 is a suitable choice.

In self-consistency cycles, you have a choice, through
the parameter IDMOD described below, regarding the
related pair of parameters P and Eν . You may let P and
Eν float to the center of gravity of the occupied part of
the band (most accurate for self-consistent calculations);
this is the default. You may also freeze alternatively P
or Eν in the self-consistency cycle.

The problem of ‘ghost’ bands can be overcome by us-
ing the downfolding procedure. Orbitals are separated
in lower, intermediate and higher sets. By switching on
the automatic downfolding procedure, this choice is done
automatically by the program. Lower waves contribute
to the dimension of the Hamiltonian matrix, H, and the
overlap matrix, O, and carry charge. Intermediate waves
do not contribute to the dimension of H and O, but carry
charge. Higher waves are thrown away altogether. If
it is not known how to separate the orbitals the auto-
matic downfolding can be switched on before the self-
consistency cycle. After a few iterations, the downfolding
indices don’t change and if it is desired the cycle can be
stopped and started again with the proper division into
lower, intermediate, and higher set. Calculations using
the automatic downfolding should be checked carefully.
The token which makes the decomposition is IDXDN.
IDXDN = 0 : automatic downfolding
IDXDN = 1 : low orbitals
IDXDN = 2 : intermediate orbitals
IDXDN = 3 : higher orbitals
More about this below under category CLASS and token
IDXDN.

VII. ACCURATE BAND STRUCTURE AWAY
FROM THE CENTER OF GRAVITY

Sometimes it is necessary to get accurate bands in a
small energy range e.g. around the Fermi energy, for
an accurate description of the Fermi Surface or in an
energy range far from the center of gravity of the partial
waves. In such cases the potential parameters have to be
recalculated with new Eν ’s for the SCF potential.

After the self-consistent calculation which has gen-
erated atomic files with potential parameters and po-
tentials, one ‘iteration’ is performed with the follow-
ing changes: In the CTRL file the Eν’s are changed,
and the tokens NITATOM=1 and Q=BAND in cat-
egory OPTIONS. Furthermore, the tokens BETA=0
BROY=F NIT=1 BEGMOM=T and CNTROL=F in
category START. With these parameters lm.run pro-
duces a BAND file with the new bands and eigenvec-
tors, which may be used for a DOS calculation. It also
produces atomic files with the new potential parameters
which may be used for calculation of energy bands along
symmetry lines.

Alternatively one can change the Eν ’s in the CTRL
file and run lmbnd.run, since this will recalculate the po-
tential parameters. The Fermi energy is, however, not
recalculated.

VIII. FROZEN POTENTIAL CALCULATIONS

In the ASA it is easy to calculate for instance structural
energy differences. This is done by the so-called frozen
potential technique. Assume that we want to calculate
the structural energy difference between fcc and bcc cop-
per. First a self-consistent calculation for fcc copper is
performed in the usual way and the total energy and a
potential is obtained. The potential is inserted in the
bcc structure with the same atomic volume and the total
energy is calculated without iterating to self-consistency
i.e. keeping the potential frozen. The total energy dif-
ference in the two calculations is the structural energy
difference.

The second step is performed in the following way: The
atomic file containing the frozen potential and potential
parameters is not changed, but the CTRL file is.

In category START: ITER=1, so that only one itera-
tion is performed and BEGMOM=F, so that the program
will start by making the hamiltonian and overlap matri-
ces. Eigenvalues and eigenvectors will be calculated and
from the latter the moments are obtained.

In category START: NMIX=0 so that linear mixing is
effective and BETA=1 to ensure that the moments are
not mixed with the previous ones.

In category CLASS: IDMOD=2 for all ℓ channels so
that the Eν ’s are not shifted to the new center of gravity.

In category OPTIONS: NITATOM=0 so that only one
incomplete loop in the atomic program is performed.
This produces the contribution to the total energy from
the sphere.

IX. SPIN POLARIZED CALCULATIONS

A self-consistent spin-polarized calculation can be
started just like a non spin-polarized (hereafter called
NM) calculation, except that NSPIN=2 in Category OP-
TIONS and the starting moments for up and down spins
in Category START are made different.

Often it is, however, faster first to perform a self-
consistent NM calculation and then using this to start
the spin-polarized calculation.

After the self-consistent NM calculation has been per-
formed the atomic files contain the self-consistent mo-
ments, potential parameters and potentials. These have
to be doubled (one set for each spin) and changed, be-
fore the spin-polarized iterations can begin. This can be
done by changing NSPIN=1 to NSPIN=2 in Category
OPTIONS and VERBOS=50 in Category IO and run-
ning lmctl.run, which inserts the doubled moments (de-
vided by two) and potential parameters from the atomic
files into the CTRL file. The potential parameters or
the moments then have to be changed so that the two
spin directions become different. Probably the most pre-
dictable is to change the moments. Example: Assume
paramagnetic Ni has 9 d-electrons, then after lmctl.run
the zeroth d moments for up and down spin are 4.5. We

guess that the magnetic moment is 0.6 Bohr magnetons
and the up-spin moment is changed to 4.8 and the down-
spin moment is changed to 4.2. The spin polarized itera-
tions are then started using these values in the CTRL file
by setting BEGMOM=T and CNTROL=T in Category
START.

The antiferromagnetic (AFM) calculation is different
from the ferromagnetic and antiferrimagnetic calcula-
tions because in the latter two cases two band structure
calculations have to be performed, one for spin-up and
one for spin-down. In the AFM case the two band struc-
tures are identical, but the moments and potential pa-
rameters for one sublattice and say spin-up are the same
as those for the other sublattice and spin-down. The
program can take advantage of this by performing only
one band structure calculation and interchanging the re-
sulting moments. This is achieved by setting the token
AFM=T in category OPTIONS. It should be noticed
that one is not free to chose the order in which the atoms
occur in the CTRL file. With the atomic order in the first
sublattice chosen, the order of the second sublattice must
be the same. Example: In NiO the spin-up sublattice
consists of Ni-spin-up and O-spin-up and the spin-down
sublattice consists of Ni-spin-down and O-spin-down. If
Ni-spin-up is the first and O-spin-up the second in the
CTRL file, then Ni-spin-down must be the third and O-
spin-down must be the fourth atom. As described above
it may be advantageous to start the spin-polarized calcu-
lations from a self-consistent NM calculation. This could
be done as indicated above, but since usually there are
twice as many atoms in the AFM case as in the NM case,
it may be more convenient to use the program chspin.run
in the main directory to produce ‘spin-polarized’ atomic
files from NM ones. To use this, just type chspin.run.
It will ask for the name of the ‘non-spin-polarized’ in-
put file (let us call it NI) and the spin direction in the
output file (U, for up or D, for down). It will produce a
file with the name NIU or NID and with the same atom
name in the file (NIU or NID). In this file the moments,
the potential parameters, and the potentials are doubled
(the moments divided by two). The potential param-
eters or the moments then have to be changed just as
in the ferro-magnetic case described above. The extra
atoms are then inserted in category SITE and CLASS
BEGMOM=T and CNTROL=F in category START.

X. PLOT PROGRAMS

All programs for simple two-dimensional plots are
based on the public domain program Gnuplot (Copyright
(C) 1986 - 1993 Thomas Williams, Colin Kelley), which
is part of the LMTO distribution.

A. Gnuplot

Gnuplot is a command-line driven interactive plotting
utility for UNIX, MSDOS and VMS platforms. The soft-
ware is copyrighted but freely distributed (i.e., you don’t
have to pay for it). It was originally intended for visu-
alization of mathematical functions and data. Gnuplot
supports many different types of terminals, plottersx,
and printers (including many color devicesx, and pseudo-
devices like LaTeX) and is easily extended to new devices.
The ‘GNU’ in gnuplot is NOT related to the Free Soft-
ware Foundation, the naming is just a coincidence (and
a long story). Thus Gnuplot is not covered by the GNU
copyleft, but rather by its own copyright statement, in-
cluded in all source code. The Gnuplot package comes
with makefiles for the following UNIX platforms:

1. Apollo running SR10.3 with Apollo’s X11

2. DEC3100/5000 running DEC OSF/1 v1.0

3. DEC3100/5000 running Ultrix 3.1d with MIT’s
X11

4. HP/9000 700 series running HP/UX 8.0 with MIT’s
X11R4

5. Sun sparcstation running SunOS 4.1 with suntools
(with and without X11)

6. Silicon Graphics IRIS4D machines (with and with-
out X11)

7. NeXT Cube and Slab running NeXTOS 2.0+ (with
and without X11)

8. ATT 3b1 machines (with and without X11)

9. 386 machines running 386/ix or ISC 2.2 (with and
without T.Roell X386)

10. IBM RS/6000 running AIX 3.2 with xlc 1.2 or xlc
1.1

11. Cray Y-MP or Cray-2 running Unicos 6.0 or 6.1
(with and without X11)

12. Sequent Dynix/PTX with MIT X11

13. Sequent Symmetry (DYNIX 3) with X11

14. Convex 9.0 with MIT X11

15. KSR1 running DEC OSF/1 v1.0 (use make -j 16)

16. LINUX with XFree86-1.2

17. VAX-VMS

The following table summarizes most of the terminals
(output formats) supported by Gnuplot Release 3.5.

table Dump ASCII table of X Y [Z] values to
output

corel EPS format for CorelDRAW
eepic EEPIC – extended LaTeX picture

environment
emtex LaTeX picture environment with

emTeX specials
epson-180dpi Epson LQ-style 180-dot per inch

(24 pin) printers
epson-lx800 Epson LX-800, Star NL-10, NX-1000,

PROPRINTER ...
hp2623A HP2623A and maybe others

hp2648 HP2648 and HP2647
hp7580B HP7580, and maybe other HPs (4 pens)

hp500c HP DeskJet 500c, [75 100 150 300]
[rle tiff]

hpgl HP7475 and (hopefully) others (6 pens)
hpljii HP Laserjet series II, [75 100 150 300]
hpdj HP DeskJet 500, [75 100 150 300]
hppj HP PaintJet and HP3630

[FNT5X9 FNT9X17 FNT13X25]
kc/km-tek40xx MS-DOS Kermit Tek4010 terminal

emulator - color/monochrome
latex LaTeX picture environment

mif Frame maker MIF 3.00 format
nec-cp6 NEC printer CP6, Epson LQ-800

[monocrome color draft]
pbm Portable bitmap [small medium large]

[monochrome gray color]
pcl5 HP LaserJet III [mode] [font] [point]

postscript PostScript graphics language
[mode fontname font-size]

pslatex LaTeX picture environment with
PostScript specials

pstricks LaTeX picture environment with
PSTricks macros

qms QMS/QUIC Laser printer
(also Talaris 1200 and others)

regis REGIS graphics language
tek410x Tektronix 4106, 4107, 4109 and 420X

terminals
tek40xx Tektronix 4010 and others;

most TEK emulators
texdraw LaTeX texdraw environment

tpic TPIC – LaTeX picture environment
with tpic specials

vttek VT-like tek40xx terminal emulator
X11,x11 X11 Window System

If there is access to one of the platforms listed above
and one of the supported terminals connected to it, all
that needs to be done is to compile and install Gnuplot on
the target machine (read the File 0INSTALL for details).

B. Common features of the plotting programs

Five interface programs convert the output of the
LMTO package to a format suitable for Gnuplot and

generate a command file where all options are set:

gnucharge.run Charge density or ELF plot
gnupot.run Hartree potential plot
gnubnd.run Band structure plot
gnudos.run Density of states plot
gnufs.run Fermi surface plot

These programs will be described in detail below.
There are, however, some common features which will
be described first.

Out of the variety of output devices and media, the
most common ones are supported in the programs. Start-
ing one of the programs results in the following prompt:

Enter output device:
1 = Postscript (default)

2 = HP-GL pen plotter
3 = HP Laserjet III (PCL5)
4 = PC screen (vt220 emulation)

5 = X-Windows

Depending on the choice the following output is cre-
ated:

1. A Postscript file named charge.ps, pot.ps, bnds.ps,

dos.ps or fs.ps. This file can be send to any
Postscript printer or be viewed with Display
Postscript or Ghostview.

2. A file named charge.hpgl, pot.hpgl, bnds.hpgl,
dos.hpgl or fs.hpgl suitable for all pen-plotters
and laserprinters that understand HPGL (Hewlett-
Packard Graphics Language).

3. A file named charge.pcl, pot.pcl, bnds.pcl, dos.pcl or
fs.pcl suitable for all Hewlett-Packard laserprinters
and compatibles.

4. Direct output to any vt220 compatible terminal in-
cluding PCs emulating a vt220 (Tektronics 4014
and compatibles are also supported).

5. Direct output to a local or remote X-Window.
If the program is used remotely, make sure that
the remote host has permission to use the lo-
cal display (xhost +localdisplayname) and set the
environment variable DISPLAY to ‘localdisplay-
name:screennumber’.

If the parameters have to be changed (e.g. Encap-
sulated Postscript instead of Postscript) or another
terminal supported by Gnuplot has to be added, this can
easily be done by changing the source code where the
line ”set term ...” is written to the Gnuplot command
file. Refer to the Gnuplot manual for details.

All programs generate intermediate files containing
the plot data and a commandfile with all the commands
and options necessary. The names of these files are

listed in the detailed description for each program below.
These files will remain on the disk if the executables
(*.run) are used directly, and that will allow some
fine-tuning by editing the command file (*.GNU).

For routine plots, however, it is better to run the
shellscripts *.exec, which call Gnuplot immediately af-
ter generating the plot data and delete all intermediate
files afterwards.

C. Charge density and ELF plot

The program gnucharge.run generates plots of the cal-
culated charge density or the Electron Localization Func-
tion (ELF). The program reads the files RHO and ELF
created by lm.run in charge mode (CHARGE=T in cate-
gory OPTIONS, ELF=T in category CHARGE) and cre-
ates the plot data file CHARGE.DAT and the command
file CHARGE.GNU. After the selection of the output de-
vice follows the question:

generate a charge density(t) or ELF plot(f)?

Entering t (logical true) or / (End-of-record) selects a
charge density plot, whereas f (logical false) selects a plot
of the ELF. In the next step the plot data are read in and
the minimum and maximum are determined:

Number of grid-points: 2821

the charges range from .660E-03 to .581E+01

By default the plot range extends from the minimum to
the maximum of the data. However, you can modify the
range by entering two scalars bounding the new interval:

enter new min, max or / for default

The following question concerns the number of isocontour
lines to be drawn

how many contours?(default is 11)

You may enter any number between 2 and 98 or / to
accept the default. The iso contours are now equally
spaced from minimum to maximum including the upper
and lower bound. Assuming 11 lines for a minimum of 0.0
and a maximum of 1.0 results in contours representing
the values 0, 0.1, 0.2 ... , 0.9, 1.0. The next question
defines the nature of the plot:

draw a 3d-surface(t) or not(f)?(default: f)

Entering t (logical true) places a 3d surface with
hidden-line-removal on top of the contour plot, whereas
f (logical false) or / lead to a simple contour plot. Now
the plotfile or the plot window should be generated.

Important notice: Gnuplot does not retain proper x-
y-scaling for most output formats unless your plot is

quadratic. You generally have to scale the plot manually
by editing the directive ”set size ...” in CHARGE.GNU.

D. Hartree potential plot

The program gnupot.run generates plots of the super-
imposed atomic Hartree potentials of the free atoms.
This plot can be useful to check the estimate of the sphere
radii performed by lmhart.run. The program reads the
file POT created by lmhart.run for the plane specified in
the PLOT category in the CTRL file and creates the plot
data file GPOT.DAT and the command file POT.GNU.
After the selection of the output device the plot data are
read in and the minimum and maximum are determined:

lines: 2700

time for reading pot: 1.85
the potential range is from -.1E+7 to -.829E-1

By default the plot range extends from the minimum to
the maximum of the data. Since these potentials usually
cover several orders of magnitude, it is advisable to mod-
ify the range by entering two scalars bounding the new
interval (e.g. -5.0 0.0) after this prompt:

enter new min, max or "/" for default

The following question concerns the number of isocontour
lines to be drawn

how many contours? (default is 11)

You may enter any number between 2 and 98 or / to
accept the default. The iso contours are now equally
spaced from minimum to maximum including the upper
and lower bound as explained in the gnucharge section.
The next question defines the nature of the plot:

draw a 3d-surface(t) or not(f)?(default: f)

Entering t (logical true) places a 3d surface with hidden-
line-removal on top of the contour plot, whereas f (logical
false) or / lead to a simple contour line plot. Finally you
are prompted for a 40-character title string for the plot:

enter plot title :

Now the plotfile or the plot window should be generated.
As stressed in the gnucharge section, Gnuplot may change
the x-y-scaling.

E. Band structure plot

The program gnubnd.run generates plots of the band
structure along the symmetry lines defined in the SYML
category of the CTRL file. The program reads the CTRL
file, the BNDS file and, if FATBAND=T in the cate-
gory options in the CTRL file, the file EIGN. The lat-
ter two are created by lmbnd.run. It creates the plot
data files BNDS.DAT, FERMI.DAT and the command
file BNDS.GNU. For an orbital projected bands plot
BNDS2–4.DAT are created in addition.

After the selection of the output device one is
prompted for a 40-character title string for the plot:

enter title:

followed by the definition of the energy unit:

energies in Ryd.(f) or eV(t)? (default f)

Entering t (logical true) selects electron volts, whereas
f (logical false) or / selects Rydberg. The next prompt
permits you to shift the origin of the energy scale to the
Fermi energy:

energies relative to EF (t)? (default f)

Depending on the choice of symmetry lines and energy
range it may be advantageous to plot the band structure
in portrait mode instead of the default landscape mode:

landscape plot (t) ? (default t)

To achieve this enter f (logical false) after this prompt.
If subsequent points of the same band should not be con-
nected by a line, enter f (logical false) at the next prompt:

energies connected by lines (t)? (default t)

The decision whether orbital projected bands are to be
plotted or not is the next issue:

plot orbital character(t)? (default f)

Enter t (logical true) to plot orbital projected bands,
whereas f (logical false) or / result in an ordinary band
plot. If the fat bands option is not used you may skip
to the modification of the energy range below. If the
fatband plot option is chosen, the prompted is:

Change coordinate system? Enter Euler angles:
alpha, beta, gamma(units of Pi).

If nochange: enter "/"

If the internal coordinate system should be changed, en-
ter the Euler angles11. Enter / to retain the current
orientation. Now the atoms whose orbitals should be
displayed fat should be given:

no coordinate transformation!

Enter orbital character plotted as "fatbands"
First, enter name(s) of atom(s) format(20a4)

followed by <enter> and "/" on next line

Enter the names of the atoms as specified in the CLASS
category of the CTRL file separated by blanks. Enter ‘/’
on the next line. If there are several atoms of this class,
can be selected:

RB1

Following atom(s) selected RB1
There are 6 atoms of type RB1

Specify which one(s) to select, e.g. 1 3 7 for
the first, third, and seventh, followed by "/"

Enter a list of integers followed by ‘/’. Next the orbitals
to be included in the fatband plot should be given:

For each atom specify orbital number from list:
NB! Orbitals are in the new coordinate system!

s y z x xy yz 3z^2-1 xz x^2-y^2
1 2 3 4 5 6 7 8 9

y(3x^2-y^2) xyz y(5z^2-1) z(5z^2-3)
10 11 12 13

x(5z^2-1) z(x^2-y^2) x(3y^2-x^2)
14 15 16

RB1 number 1 enter number(s) followed by "/":

Again, enter a list of integers followed by ‘/’. This step
is repeated for all selected atoms of all selected classes.
Now all fat band specific options have been set. The
input files are read in and some information about them
is displayed:

Bands= 44 Fermi Energy= -.1426
Lattice const.=29.589 Spins=1

nq1= 35
nq1= 40

nq1= 20
nq1= 30

nq1= 25
nq1= 45

nq1= 0
ebot=-.3864 etop=.3131 eferm=-.14258

nq= 195 nline= 5
default emin and emax = -1.0 1.0

If band structure plot should be limited to a fraction of
the calculated energy range the new boundaries may be
entered after this prompt:

enter emin, emax

Entering / instead of two scalars selects the whole range
shown above. Now the plotfile or the plot window should
be generated.

Important notice: Gnuplot is currently not capable of
handling more than one font per plot. Therefore it is

impossible to mix greek and roman letters and e.g. the
Γ point is represented by G. If the output is postscript,

however, it is possible to edit the file bnds.ps and replace
the sequence

(G) Cshow
by

/Symbol findfont 180 scalefont setfont
(G) Cshow

/Times-Roman findfont 180 scalefont setfont.

One can move the label of the y-axis closer to the plot,
simply by changing the line

currentpoint gsave translate 90 rotate 0 0
moveto (Energy eV) Cshow

to
currentpoint gsave translate 90 rotate 0 -700

moveto (Energy eV) Cshow.

F. Density of states plot

The program gnudos.run generates total or partial den-
sity of states plots. The program reads the file DOS
created by lmdos.run and creates the plot data files
DATA.DOS, FERMI.DOS and DOS.GNU. After the se-
lection of the output device one is prompted for the en-
ergy units to be used:

energies in Ryd.(f) or eV(t)? (default f)

Entering t (logical true) selects electron volts, whereas
f (logical false) or / selects Rydberg. The next prompt
allows a shift of the energy origin to the Fermi energy:

energies relative to EF (t)? (default is f)

Now the DOS file is read and information about it’s con-
tent is displayed:

emin,emax= -1.0 .0, nopts=1001,
nd=24 efermi=-.1426

classes are: NA1 NA2 RB1 RB2 SB1 SB2
l’s are: s p d f

Next the projected DOS which should be added and plot-
ted are selected:

Enter class1-l1 class2-l2 .. to be added to DOS

Examples: all s p NA1-f SB2-s

If ‘all’ is entered, then the total density of states is plot-
ted. Entering the name of one or several atoms yields a
plot of the partial density of states associated with these
atoms. Entering the orbital character (s,p,d,f) makes a
ℓ-projected DOS which is summed over all atoms. If the
name of a class of atoms augmented by ‘-’ and an orbital
character symbol is entered, only the partial density of
states associated with these atoms and this specific ℓ-
value is plotted. Additive combinations are also possible
(e.g. RB1 + s generates a plot of all s-orbitals present
and all additional orbitals on the RB1 atoms).
Following a table of all selected orbitals, a choice of the
energy range is prompted:

Take: NA1-s NA1-p NA1-d NA2-s NA2-p NA2-df

Following the table of all selected orbitals you are
prompted for the relative weight of each partial DOS:

Now enter weights for partial DOS
(default=1,1,..)

A weight of 1.0 for each partial DOS gives
the correct total DOS.

Entering / for the default yields the correct total DOS,
but you may enter a number for each partial DOS. Next
you are prompted for the energy range:

emin , emax = -1.000 .000
if desired, enter new emin emax, / for default

Entering / instead of two numbers selects the whole range
shown above. The energy units are the ones selected in
the first step. The default range is defined in the DOS
category in the CTRL file. The next prompt permits
changing the range of the density of states in exactly the
same way:

dosmin, dosmax =.0 1070.419
if desired, enter new min max,/ for default

/
new values for emin, emax, dmin, dmax are:

-1.000 .000 .000 1080.0

title = all
if desired, enter new title / for default

Finally a title for the plot can be given: Now the plotfile
or the plot window should be generated.

G. Fermi Surface plot

Important notice: This program is not yet fully tested

for all lattices! Please cross-check the results carefully!

The program gnufs.run generates a plot of Fermi sur-
face contours in the unfolded irreducible part of the Bril-
louin zone. The program reads the file LMFS created by
lm.run if FS=T in category OPTIONS and creates the
plot data files Y1.DAT, Y2.DAT and the command file
Y.GNU. After the selection of the output device one is
prompted for a 40-character title string for the plot:

enter title:

followed by a list of lattices and the prompt for a general
scaling factor and the selection of the lattice:

Number Lattice type

1 sc
2 bcc

3 fcc
4 orthor primitive

5 orthor based centered
different setting for 1248

6 orthor primitive,diff. sett.
7 orthor based centered-real
8 tetrag primitive kz=0 plane

x9 tetrag primitive more planes
x=1->4 for different planes

enter: scale and lattice
e.g.: 8. 4 (orthorhombic)

or 3. 8 (tetrag)
or 4. x9 (tetrag for several planes,

x selects which one)

After the scale and the lattice is entered, a short sum-
mary of the input is printed and the plot is generated.

XI. COPYRIGHT

The Stuttgart Tight-Binding LMTO-ASA program
Version 4.7
Copyright (C) 1998

Max-Planck-Institut für Festkörperforschung
O. K. Andersen
Heisenbergstrasse 1
D-70569 Stuttgart
Germany

XII. LICENSE AGREEMENT

All programs are subject to a license agreement. Be sure
to read and agree to the license BEFORE you use the
programs.

INSTALLING THE PROGRAMS, YOU ARE CON-
SENTING TO BE BOUND BY AND ARE BECOMING
A PARTY TO THIS AGREEMENT. IF YOU DO NOT
AGREE TO ALL OF THE TERMS OF THIS AGREE-
MENT, DO NOT INSTALL THE PROGRAMS.

LIMITATIONS ON USE

All programs are a free software for scientific and/or
educational purposes. You are not allowed to redis-
tribute it without prior written consent of the Copyright
owner. It is illegal to commercially distribute these
programs as a whole or incorporate any part of them
into a commercial product.

DISCLAIMER OF WARRANTY

The programs are provided on an ”AS IS” basis,
without warranty of any kind, including without limi-
tation the warranties that they are free of defects and
fit for a particular purpose. The entire risk as to the
quality and performance of the programs is borne by
you. Should the programs prove defective in any respect,
you and not Licensor assume the entire cost of any
service and repair.

APPENDIX A: THE PREPROCESSOR

A preprocessor ccomp provides a simplified, FOR-
TRAN compatible version of C conditional compilation.
FORTRAN statements beginning with C# are prepro-
cessor directives; the ones implemented now are C#ifdef,
C#ifndef, C#else, C#elseif, C#endif (also C#define de-
fines a name). Directives C#ifdef, C#ifndef, C#elseif,
and C#endif are followed by a name, e.g. C#ifdef
CRAY. when C#ifdef is false (either name is not de-
fined or it lies within an #if/#endif block that is
false), ccomp comments out until a change of state (new

C#ifdef, C#ifndef, C#else, C#elseif, C#endif encoun-
tered); C#ifdef is true, ccomp uncomments lines follow-
ing until another conditional compilation directive is en-
countered.

Conditional compilation blocks may be nested. As
with C, ccomp distinguishes case. Output is to standard
out.

There is a primitive facility to make logical expressions
using the AND (&) and OR (|) operators, such C#ifdef
john & bill, or C#ifdef john | bill, is provided. Precedence
of operators is strictly left to right, so that john | bill &
mike is equivalent to (john | bill) & mike, whereas john
& bill | mike is equivalent to (john & bill) | mike

How ccomp determines whether to modify code:
Whether the lines following a C#ifdef, C#ifndef,

C#else, C#elseif, C#endif need to be commented out or
uncommented depends on whether they have been com-
mented out in a previous pass. This information is con-
tained in a ‘C’ following the directive, e.g. C#ifdefC,
C#ifndefC, C#elseC, C#elseifC, C#endifC. The pre-
processor will set this, it is best advised to create any
new blocks uncommented and let the preprocessor do the
commenting.

The main programs in directory MAIN: lm.f, lmstr.f,
lmbnd.f, lmdos.f, lmovl.f, and lmhart.f are all obtained
from and lmall.f in the main directory, by running the
latter ccomp with different keywords defined. To mod-
ify a main program change lmall.f and execute make all.
This will create all the main programs in MAIN and com-
pile and link them. Similarly for the atomic program a
non-relativistic version may be generated using the key-
word NONREL.

The following line illustrates the use of the preproces-
sor (after it has been compiled by the C-compiler) IBM
(CMS) machine: ccomp -uLM -dLMSTR LM LMSTR.
‘-uLM’ means undefine LM i.e. remove LM specific lines.
‘-dLMSTR’ means define LMSTR i.e. uncommend LM-
STR specific lines. ‘LM’ is the filename of the input file
with file type FOR and file mode A. ‘LMSTR’ is the
output file. Multiple defines and undefines are possible.

APPENDIX B: MACHINE DEPENDENCIES

The LMTO programs have been written with porta-
bility in mind, and some effort was made to keep within
ANSI-77 standards. If you do find any compilation er-
rors in the code as it stands, please report them, so that
the code can be made as portable as possible. There
is some system dependence lying outside the purview of
ANSI. File handling is very operating-system dependent,
and LMTO files have been kept as simple as possible
to make the code as portable as possible. All files are
opened in function fopna in directory IOLIB, so what-
ever machine dependence there is should be confined to
that subroutine. Also, different machines have differing
internal representations of their numbers. In some places
this is important, such as the function derfc. There is a

collection of three functions in the math library, r1mach,
d1mach) and i1mach that hold machine-specific infor-
mation. These must be set to the appropriate machine
before compilation. Besides the four routines, fopna,

i1mach, r1mach and d1mach, a few occasional machine-
dependencies are found. Perhaps the most important
exception occurs in routine cnvt in the IOLIB directory.
There data read from the control file is converted from
ASCII representation to the binary representation, using
the FORTRAN internal read facility. This read differs on
different machines. The unformatted read should be used
if possible; if not an alternate formatted read is supplied.
This should be checked when installing this routine on a
new compiler. Routine finits (also in IOLIB) does some
machine-dependent initialization.

1. Machine constants

The following machine dependent constants are used
in the TB-LMTO prog. They are supplied in functions

in extens.f:

dmach(1)=1.d-99 [smallest double precision number]

dmach(2)=1.d+99 [largest double precision number]

dmach(3)=1.d-15 [smallest number which added to
1.0 gives something different from 1.0]

imach(2)=6 [standard output channel]

imach(4)=6 [standard error channel]

imach(6)=4 [no. characters per integer]

imach(17)=1 [no. integer words per real word]

imach(18)=2 [no. integer words per double precision
word]

[1] O.K. Andersen, Phys. Rev. B 12, 3060 (1975); O.K.
Andersen, Europhysics News 12, 4 (1981); O.K. An-
dersen, in The Electronic Structure of Complex Sys-
tems, edited by P. Phariseau and W.M. Temmerman
(Plenum Publishing Corporation, 1984); O.K. Andersen,
O. Jepsen, and M. Sob, in Electronic Band Structure
and Its Applications, edited by M. Yussouff (Springer-
Verlag, Berlin, 1986); H.L. Skriver, The LMTO Method,
(Springer-Verlag, Berlin, 1984).

[2] O.K. Andersen and O. Jepsen, Phys. Rev. Lett. 53,
2571 (1984); O.K. Andersen, O. Jepsen, and D. Glötzel,
in Highlights of Condensed-Matter Theory, edited by F.
Bassani, F. Fumi, and M.P. Tosi (North-Holland, New
York, 1985); O.K. Andersen, Z. Pawlowska, and O.
Jepsen, Phys. Rev. B 34, 5253 (1986); H.J. Nowak, O.K.
Andersen, T. Fujiwara, O. Jepsen, and P. Vargas, Phys
Rev. B 44, 3577 (1991).

[3] W.R.L. Lambrecht and O.K. Andersen, Phys. Rev. B 34,
2439 (1986); O.K. Andersen, T. Paxton, O. Jepsen, and
M. van Schilfgaarde (to be published).

[4] O. Jepsen and O.K. Andersen, Solid State Commun. 9,
1763 (1971) and Phys. Rev. B 29, 5965 (1984); P. Blöchl,

O. Jepsen, and O.K. Andersen, Phys. Rev. B 49, 16223
(1994).

[5] O.K. Andersen, A.V. Postnikov, and S.Yu. Savrasov,
Mat. Res. Symp. Proc. 253, 37 (Materials Research So-
ciety 1992) Chapter V.

[6] O. Jepsen and O.K. Andersen, Z. Phys. B 97, 35 (1995).
[7] C.J. Bradley and A.P. Cracknell, The Mathematical The-

ory of Symmetry in Solids (Clarendon, Oxford, 1972).
[8] International Tables for Crystallography, edited by Theo

Hahn (Riedel, Boston, 1987) Vol. A
[9] Pearson’s Handbook of Crystallographic Data for Inter-

metallic phases, by P. Villars and L.D. Calvert (American
Society for Metals, Metal Park, Oh44073)

[10] O.K. Andersen, O. Jepsen, and G. Krier; Exact Muffin-
Tin Orbital Theory. In METHODS OF ELECTRONIC
STRUCTURE CALCULATIONS edited by V. Kumar,
O.K. Andersen, and A. Mookerjee (World Scientific, Sin-
gapore, 1994) p. 63

[11] M. Tinkham, Group Theory and Quantum Mechanics
(McGraw-Hill Book Company, New York, 1964) p. 102

